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Abstract

Humans have the amazing ability to learn the dynamics of the body and environment to

develop motor skills. Traditional motor studies using arm reaching paradigms have viewed

this ability as the process of ‘internal model adaptation’. However, the behaviors have not

been fully explored in the case when reaches fail to attain the intended target. Here we

examined human reaching under two force fields types; one that induces failures (i.e., target

errors), and the other that does not. Our results show the presence of a distinct failure-driven

adaptation process that enables quick task success after failures, and before completion of

internal model adaptation, but that can result in persistent changes to the undisturbed trajec-

tory. These behaviors can be explained by considering a hierarchical interaction between

internal model adaptation and the failure-driven adaptation of reach direction. Our findings

suggest that movement failure is negotiated using hierarchical motor adaptations by

humans.

Author summary

How do we improve actions after a movement failure? Although negotiating movement

failures is obviously crucial, previous motor-control studies have predominantly exam-

ined human movement adaptations in the absence of failures, and it remains unclear how

failures affect subsequent movement adaptations. Here we examined this issue by devel-

oping a novel force field adaptation task where the hand movement during an arm reach-

ing is perturbed by novel forces that induce a large target error, that is a failure. Our

experimental observation and computational modeling show that, in addition to the pop-

ular ‘internal model learning’ process of motor adaptations, humans also utilize a ‘failure-

negotiating’ process, that enables them to quickly improve movements in the presence of

failure, even at the expense of increased arm trajectory deflections, which are subsequently

reduced gradually with training after the achievement of the task success. Our results
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suggest that a hierarchical interaction between these two processes is a key for humans to

negotiate movement failures.

Introduction

Imagine you are practicing golf shots in a driving range and aiming to land the ball on the

green with a pre-planned ball trajectory. When the ball goes along a different, unintended tra-

jectory but it still lands on the green, you will almost automatically correct your next hitting

action, by accounting for the error in the ball trajectory. However, the correction you make

will be very different if the ball goes out of bounds of the green. In which case, you would not

just make a large correction in the hitting action but also maybe even change your plan of the

trajectory. Going out of bounds is considered a failure in golf, penalized by an extra shot, and

the movement adaptation by humans in the presence of failure is intuitively very different

from when a movement has achieved its target.

Failure-driven adaptations by humans have been extensively studied in decision making or

cognitive control [1,2], while it has remained unclear how such distinct adaptations driven by

failure affect human motor adaptation. Previous studies on motor adaptation have mainly

focused on the internal model adaptation that is driven by sensory prediction error (SPE)–the

difference between sensory feedback and sensory prediction of a movement [3–5], and/or

motor command error [6]. In the last decade, however, there is mounting evidence that failure

or target error (TE)–the difference between the sensory feedback of the movement endpoint

and the target position–has a distinct, important contribution to motor adaptation [7,8]. The

most popular TE-driven (or failure-driven) motor adaptation process is explicit strategy learn-
ing [7,9,10], which has been mostly examined during arm reaching adaptation to visuomotor

rotations and often quantified by explicit reports of the reaching aiming point [9]. The explicit

strategy learning is thought to modify motor performance to reduce TE, independently of SPE

[7].

It however remains unclear what is the relation between the TE-driven motor adaptation

and the SPE-driven motor adaptation (i.e., internal model adaptation). The interaction

between the explicit strategy learning and the internal model adaptation is popularly explained

by a two-state model of sensorimotor learning with different time scales for each state [11],

where the two operate in a ‘flat’ (non-hierarchical) manner and the net adaptation is defined

to be the sum of the two [9,12]. The fast component of the model has been often suggested to

be linked to explicit strategy learning in visuomotor rotation tasks [9,10] as well as force field

tasks [10,13,14]. On the other hand, recent studies have shown that the TE modulates the

adaptation rate of the SPE-driven internal model adaptation [15] or savings [16]. This role of

the TE as a modulator to the internal model adaptation may suggest a hierarchical interaction

between the TE-driven and the SPE-driven motor adaptations.

Here we show that the two adaptation processes, in fact, interact hierarchically using a force

adaptation paradigm with new TE-inducing force fields that perturbed the participant’s hand

with large forces near the target (Fig 1B). The development of these new fields was crucial, as

the force fields used in most reaching adaptation studies induce minimal TE or failure. For

example, the popular velocity-dependent curl force-field (VDCF) [17,18] exerts the largest

force perturbation on hand movements of participants in the middle of the reach and minimal

perturbation near the target during reaching movements with a bell-shaped velocity profile

[19]. The force field, thus, results in large lateral deviations (LDs) mid-reach in the early
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adaptation trials, but allows the participant to reach their target even after this large LD (see

Fig 2A).

In our study with the novel TE-inducing force fields, we observed that TE-driven motor

adaptation occurs faster than internal model adaptation. Second, and importantly, TE-driven

motor adaptation can result in persistent after-effects that are distinct from after-effects after

internal model adaptation. Third, these adaptive behaviors can be well explained by previous

models of internal model adaptation only if they incorporate a hierarchical interaction

between TE-driven adaptation of the kinematic plan and internal model adaptation. The rela-

tion between TE-driven adaptation and internal model adaptation is consistent with the tradi-

tional view of hierarchical motor planning of kinematics and dynamics [6,20].

