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Abstract—Often suffering from under-optimization, Networks-
on-Chip (NoCs) heavily impact the efficiency of domain-specific
Systems-on-Chip. To cope with this issue, heterogeneous NoCs
are promising alternatives. Nevertheless, the design of optimized
NoCs satisfying multiple performance objectives is extremely
challenging and requires significant expertise. Prior works failed
to combine many objectives or required an extended design
space exploration time. In this paper, we propose an approach
based on generative artificial intelligence to help pruning complex
design spaces for heterogeneous NoCs, according to configurable
performance objectives. This is made possible by the ability of
Generative Adversarial Networks to learn and generate relevant
design candidates for the target NoCs. The speed and flexibility
of our solution enable a fast generation of optimized NoCs that fit
users’ expectations. Through some experiments, we show how to
obtain competitive NoC designs reducing the power consumption
with no communication performance or area penalty compared
to a given conventional NoC design.

Index Terms—Generative Adversarial Network, CAD, Network-
on-Chip, DSSoC, Heterogeneous, Machine learning

I. INTRODUCTION

System specialization offers a promising solution to design
power, area and performance-efficient Systems-on-Chip (SoCs).
When designed to meet the final application requirements, het-
erogenous SoCs usually produce competitive designs. However,
new challenges arise with the design of such tailored domain-
specific SoCs. The key issue is to find a design that optimally
satisfies the application requirements. While High-Level Syn-
thesis (HLS) tools allow non-expert users to generate hardware
designs for their applications, these tools do not provide an
optimal SoC architecture. A naive solution to identify the
optimal architecture should be to evaluate each possible design
and pick the best one. However, the set of candidate designs
(design space) is often very broad, and the evaluation time
would be excessively long. Hence, an exhaustive exploration of
the design space is usually not tractable because of prohibitive
exploration time. A methodology to reduce the design space is
therefore desirable.

SoC interconnect is a key component that boldly influences
performance and power consumption. An undersized inter-
connect fabric may lead to a communication bottleneck with
a potentially drastic impact on global system performance,
especially in Von Neumann-like architectures. On the other
side, an oversized interconnect uselessly consumes many power
and silicon area [1]. The parallelism and flexibility offered by
Networks-on-Chip (NoCs) have made it the de-facto standard

for multicore SoC. Although heterogeneous NoCs ensure the
best trade-off between performance and power (see Section II),
its architecture defining is challenging.

In this paper, we propose an Al-based method to prune
the design space of heterogeneous NoCs. Benefiting from the
recent progress in Generative Adversarial Networks (GANs),
we devise a tool able to generate a reduced set of optimized
NoC configurations. These generated NoCs are optimized ac-
cording to multiple objectives defined by the user to satisfy
the expectations. The addition of several Reward modules
to the “classical” GAN architecture enables multi-objective
optimization and results in the generation of a subset of NoC
configurations close to the optimal Pareto frontier. Hence, for
a given traffic pattern, our tool generates a subset of optimized
designs. The size of this subset is specified by a user. The
generated heterogeneous NoC design can improve the power
consumption while preserving the throughput, compared to a
similar size homogeneous NoC design. In our experiments, we
observe up to 15% power saving.

II. PROBLEM DEFINITION

NoC sizing is a tedious and complex process. Under-sizing
an NoC directly deteriorates latency and throughput, while
over-sizing substantially increases power consumption. NoC
power consumption account for a significant fraction of the
chip’s power budget (up to 28%) [2]. When studying realistic
NoC traffic workloads, non-uniform patterns are observed [3].
This results in greater pressure put on specific areas of the NoC.
Consequently, heterogeneous NoCs offer a promising solution
to handle these workload imbalances.

However, the design space size of a heterogeneous NoC
is prohibitively large, even when merely considering the het-
erogeneity of routers, the number of NoC configurations be-
ing Number_Routers_Types™Nwmber-Routers Eor 3 64-router
NoC with three classes of routers, we obtain 354 NoC design
options. Although SoC experts may have use intuitions to
smartly reduce the design space, this approach remains non-
practical and does not ensure optimal performance. As a result,
a fast systematic method is required to prune the design space
and generate optimal NoC designs. The present work addresses
this issue by proposing a generative Al framework.