Fig 1. Experiment and force fields: A) Participants made a reaching movement from a start point to a target point

while holding a handle of a robot manipulandum. The direct vision of the participant’s hand was occluded by a table

while they received visual feedback of their hand position during each trial by a cursor projected on the table. B) A very

stiff two-dimensional spring, which was activated when the hand velocity decreased below a threshold of 20 mm/s,

ensured that the participant could not make a second corrective movement to reach the target. C) The reaching task

was performed in two force fields in Experiment-1 (VDCF and LIPF) and two force fields in Experiment-2 (PSPF and

CPVF). The hand force profiles in these force fields are shown as shaded regions while assuming a straight minimum-

jerk hand trajectory along x = 0. VDCF is a velocity-dependent force field, while LIPF and PSPF are position-

dependent force fields. CPVF is a linear combination of VDCF and LIPF. Please refer to the methods for the

mathematical definitions of the fields.

https://doi.org/10.1371/journal.pcbi.1008481.g001
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Fig 2. Trajectory adaptation in Experiment-1: (A, C) The hand trajectories of two representative participants and learning curves in

VDCF (A) and LIPF (C) averaged across all participants. Note that the scales differ between x and y axes to clearly show trajectory

changes along the x-axis. The light gray shades behind some trajectories represent a schematic image of the force field. The adaptation of

the TE and LD are shown by traces with open circles and filled circles, respectively. The first 15 TE and LD values are plotted for every

single trial, while the subsequent trials (indicated by thick gray lines at the bottom of the figure) are plotted for every five trials. The

shaded gray areas around the lines represent standard errors. The light green zones represent the target width (radius: 7.5 mm). (B, D)

The TEs and baseline-subtracted LDs in six trial epochs (1st, 3rd-5th, 136th-155th adaptation trials, and 1st, 3rd-5th, 131st-150th de-

adaptation trials) in VDCF (B) and LIPF (D). Gray dots represent data from individual participants. The error bars indicate standard

errors. The light green zone in the TE plots represents the target width.

https://doi.org/10.1371/journal.pcbi.1008481.g002
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Results

Experiment-1

In Experiment-1, thirty participants were asked to make arm reaching movements to a target

150 mm from the start position (Fig 1A) and adapt to either of two force fields (Fig 1C): the

popular velocity-dependent curl field (VDCF) that does not induce TEs, and the novel and

TE-inducing linearly increasing position-dependent (orthogonal) field (LIPF) (see Methods

for details). The adaptation phase (155 trials) was followed by the de-adaptation phase (150 tri-

als), where the participants performed the same task in the null field, like the baseline session.

We randomly assigned the participants to one of the two force fields (n = 15 for each). Their

movements were quantified by two variables: TE and LD. The TE was defined as the x-devia-

tion of the endpoint hand position from the target, and the LD was defined as the x-deviations

of the hand from the mid-point (y = 75 mm) of the straight line connecting the start and the

target (Fig 1A and 1B, and see Methods).

TE changes the trajectory adaptation pattern. Fig 2 shows the time development of

hand trajectories, TE (open circle), and LD (filled circle) in the two force fields and subsequent

null field. To show immediate and later effects of the initial TE on the adaptation and de-adap-

tation phases, we analyzed the data in six trial epochs: 1st, 3rd-5th, 136th-155th (i.e., last 20)

adaptation trials and the 1st, 3rd-5th, 131st-150th (i.e., last 20) de-adaptation trials (Fig 2B

and 2D).

In the VDCF, the trajectory adaptation pattern was similar to those reported in previous

studies. The force field perturbed the participants’ hand trajectories considerably in the first

adaptation trial (Fig 2A), but their hands still could reach the target as we expected. After the

adaptation phase, the participants could fully compensate for the perturbation, and their tra-

jectories became straighter, curving towards the opposite direction by the 155th adaptation

trial. In the first de-adaptation trial, their hand trajectories exhibited a large after-effect, deviat-

ing towards the opposite direction to the force field. By the end of the de-adaptation phase,

their trajectories returned to the straight baseline, or null, trajectories (see 148th de-adaptation

trial). These results were consistent with what has been observed in previous studies [18,21].

The across-participant average adaptation of the TE (open circle) and LD (filled circle) are

shown in the bottom panels of Fig 2A. A large LD induced at the beginning of the adaptation

and de-adaptation phases quickly decreased to within the target size (radius = 7.5 mm, light

green zone) within the first 10 adaptation and de-adaptation trials, respectively. Importantly,

TEs remained relatively small—around or within the target from the very first adaptation trial

and through the following adaptation and de-adaptation phases. In fact, the magnitude of TE

was not significantly larger than the target radius in the first adaptation trial (t(14) = 0.284,

p = 0.780) and the first de-adaptation trials (t(14) = 0.131, p = 0.897).

On the other hand, the TE-inducing LIPF showed a dramatically different adaptation pat-

tern from the VDCF. In the LIPF, the participants’ hand trajectories in the first adaptation trial

(Fig 2 C) were perturbed the most around the target, resulting in a large TE (across-partici-

pants average of TE in 1st trial was 112.6 ± 38.0 (mean ± s.d.) mm) that was significantly larger

than the target (t(14) = 10.700, p = 4.016×10−8). In the subsequent adaptation trials (see 4th

adaptation trial in Fig 2C), the participant’s hand trajectories jumped opposite to the force

direction, which ensures that the target is reached, even with a curved trajectory. It is impor-

tant to note that the magnitude of the LD increases (between 2nd and 7th adaptation trials),

before it gradually decays after the 7th adaptation trial. Furthermore, the decay was observed to

be opposite in sign to that in VDCF. That is, while the LD in the VDCF decays from an initial

negative value (i.e., from ‘–x’ towards zero), the decay in the LIPF is from a positive deviation

(i.e., from ‘+x’ towards zero), even though the LIPF also pushes the hand in the same direction

PLOS COMPUTATIONAL BIOLOGY Failure-driven hierarchical motor adaptation
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as the VDCF field (i.e., towards ‘–x’). Consequently, the decays of the TE and LD are of the

same sign in the VDCF, but opposite signs in the LIPF.

The trajectory change in the de-adaptation phase (1st, 4th, and 147th de-adaptation trials in

Fig 2. C) was almost a mirror image of that in the adaptation phase. A distinctly large TE (of

44.3 ± 27.7 mm) was induced in the first de-adaptation trial, which was again significantly

larger than the target (t(14) = 5.140 p = 1.503×10−4), which monotonically reduced to within

the target size by the 10th trial. In contrast, the LD did not show a monotonic decrease. Unlike

in the VDCF, the magnitude of the LD first increased and then decreased. And, again in the

de-adaptation phase, we observed that the decays were of opposite sign changes in TE and LD.