III. RELATED WORK

The exploration of the best NoC designs is related to multi-
objective optimization. In this field, previous works proposed



active algorithms to approximate a set of Pareto-optimal designs
from a larger design space [4], [5]. These algorithms combine
the simulation of some design samples with heuristics to
establish the set of probable Pareto-optimal designs. While
they provide a relatively accurate set, they need to simulate
a non-negligible number of design samples (up to 15% of the
design space for NoC in [5]). Hence, these strategies require a
consequent delay to provide a new optimum NoC design.

Regarding proposals targeting exclusively the design of NoC
design, they struggle to handle flexible multi-objective opti-
mization. The recent work of Alhubail et al. aims to aid in
the design of on-chip interconnects for heterogeneous SoCs
[6]. It combines two algorithms to handle two objectives, i.e. a
Genetic Algorithm to reduce NoC latency, and a Strength Pareto
Evolutionary Algorithm to target the power consumption. Al-
though this contribution provides a tool to design heterogeneous
NoCs, the adopted backend prevents using multiple concurrent
objectives. In our work, we propose a methodology tackling
multiple optimization objectives at once.

In [7], the GANNoC framework exploits Convolutional Neu-
ral Network (CNN) and GANs to generate irregular NoC
topologies minimizing the number of inter-router connections.
In this work, we leverage GANs to reduce the design space
exploration for heterogeneous NoC composed of a diversity of
routers. Our framework differs from GANNoC in three major
points: 1) it proposes a novel GAN framework to handle multi-
objective optimization, 2) it deals with router heterogeneity, and
3) it exploits graph neural networks [8] to model NoCs more
accurately.

IV. DESIGN SPACE PRUNING TOOL

The proposed tool benefits from a framework made of a
GAN and Reward modules. The GAN allows the automatic
generation of valid NoC configurations, while the Rewards help
steering the generation process towards optimized solutions.

A. GAN and GNN neural networks

a) GAN: A Generative Adversarial Network (GAN) is a
neural network architecture proposed by Goodfellow et al. [9].
A GAN consists of two neural networks: a Generator model
and a Discriminator model. The Discriminator is a neural
network trained to classify its inputs into fake or real data.
It is alternatively fed by real data coming from a dataset and
fake data originating from the Generator module. Thus, its job
consists in labeling real data as real and generated data as fake.
As for the Generator, its goal is to mislead the Discriminator
by generating data as real as possible. Both neural networks are
trained concurrently in an alternating fashion. Therefore, GANs
are based on a game theory scenario in which the Generator
tries and learns to fool the Discriminator. It eventually leads
the Generator toward the production of original realistic data.
GANSs convergence is a well-known issue. They are prone to
vanishing gradient and mode collapse failures. Thus, Arjovsky
introduced the Wasserstein loss (W-loss) and built upon this
concept a WGAN mitigating those training problems [10].
Lately, the concept of "Reward WGAN” (RWGAN) was
introduced [7], [11]. It adds a third network, called Reward,

to provide further guidance to the Generator’s learning. Hence,
this new architecture specializes the Generator’s learning to
not only generate data within the “real domain”, but within a
chosen subset of the “real domain.”

b) Graph Neural Networks: Due to the significant simi-
larity between NoCs and graph models, we consider the NoC
generation as a graph generation problem. Both are constituted
from a set of links (i.e. connections/edges) and a set of
nodes (i.e. routers/vertices). Recent advances in Graph Neural
Networks (GNN) [8] therefore open attractive opportunities for
NoC modeling and generation. In this work, we leverage graph
convolutional networks (GCNs) [12] to devise Neural Network
architectures providing accurate graph predictions.

B. Multi-Reward WGAN
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Fig. 1: Multi-Objectives RWGAN diagram, with the back-
propagation path in dashed arrows.

Our proposed Multi-Reward WGAN relies on two funda-
mental considerations which are as follows:

a) NoC generation: The Multi-Reward WGAN (M-
RWGAN) concept extends the RWGAN architecture by imple-
menting several Reward modules, leading to a multi-objective
Generator training (see Figure 1). In the proposed framework,
the architecture of the Discriminator and Rewards are based
on GNN (i.e. GCN [12]). The Discriminator training is similar
to traditional WGAN. It takes both = and Z, respectively real
data and generated data, and output a score regarding the
“realness” of the input, i.e. . It is then trained to minimize
its prediction error i.e. minimize its loss function Lp/(z,Z)
implemented as a W-loss. The Generator outputs & from a
random noise input z. Z is processed by the Discriminator
and the Rewards (R;, with i € [1,n]). As illustrated in
Figure 1, the Generator parameters are trained according to
the outputs of these modules, i.e. § from the Discriminator,
and s; from the Rewards R;. Following the WGAN training,
the Generator learns to minimize the Wasserstein loss coming
from the Discriminator, while minimizing as well the losses
from the Rewards. Those latter losses are obtained via a mean-
squared error measure, w.r.t. to the corresponding score goal.
Rewards are supervised models trained before the Generator
and Discriminator training, with labeled datasets created by
using a NoC simulator. Rewards modules are only used in
inferring mode within the M-RWGAN framework.

b) Multi-Objective Loss Function: The Generator’s train-
ing consists in minimizing its loss. From the RWGAN Gener-



ator loss function presented in a previous work [7], we derive
the M-RWGAN Generator loss principle as follows:

n
Lg(2) = (1= N Lp(#) + A BiLr,(2)] (1)
i=1
, where L, Lp and Lp, are respectively the loss function of
the Generator, Discriminator and 7" Reward. \ represents the
training ratio between the Discriminator and Reward feedback.
Sor ., Bi = B, where 8 is a weight coefficient to balance the
order discrepancies that may appear between Discriminator loss
values and Rewards loss values. Note:  must be adjusted w.r.t
to the number of Rewards n to avoid losses deterioration.

As a consequence, our proposed architecture provides a
solution to train a generative neural network upon multi-
objectives. It further enables to tune the consideration by the
generator of each goal with weight coefficients (i.e. 3;), leading
to finely customized objective functions.

V. EVALUATION
A. Experimental setup

a) Use case definition: In this paper, we limit the router
heterogeneity to three router classes {Big, Medium, Small}.
There are three-stage pipeline router with one virtual channel.
Their input buffers size are respectively {12, 4, 2} flits. We
consider a 2D-mesh NoC composed of 64 routers organized
in a 8x8 grid. We use a classical XY routing algorithm.
We devise the proposed framework to optimize the generated
NoCs according to three objectives: increasing NoC throughput,
reducing power consumption, and decreasing silicon area. Each
objective is assessed by a dedicated Reward. We evaluate NoC
performances for a hotspot traffic pattern. The "hot” router was
arbitrarily set at position [6,6]. 30% of the messages are sent
to the hotspot, other messages obey a uniform pattern.

b) NoC Simulator: We performed NoCs performances
with a fast high-level discrete-event simulator for communica-
tion networks named Omnet++ [13]. The HNOCS framework
[14] enhances Omnet++ with additional NoC specific-support.
The power and area assessments are achieved with the Orion3
library [15], an accurate high-level estimations tool. The used
technological parameters comprise a 45nm manufacturing, a
Vdd of 1.0V, and a 650MHz frequency.

c¢) M-RWGAN neural networks models: We distinguish
the architecture of the Generator and both the Discriminator and
the Rewards. The Generator is a basic multi-layer perceptron. It
is composed of three dense layers (i.e. fully connected) of size
{768, 1536, 192}, with leakyReLU as activation function. Its
input is a random vector of size 100. Its output is reshaped to
a 64x3 matrix, matching the target NoC size. Since the router’s
type is encoded as a one-hot vector, the three channels stand
for the number of router classes. A GumbelSoftmax function
allows enforcing this one-hot encoding [11].

The Discriminator and the Rewards implement the same
architecture. They are composed of four GCN layers of size
{128, 64, 64, 32}, with a dense output layer of size 1.
Activation functions are LeakyReLU. An exception is made
for the Reward devoted to the NoC area estimation. As we

estimate the NoC area solely based on the routers, the NoC
topology has no impact. Thus, the use of GCN is irrelevant,
and we approximate the area with a neural network composed
of two CNN layers of size {128, 32} with 3x3 filters, and
2 dense layers of size {128, 1}. Models are implemented in
Python, using Keras [16] and Spektral [17] APIL.

B. Training methodology

The proposed tool requires “offline” training: (1) the super-
vised training of the Rewards, (2) the GAN training.