To quantify the trajectory adaptation pattern of each group, we performed one-way ANO-

VAs on the TE and LD values across the trial epochs. The VDCF group showed a significant

main effect in LD (F2.546, 35.649 = 175.179, p = 3.165×10−5, Z2
p = 0.926) but not TE (F2.152, 30.134

= 2.284, p = 0.116, Z2
p = 0.140). Post-hoc Tukey’s tests confirmed that the magnitude of LD

monotonically changed during the adaptation (1st vs 136th-155th: p<0.001) and de-adaptation

(1st vs 131st-150th: p<0.001) phases.

The LIPF group showed a significant main effect in both TE (F1.686, 23.600 = 84.204,

p = 6.404×10−11, Z2
p = 0.857) and LD (F2.601, 36.412 = 73.312, p = 8.660×10−15, Z2

p = 0.840). The

magnitude of TE monotonically decreased during the adaptation (1st vs 136th-155th: p<0.001)

and de-adaptation (1st vs 131st-150th: p<0.001) phases. In contrast, the LD showed a non-

monotonic change during the adaptation and de-adaptation phases. The LD increased from

the 1st to the 3rd-5th adaptation trials (p<0.001) and then decreased from the 3rd-5th trials to

the 136th-155th adaptation trials (p<0.001). Similarly, the LD decreased from the 1st to 3rd-5th

de-adaptation trials (p<0.001), and then increased from the 3rd-5th to 131st-150th de-adapta-

tion trials (p = 0.008).

The appearance of a new, curved null trajectory after de-adaptation of LIPF. Further-

more, we observed an intriguing phenomenon in the de-adaptation phase of the LIPF. In the

case of the VDCF, upon returning to the null field after the adaptation phase, the participants

readily lost their adapted trajectories within the first 10 de-adaptation (null) trials (Fig 2A);

their trajectories returned to their original null trajectories (observed in the baseline session)

as previously reported [21,22]. This was, however, not the case after the LIPF (see 150th de-

adaptation trial in Fig 2C). After the de-adaptation phase, the participants’ trajectories

remained marginally, yet consistently, deviated from their original null trajectories, even after

as many as 150 null trials (~20 min). Fig 3A compares the participant-averaged null trajecto-

ries before (blue traces) and after (red traces) exposure to the VDCF or LIPF (first and second

plots from left). The LD in the null trajectory showed a significant difference between before

and after exposure to the LIFP (t(14) = 4.224, p = 8.494×10−4), but not the VDCF (t(14) =

0.774, p = 0.452) (Fig 3B).

Crucially, note that the deviation of the new null trajectory was observed to be in the direc-

tion in which the force field perturbed the hand and not in the direction opposite to the force

field, as would be generally expected after exposure to the VDCF. These observations suggest

that the new null trajectory may be not simply an after-effect due to a slow de-adaptation to

the force field but a consequence of the TEs induced in the first few null (de-adaptation) trials

after exposure to the LIPF. To further investigate the cause of the appearance of the new null

trajectory, we next conducted two control experiments.

Experiment-2

In Experiment-2, we considered the possibility that the new null trajectory was not a conse-

quence of the TE and was, rather, induced due to the LIPF being a position-dependent field.

PLOS COMPUTATIONAL BIOLOGY Failure-driven hierarchical motor adaptation
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To negate this possibility, we examined trajectory adaptation by fifteen participants in the pos-

itively skewed position-dependent field (PSPF) (Fig 1B), which is a position-dependent force

field that does not induce TEs.

We observed that the magnitude of TE in the first adaptation (t(14) = 0.261 p = 0.798) and

de-adaptation trials (t(14) = 0.097 p = 0.924) in PSPF was not significantly larger than the tar-

get radius, while the LD showed a monotonic change through the adaptation and de-adapta-

tion phases (see S1 Fig and S1 Text). Importantly, the null trajectory in the de-adaptation

phase of the PSPF returned to the baseline null trajectory (t(14) = 0.659, p = 0.520) (Fig 3A and

3B). These observations were similar to the behaviors observed during exposure to the VDCF.

Next, to ensure that the new null trajectory is also observed in other TE-inducing force

fields than the LIPF, we examined the trajectory adaptation in the position and velocity-

dependent field (CPVF) (Fig 1C). We observed that similar to the LIPF, the CPVF induces a

large TE, both in the first adaptation trial (73.2 ± 50.0 (mean ± s.d.) mm, t(13) = 4.905,

p = 2.874×10−4), as well as the first de-adaptation trial (26.0 ± 22.8 mm, t(12) = 5.211

p = 2.178×10−4). The TEs monotonically reduced until the participant’s hand could reach the

target. In contrast, as with the LIPF, the LD clearly decreased only after substantial reductions

in the TE during the adaptation and de-adaptation phases (see S2 Fig and S1 Text). Crucially,

the participants exhibited a new hand trajectory that was significantly different from their ini-

tial null trajectory (t(13) = 3.386, p = 0.0049) even after 150 trials in the de-adaptation phase

(Fig 3A and 3B). This result provides further support for the possibility that the new null tra-

jectory is a consequence of the TEs induced at the beginning of the de-adaptation phase.

Experiment-3

Finally, to concretely establish the TEs (at the beginning of the de-adaptation phase) as the

cause of the new null trajectory, in Experiment-3 we examined the hand trajectories when the

TEs were eliminated in the de-adaptation phase of LIPF (Experiment-1). Thirty participants par-

ticipated in Experiment-3. Half (15) of these participants had previously participated in Experi-

ment-1. Similar to Experiment 1, these participants trained in the LIPF first, followed by the de-

Fig 3. Null trajectories before and after adaptation in the four force fields in Experiment-1 (VDCF and LIPF) and Experiment-2 (PSPF and CPVF). A) The null

trajectories averaged across the last 20 trials were compared between the baseline (cyan lines) and de-adaptation (magenta lines) phases. The color shades indicate

standard errors. Note that the scales differ between x and y axes to clearly show trajectory differences along the x-axis. B) The baseline-subtracted LDs in the trial epoch

from the last 20 (131st-150th) de-adaptation trials in the four force fields. Gray dots represent data from individual participants. The error bars indicate standard errors. �

indicates p< 0.05.