Performance metrics of some NoC designs sampled out of
the design space are obtained in simulation, as described above.
In this work, we empirically found that the simulation of 10 000
samples is sufficient to achieve well-trained Rewards. Indeed,
the dataset is carefully spread over the design space. Hence,
despite accounting for an infinitesimal part of the design space
(3%%), these samples are enough representative of the NoC
design behaviors to train a Neural Network. While the creation
of a dataset and the training of the Rewards is time-consuming,
i.e. approx. 3 days in our case, this step must be done only once
for each considered traffic pattern.

The GAN is trained for specific configurations of the user
objectives. This tool configuration is denoted TP, A, where x,
y, z respectively stand for the throughput, power and area Re-
wards ratio. From the user point of view, these ratios represent
the optimization effort performed by the tool to respectively:
maximize the throughput, reduce the power consumption, and
decrease the NoC area. From a theoretical perspective, these
ratios define the share assigned to each objective during the

Generator’s loss computation (i.e. %, see Eq. 1).
C. Proof of concept
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(a) Hotspot traffic.
Fig. 2: Impact of Rewards trade-offs on the generated NoCs.

Figure 2 illustrates the learning capability of the proposed
framework. We train our GAN according to several objectives
trade-offs: T100 (1e T100POA0), T80P10A10 and T50P10A40.
After the training, we configure our tool to generate 100 NoC
designs at once. The per-router NoC traffic intensity is depicted
on the left. The other plots show the average router’s size over
the 100 generated NoC designs. The “origin” plot represents the
produced designs before training. We first notice the tool tends
to increase the size of routers in correlation with the traffic
pattern when throughput is set as a sole objective. Afterward,
we observe a reduction of the router’s size for routers in the
periphery of the “hot” routers, which results of Power and
Area optimization. This shows the M-RWGAN indeed properly
identified these locations are good candidates for Small routers
given the relatively low traffic flowing in these areas and
thereby the limited resulting performance degradation.
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Fig. 3: Impact of different rewards trade-off on generated sets.
Boxes comprise 95% of data.

Figure 3 illustrates the convergence of the generator training
toward subsets of optimized NoCs. It displays the measured
NoC performances along the training i.e. for various epochs.
We perform this analysis for two different tool configurations.

We notice that at the beginning of the training process
the NoCs performances are rather widespread. After a few
training epochs, the generated NoCs converge toward values
matching the user objectives. The T configuration, optimized
for high throughput, generates NoCs designs gathered around
the optimal throughput at the end of the training. The second
tool configuration, named T59P10A40, achieves an interesting
trade-off between the three user objectives. The generated NoCs
offer a high throughput with a reduced area, while the power
consumption remains at a medium level.

D. Generated NoCs evaluation
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Fig. 4: Examples of generated NoCs throughput and power
performance for hotspot traffic pattern.

Figure 4 illustrates the ability of our method to obtain com-
petitive NoC configurations according to the user objectives.
We compare Conf. P and Conf. T, two configurations produced
by a Generator, respectively trained with the Rewards trade-
offs T1oPgp and T5¢P19A49. Considering the hotspot traffic
pattern, the first configuration favors power reduction whereas
the second targets throughput optimization. The resulting NoC
configurations exhibit competitive performances over naive
homogeneous configurations. For instance, the Conf. P design
reduces the power consumption and the silicon area by respec-
tively 24% and 25%, while incurring 22% of throughput loss
compared to the Medium NoC. Considering the Conf. T NoC,
it provides the best possible throughput (equal to the Big NoC),
with 15.2% power savings and 65.9% area reduction.

VI. CONCLUSION

The design of Heterogeneous NoCs in the scope of multi-
objective optimization is particularly challenging.

In this paper, we propose a tool based on generative Al to
address this issue. The proposed tool prunes a design space
according to multiple objectives and generates a subset of near
performance-optimal candidates designs. The tool is driven
at its core by M-RWGAN, a specific GAN-based network
architecture which is a contribution of this paper. This M-
RWGAN makes it possible to steer the generative process
towards solutions having high fitness with respect to the cho-
sen optimization criteria and their respective significance. A
significant strength of this proposal compared to the literature,
therefore, lies in its ability to perform fine-grain parametric
design space exploration under multiple optimization criteria.

The performance evaluation of the generated NoCs is shown
to be competitive compared to naive NoC configurations. Future
works aim at evaluating this framework in the case of multi-
application traffic patterns. The goal being to produce het-
erogeneous NoC configurations satisfying multiple application
requirements while optimizing non-functional parameters such
as area and power consumption.
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