https://doi.org/10.1371/journal.pcbi.1008481.g003
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adaptation phase. However, in the de-adaptation phase of Experiment-3, they made reaches in

the null field in the presence of a partial error clamp (PEC). This experiment condition was

referred to as LIPF-PEC condition, while the LIPF condition of Experiment-1 (the LIPF followed

by the Null) was referred to as LIPF-Null condition. The PEC was implemented as a strong

spring (see Methods for details) that acted over the second half of their movement (y> 75 mm)

and pulled the participant’s hand to the target along the x-axis (Fig 4A, also see Methods). Note

that the first half of the movement (y� 75 mm), where the LD is measured, remained unaffected

by the PEC. The other half of participants, who were newly recruited, experienced the LIPF-PEC

first and then the LIPF-Null conditions to cancel out the order effects of these two conditions.

We compared the LIPF-PEC condition (Fig 4B, right) with the LIPF-Null condition (Fig 4B,

left). As the half of participants was also used in Experiment-1, statistical significance for the data

of Experiment-3 was tested with Bonferroni multiple comparison.

Although the trajectory adaptation to the LIPF was similar between the LIPF-Null (left

panel in Fig 4B) and LIPF-PEC conditions (right panel in Fig 4B), a stark difference was

observed in the de-adaptation phase in presence of the PEC. As expected, the TE in the first

PEC trial was substantially attenuated, compared to the first trial in a normal Null field (left

panel in Fig 4C; PEC: 8.6 ± 1.9 (mean ± s.d.) mm, Null: 39.9 ± 26.5 mm; t(29) = 6.550, pcorrected

= 7.133×10−7). On the other hand, the LD in the first de-adaptation trial did not differ between

the PEC field and the Null field (t(29) = 0.732, puncorrected = 0.470). However, the difference in

LD appeared after the 1st de-adaptation trial; while the LD in the LIPF-Null condition showed

large jumps from ‘+x’ to ‘-x’, before decaying to the new null trajectory (similar to Experi-

ment-1), the LD in the LIPF-PEC condition was similar to the VDCF condition. In the pres-

ence of the PEC, the LD monotonically converged from ‘+x’ through the de-adaptation phase.

More importantly, the magnitude of the LD in the last twenty de-adaptation trials in the

LIPF-PEC condition was significantly smaller than in the LIPF-Null condition (t(29) = 2.851,

pcorrected = 0.016; right panel in Fig 4C). Furthermore, the participants’ hand trajectories

returned to their initial null trajectories on the application of the PECs (t(29) = 0.283,

puncorrected = 0.779). Overall, the behaviors in the PEC were observed to be the same as in the

no-TE-inducing force fields, specifically the VDCF and PSPF (compare Fig 4B’s right panel

with Fig 2A). Moreover, when we analyzed only the second half of participants who partici-

pated only in Experiment-3 (no need of multiple comparison), we confirmed the same results.

The TE in the first de-adaptation trial was substantially smaller in the LIPF-PEC condition

than the LIPF-Null condition (t(14) = 4.193, p = 9.020×10−4). The LD in the last twenty de-

adaptation trials was significantly smaller in the LIPF-PEC condition than the LIPF-Null con-

dition (t(14) = 2.183, p = 0.047), and the hand trajectories in the PEC returned to the original

null trajectories (t(14) = 0.637, p = 0.534). Furthermore, the results of Experiment-3 suggest

that muscle fatigue is unlikely to account for the formation of the new null trajectory. This is

because we observe new null trajectories in the LIPF-Null but not in the LIPF-PEC conditions,

even though the participants train on the same LIPF before performing the de-adaptation

phase in these conditions. Overall, these results strongly suggest that the TEs after exposure to

TE-inducing force fields caused the new null trajectories observed in Experiment-1 and -2.

Hierarchy and model simulation

Our results show that in the presence of failure (TE> target size), the evolution of the trajecto-

ries is very different from when there are no TEs (compare Fig 2A and 2C). The reduction of

TE is consistently given priority over the reduction of LD (Fig 2C), with the TE decreasing

monotonically, even at the cost of a temporary increase of LD over several trials. Finally, adapta-

tion in the presence of failure can induce changes in the undisturbed (null) trajectories (Fig 3).
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First, these observations suggest the presence of a TE-driven adaptation process, in addition

to the SPE-driven internal model adaptation. Furthermore, the distinct adaptation of the

TE and LD in the LIPF, one of which is monotonic while the other not (Fig 2C), led us to

hypothesize a hierarchical interaction between the two processes. To evaluate this hypothesis,

we simulated the trajectory adaptation in the VDCF, LIPF-Null, and LIPF-PEC using two sen-

sorimotor adaptation models that consider only the internal model adaptation, with and with-

out the addition of a hierarchical TE-driven adaptation process.

Fig 4. Effect of attenuation of TE on the de-adaptation trajectory. (A) After exposure to LIPF, the participants in the LIPF-PEC condition

of Experiment-3 were exposed to the PEC where a force channel was applied over the second half of the reaching movement to attenuate TEs.

(B) The hand trajectories and learning curves of both TE (open circle) and LD (filled circle) are compared between the LIPF-Null (left panel)

and LIPF-PEC conditions (right panel). (C) The TE in the first de-adaptation trial (left panel) and the baseline-subtracted LD averaged across

the last 20 (131st-150th) de-adaptation trials (right panel) were compared between the two conditions. Gray dots represent data from

individual participants. The error bars indicate standard errors. � P< 0.05.

https://doi.org/10.1371/journal.pcbi.1008481.g004
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First, we started with the ‘flat’ optimal feedback control model (or the flat OFC model), pro-

posed by Izawa et al. [23] to explain trajectory adaptation in a velocity-dependent force field

by combining the internal model learning of the learned force field and the optimal feedback

control [24]. Second, the ‘flat’ V-shaped model (or flat VS model) proposed by Franklin et al.

[25], which utilized a different algorithm, similar to feedback error learning [6] where muscle

activation changes across trials are determined by a V-shaped learning function under the

assumption of a pre-planned desired trajectory. We refer to both these models using the prefix

‘flat’ as both models consider a single SPE-driven internal model adaptation process to explain

motor adaptations. We will show that these models can explain our experimental observations

by appending a ‘hierarchical’ TE-driven adaptation process in their current structure. Please

see Methods for details of implementation.

Fig 5 shows that simulations of the VDCF, LIPF-Null, and LIPF-PEC adaptations by the flat

OFC and flat VS models. Although the flat OFC model (Fig 5A) and the flat VS model (Fig 5B)

qualitatively reproduced the trajectory adaptation in the VDCF well, they were unable to

reproduce both the non-monotonic change in LD and the persistent curved null trajectory

observed in the LIPF-Null and LIPF-PEC (Fig 5C and 5D).

Next, we introduced an additional TE-driven adaptation process to these models. We

assumed that the adaptation process represents a modification of the kinematic plan, when

there is a failure (i.e., a TE> target size), and then added the kinematic plan adaptation pro-

cess on the top of the flat learning models (Fig 6A). We thus refer to these two models as the

Fig 5. Flat models cannot reproduce LIPF and PEC behaviors: Simulation for trajectory adaptation in the VDCF (A, B), LIPF-Null (C, D), and LIPF-PEC (E,

F) conditions, represented by TE (open circle) and LD (filled circle) by the flat OFC (upper panels) and VS models (lower panels). The flat learning models

(only internal model adaptation) were unable to reproduce either the non-monotonic change in LD (C, D, E, F) or the curved null trajectory with a persistent

deviation after exposure to the LIPF(C, D).

https://doi.org/10.1371/journal.pcbi.1008481.g005
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‘hierarchical’ OFC model and the ‘hierarchical’ VS model, respectively. The kinematic plan

adaptation process was assumed to be activated only in the presence of failure and modulated

by TE so that the trajectory is adjusted to change in the opposite direction to the TE. In the

absence of failure (i.e., TE< target size), the kinematic plan subtly decays across trials to the

original plan (i.e., the straight direction towards the target). We assume that the decay stops

when the motor cost of the generated reaching goes below a small value of threshold (see

Methods for details of implementation). This assumption was done to reproduce the persistent

curved null trajectory.

In the hierarchical OFC model, this process was implemented by a direction bias [26] (Fig

6B), which was incorporated into the cost function within the flat OFC model (see Methods

for details). In the hierarchical VS model, the initial direction of the desired trajectory (Fig 6B)

was modified in the same way as the hierarchical OFC model (see Methods). By including this

TE-driven adaptation process, both models (Fig 7C, 7D, 7E and 7F) could explain all the fea-

tures of the trajectory adaptation in LIPF-Null and LIPF-PEC, including the non-monotonic

change of the LD during the adaptation phase, and the appearance of the new null trajectory

after de-adaptation in the LIPF-Null or disappearance of that in the LIPF-PEC. In the absence

of failure, as in VDCF, both models predict the same results as their flat counterparts (Fig 5A

and 5B).

Fig 6. Hierarchical motor adaptation model. (A) Schematic diagram of the model. The model consists of two

adaptation components: the kinematic plan adaptation (magenta box) as a higher component, driven by TE, and the

internal model adaptation (light blue box) as a lower component, driven by SPE. In the presence of failure (i.e.,

TE> target size), the kinematic plan adaptation process becomes active and modifies the planned direction of the

hand motion. When the task is successful, the planned direction slowly decays to the original movement direction. (B)

The planned direction of the hand motion is implemented as a directional bias (magenta arrow) in the hierarchical

OFC model and a desired trajectory (magenta line) in the hierarchical VS model (see Methods for details).

https://doi.org/10.1371/journal.pcbi.1008481.g006
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Discussion

We examined the motor adaptation of arm reaching trajectories in force fields that induce fail-

ure (TE > target size) at the beginning of the adaptation and de-adaptation phases. First, our

results showed that the human motor learning system puts a higher priority on the reduction

of TE than LD. In the presence of failure, the LDs did not follow a typical monotonic decrease

as reported in previous studies [21,22,27,28]. TE is reduced first, even at the expense of an

increased LD (Fig 2C). A monotonic decrease in LD took place only after the TE was reduced

to around the target size. Second, the presence of failure in the de-adaptation phase caused the

appearance of a new null trajectory that was distinct from the null trajectory observed in the

baseline period and persisted even after 150 de-adaptation trials. These observations were suc-

cessfully reproduced by the hierarchical motor adaptation models that combine a TE-driven

kinematic plan adaptation with the internal model adaptation.

The prioritized reduction in TE over LD (Fig 2C and 2D) cannot be explained only by inter-

nal model adaptation even when considering multiple time scale adaptations, such as a two-

state model [10–12], because these models predict similar monotonic changes in both TE and

LD (like Fig 5). It is important to note that this is also the case when considering the spatiotem-

poral difference in the error information. If the errors early in a trajectory are less important

than those at the end to update the internal model of the force field, the difference may affect

the adaptation rate (i.e. TE may lead to a faster internal model adaptation) but still not change

the adaptation pattern to which the internal model adaptation leads (i.e. monotonic decay of

Fig 7. Hierarchical model’s simulation for trajectory adaptation in the VDCF (A, B), LIPF-Null (C, D), and LIPF-PEC (E, F) conditions, represented by TE

(open circle) and LD (filled circle) by the hierarchical OFC (upper panels) and VS models (lower panels). The simulated hand trajectories were shown at the

top of each panel. The hierarchical learning models (kinematic plan adaptation and internal model adaptation) successfully reproduced the behaviors in all the

three conditions.

https://doi.org/10.1371/journal.pcbi.1008481.g007

PLOS COMPUTATIONAL BIOLOGY Failure-driven hierarchical motor adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008481 April 19, 2021 12 / 28

https://doi.org/10.1371/journal.pcbi.1008481.g007
https://doi.org/10.1371/journal.pcbi.1008481


the trajectory). In contrast, the non-monotonic trajectory changes in the presence of TEs sug-

gests the presence of an additional TE-driven kinematic plan adaptation. In our hierarchical

motor adaptation models (Fig 6), the kinematic plan adaptation changes the reaching direction

in the opposite direction of the TE, which enables a quick reduction in TE, even when it some-

times leads to an increase in LD (Fig 7C, 7D, 7E and 7F). After the TE reduction, we assume

that the kinematic plan slowly returns towards the original movement direction (i.e., towards

the target). The hierarchical addition of this TE or failure driven process enables the models to

explain the TE and LD adaptation processes both in no-TE-inducing force-fields as well as TE-

inducing force fields.

The appearance of the new null trajectory in the de-adaptation phase can be also explained

by the hierarchical dominance of kinematic plan adaptation over internal model adaptation.

In our hierarchical models, we assumed that after the motor cost of arm reaching falls below a

small threshold value, the decay of the kinematic plan toward the baseline plan stops. This

assumption could reproduce the persistent curved null trajectory after de-adaptation in the

presence of failure. The models thus suggest that the TE-driven kinematic plan adaptation

may determine the steady-state null trajectory to which the internal model adaptation con-

verges. This possibility is strongly supported by Experiment-3 (Fig 4) where the suppression of

TE enabled the participants to converge back to their baseline null trajectory. This observation

was also successfully reproduced by the hierarchical learning models (Fig 7E and 7F). Our

assumption, that the TE-driven kinematic plan adaptation is also affected by the motor cost, is

similar to the idea that a desired trajectory of movement may be modified according to the

level of interaction force with the environment [29]. It has however not yet been empirically

examined and remains an interesting question for future studies.

Motor learning processes like motor memory [30–32] or use-dependent learning [33] make

one’s movement similar to the last performed movement. Operant reinforcement learning

[34] causes people to select movements for which the task had previously been successfully

achieved. These processes may be seen as likely candidates to explain the persistent curved tra-

jectories. However, these processes alone cannot explain why the persistent curved null trajec-

tories do not appear in the no-TE-inducing force fields (VDCF or PSPF) (Fig 3B) as well as

during PEC in Experiment-3 (Fig 4B), in which the participants successfully reached the target

with curved null trajectories in the first de-adaptation trials. Our results thus suggest that even

if motor memory, use-dependent learning, or operant reinforcement learning is indeed active

during the force field adaptation, unlike kinematic plan adaptation, they do not hierarchically

interact with internal model adaptation but instead work in a non-hierarchical manner. Like-

wise, other possible causes like perceptual bias [35,36] or perceptual recalibration [37] of the

hand position also can not well explain why the persistent curved null trajectories appear only

in the TE-inducing but not the non-TE-inducing force fields. If our model includes these

learning processes or perceptual adaptation processes, it may be able to better explain the

behavior. We however note that the main purpose of our model simulation is to explain the

necessity of an additional TE-driven adaptation process hierarchically interacting with the

internal model adaptation, rather than develop a new model. For this purpose, we chose the

two most popular learning models in the current literature and demonstrated the effect of add-

ing the additional TE driven process.

A priori, the new null trajectory in the de-adaptation phase shown by us is different from a

persistent retention of learned movements that has been recently reported to occur after some

reinforcement period where only binary success or failure feedback is provided [38–41].

There, the retention was measured in no feedback periods subsequent to reaches, in which

movement-related feedback was not available, and then when the feedback was available, a

typical washout process took place with the movement quickly returning to the baseline level
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[38]. In contrast, in our study the new null trajectory persists for at least ⁓20 min of the de-

adaptation period even when movement-feedback is available and without a reinforcement

period. Future work is needed to determine how long the new null trajectory persists or

whether it decays very slowly.

Recent studies have identified the presence of distinct explicit and implicit components of

adaptation to novel visuomotor rotations [7,9,10]. The explicit components, called explicit

strategy learning, have been proposed to be sensitive to task performance or TE, and faster

than implicit components represented by internal model adaptation. We believe the TE-driven

adaptation process we observed here may (at least partially) be an explicit strategy learning, as

it was active only in the presence of failures and fast [10,14] but insensitive to LD (i.e. SPE).

However, the key difference between this TE-driven adaptation and the explicit strategy learn-

ing previously identified lies in the way the two processes interact with the internal model

adaptation. Previous visuomotor rotation studies have often utilized a two-state model to

explain the interaction between the explicit strategy adaptation and internal model adaptation

[10,42] by assuming that these two adaptation processes interact in a non-hierarchical manner

where the net reach trajectory is defined to be the sum of the two. However, in the case of

visuomotor rotation tasks, the parameter to be learned by the two adaptation processes is the

same–the rotation angle (or its equivalent). In fact, previous force-field studies have similarly

looked at the adaptation of a single parameter–the trajectory (quantified by its curvature, devi-

ation, or encompassed area relative to the straight line). The adaptation of a single parameter

is well explained by ‘flat’ models, including the “non-hierarchical” two-state model. On the

other hand, this is not the case in our force field task, where the two adaptation processes rep-

resent changes in distinct parameters (the target and trajectory). The net adaptation behavior

in our experiment cannot be explained by the flat models, including the two-state model, in its

current formulation. Rather, the TE-driven adaptation and the internal model adaptation we

observe here seem to be more consistent with the traditional view of hierarchical motor plan-

ning of kinematics and dynamics [6,20].

Our hierarchical models are different from the Adaptation Modulation model, a hierarchi-

cal motor adaptation model proposed by Kim et al. [15] that could explain the interaction of

TE-driven adaptation and SPE-driven adaptation in their visuomotor rotation paradigm. The

Adaptation Modulation model increases the adaptation rate of the SPE-driven adaptation pro-

cess in the presence of failure (TE > target size). In the end, as with the two-state model, this

model also considers only adaptation of the internal model (i.e. novel visuomotor ration)

although it is modulated by the presence of TE. Thus, the TE-driven process of the Adaptation

Modulation model hierarchically determines a temporal feature of the SPE-driven adaptation

(i.e., how fast arm trajectories adapts to the novel environment) but not a spatial feature as in

our models (i.e., where the adapted trajectories converges). Accordingly, the Adaptation Mod-

ulation model can explain our observations in the non-TE-inducing fields but not those in the

TE-inducing fields (i.e. the presence of non-monotonic trajectory change and new null trajec-

tory). Additionally, this is also true for two other models proposed by Kim et al. [15]: the

Movement Reinforcement and Dual Error models. Both models implement an interaction of

SPE-driven and TE-driven processes, but again consider the adaptation of internal model

alone. On the other hand, our model may partially explain their results. Specifically, the TE-

driven kinematic plan (by limiting the range of the plan change) can explain the facilitated

adaptation observed in Kim et al. [15] although some constraints are necessary. However, as

the TE-driven process in Kim et al. [15] modulates adaptive behavior in a completely implicit

manner while our TE-driven process may, we believe, work in an explicit manner, these two

may be distinct in nature.
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Studies have regularly found hierarchical behaviors during cognitive learning and decision

making in humans. The brain activations during these hierarchical behaviors have been well

explained by hierarchical reinforcement learning (HRL) algorithms [43–48]. The typical role

of the higher component in a HRL system is to select a task-goal-oriented sub-goal or option,

while the lower component typically selects an action to achieve this goal or sub-goal [44,49–

51]. This structure is very similar to the hierarchical motor learning models we suggest here.

However, while the previous theoretical and imaging studies have exhibited a hierarchy at the

level of cognitive learning in low degrees-of-freedom tasks, here our study suggests the pres-

ence of similar hierarchical structures for solving large degrees-of-freedom motor learning

problems. The higher components active during cognitive learning have been linked to neural

systems in the dorsolateral striatum, the dorsolateral prefrontal cortex, the supplementary

motor area, the pre-supplementary motor area, and the premotor cortex [44]. On the other

hand, the lower components have been related to the ventral striatum and the orbitofrontal

cortex that has strong connections to both the ventral striatum and the dorsolateral prefrontal

cortex [44]. Interestingly most of these areas have been observed to be active during motor

learning of point-to-point arm or finger movements as well [52–55], suggesting the cognitive

learning processes and the hierarchical motor learning may process as subsets of a common

HRL structure. However, further studies are required to clarify this speculation by concretely

examining the sharing of neural structures between the two processes.

Before the conclusion, we note two limitations of this study. First, while we manipulate the

presence or absence of TE across the force fields, the current experimental design could not con-

trol several movement features like the velocity profile, stiffness profile [56], online feedback gain

[57], posture at the final position [58] or adaptive movement changes [59,60]. Although we

believe it is unlikely that any of these factors alone can consistently explain our two key observa-

tions in the TE-inducing force fields: the non-monotonic trajectory change and the new null tra-

jectory, they may partially contribute to the formation of our observations. For example, one

possibility is that a change in feedback gain induced by a large TE may contribute to shape the

new null trajectory, because feedback control has been suggested to share the internal model used

for ‘feedforward’ control [61–63]. Another possibility is that the faster reduction of TE than LD

may be boosted by adaptive control that involves online update of the control policy within indi-

vidual movements [59,60]. Adaptive control may update not only the control policy but also the

kinematic plan in the presence of TE. If the update rate to the kinematic plan is greater than that

to the control policy, this may result in different trial-by-trial adaptation of TE and LD with faster

and slower time scales, respectively. Future studies are needed to examine these possibilities.

Second, the current experiment design cannot determine whether the TE-driven kinematic

plan adaptation is an implicit process to automatically compensate for TE or an explicit pro-

cess to intentionally change the strategy or the initial reach direction, although we believe the

latter. One promising way to address this question may be to manipulate the participants’ psy-

chological sensitivity to TE of the same movements as employed by Kim et al. [15]. Changing

the target size or monetary reward for task success, but with other motor factors being kept

constant, would be useful to examine whether or not the TE-induced adaptative behaviors

observed in our study are explicitly modulated.

The failure (i.e., TE) driven adaptation of the kinematic plan leads to large and fast move-

ment changes that are arguably costly in terms of control and energy [24,64]. It is, therefore,

possible that in our daily lives, to reduce the control cost, kinematic plan adaptation remains

inactive during the performance of most movements, as they are overlearned and rarely lead

to failure. This plan adaptation is likely activated only when there is a (probably unexpected)

failure. When a failure is experienced, the kinematic plan adaptation process helps the brain to

quickly acquire success or reward, even at the expense of large high energy movement changes,
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after which it is again left to the internal model adaptation to optimize the movement relative

to this new movement plan. Furthermore, task success or failure definitively depends on task

requirements. In our study, as TE determines whether the task is successful or not, the partici-

pants prioritized TE over LD. However, if participants were instructed that the task goal is to

make a reaching trajectory with a certain magnitude of LD, they would prioritize LD over TE.

Moreover, when the failure is indicated by a binary (success or failure) feedback but not a

signed error feedback like TE, LD may be more prioritized as suggested in a previous study

[65]. Importantly, whatever the task goal or the feedback type is, our results suggest that the

presence of failure may activate the kinematic plan adaptation to quickly achieve the goal. In

conclusion, our study provides behavioral evidence to exhibit that human motor learning is

shaped by the hierarchical interactions between the two learning processes; a higher kinematic

plan adaptation driven by failure, and a lower internal model adaptation. This hierarchical

motor adaptation structure may allow the brain to negotiate unexpected behavioral failures in

an ever-changing and diverse environment around us.

Methods

Ethics statement

All experiments involved human participants and were approved by both the ethics commit-

tees of Advanced Telecommunication Research Institute (approval numbers: 15–722, 16–722)

and National Institute of Information and Communications Technology. All participants

signed an institutionally approved consent form.

Participants

A total of seventy-five neurologically normal volunteers (fourteen females and sixty-one

males; age 22.70 ± 2.06, mean ± s.d.) participated in the experiments. All participants were

right-handed as assessed by the Edinburgh Handedness Inventory [66]. All participants were

naïve to the purpose of the experiments. No statistical methods were used to determine sample

sizes although the sample sizes used in this study were similar to those in previous studies

using similar reaching tasks [9,14,15,23,42].

Apparatus

The participants sat on an adjustable chair while using their right hand to grasp a robotic handle

of the twin visuomotor and haptic interface system (TVINS) used to generate the environmental

dynamics [67]. Their forearm was secured to a support beam in the horizontal plane and the

beam was coupled to the handle. Since the TVINS has two parallel-link direct drive air magnet

floating manipulandums, we performed the experiments with two participants at a time. Each

manipulandum was powered by two DC direct-drive motors controlled at 2,000 Hz and the par-

ticipants’ hand position and velocity were measured using optical joint position sensors (4800,000

pulses/rev). The handle was supported by a frictionless air magnet floating mechanism.

A projector was used to display the position of the handle with an open circle cursor (diam-

eter 4 mm) on a horizontal screen board placed above the participant’s arm. The screen board

prevented the participants from directly seeing their arm and handle. The participants con-

trolled the cursor representing the hand position by making forward reaching movements (the

details will be shown in the next section) from a start circle (10 mm diameter) to a target circle

(15 mm diameter), which were displayed on the screen throughout all of the experiments. The

start circle was located approximately 350 mm in front of the shoulder joint, and the target

was 150 mm away from it.
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Task

The participants were instructed to move the cursor from the start circle to the target circle in

a period of 400 ± 50 ms. No instructions were given about the trajectory of reaching move-

ment. Each movement was initiated by audio beeps. Participants were instructed to begin

movement on the second beep, 1 s after the first beep. The second beep lasted for 400 ms and

could be used as a reference to the instructed movement duration. The cursor was visible only

during each trial. After each trial, the participants were provided information about their

movement duration and final hand position. Movement duration was defined as the period

between the time the cursor exits the start circle and enters the target circle. Participants were

provided information about the movement duration, given as “SHORT”, “LONG” or “OK”.

The final hand position was defined as the position at the moment when the hand velocity fell

below 20 mm/s. If the final hand position was within the target circle, the inside of the circle

turned blue. After each trial, a third beep 3s after the first beep indicated the termination of the

trial and the TVINS brought the participant’s hand back to the start circle, and the next trial

started after a period of 1 s. The inter trial-interval was 8 s.

Force fields

This study used four different force fields: Velocity-dependent curl field (VDCF), Linearly

increasing position-dependent (orthogonal) field (LIPF), Positive skew position-dependent

(orthogonal) field (PSPF), and Combination of position- and velocity-dependent field

(CPVF). There are two TE-inducing force fields (LIPF and CPVF) and two no-TE-inducing

force fields (VDCF and PSPF). They are illustrated in Fig 1C and computed using the follow-

ing equations.
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Where (Fx, Fy)T represents a force in Newtons exerted on the hand, (x, y) is the hand posi-

tion relative to the center of the start circle in meters, ð _x; _yÞ is the hand velocity in meter per

second, B1 is 14 Ns/m, K1 and K2 are 60 and 20868 N/m, respectively.

Importantly, the hand motion is momentarily constrained to the final hand position where

the velocity fell below a low threshold of 20 mm/s by applying a strong stiff two-dimensional

spring force (500 N/m) and damper (50 Ns/m). The constraint force is active until the trial

ends (lasting for around 1600 ms). This was designed such that participants did not need to

continue resisting large force at the movement end (as in LIPF and CPVF) and it prevents

them from reaching the target by sub-movements [68,69].
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Partial error clamp

This study developed a new error clamp method and used it in Experiment-3. Previous motor

learning studies have extensively utilized error clamp methods to assess motor adaptation per-

formance [70]. When the error-clamp was active, the trajectory of the hand was attracted to a

straight line joining the start circle to the target by a virtual “channel” (see Fig 4A) in which

any motion perpendicular to the straight line was pulled back by a one-dimensional spring

(800 N/m) and damper (45 Ns/m). However, in contrast to the previous experiments, the

error clamp was applied only over the last part of the hand movement (y>75 mm) such that

the first part of the movement where the LD is measured (the details will be shown in a later

section) is unaffected by the clamp. Furthermore, the magnitude of the spring was set weaker

than that in the previous studies, which allows the hand trajectory to change smoothly (see the

hand trajectories for LIPF-PEC condition in Fig 4B). We call this a partial error clamp (PEC).

Experiment procedure

Experiment-1. Thirty participants who passed initial screening (the details will be shown

later in Participant screening section) were randomly assigned to each of the two groups

(n = 15 for each): the VDCF group and the LIPF group (Fig 1C). First, the participants in both

groups were given a practice period to acclimatize themselves to the apparatus and task. They

were allowed to take their time but asked to make reaching movements in the no-force field

environment (null field) at least more than 50 trials. All participants finished practice less than

100 trials. This was followed by the two experimental sessions: baseline and adaptation ses-

sions. In the baseline session, the participants performed 50 trials of reaching movements in

the null field. In the adaptation session, after 5 trials in the null field, the participants in the

VDCF and LIPF groups performed 155 (adaptation) trials in VDCF and LIPF, respectively,

which was followed by 150 (de-adaptation) trials in the null field. Two-minutes rests were

taken three times, each after the 50th, 100th, and 150th adaptation trials.

Experiment-2. Thirty participants who passed initial screening were randomly assigned

to each of the two groups (n = 15 for each): the PSPF group and the CPVF group (Fig 1C). The

experimental procedure is the same as Experiment-1.

Experiment-3. Thirty participants took part in Experiment-3. Half of them who were

assigned to the LIPF group of Experiment-1 returned to our laboratory at least more than one

week after Experiment-1 and performed Experiment-3. In Experiment-3, unlike Experiment-

1, they performed 155 adaptation trials in the LIPF followed by 150 de-adaptation trials in the

PEC. Thus, this experimental condition was referred to as the LIPF-PEC condition, while the

condition in the Experiment-1 performed by the participants was called as LIPF-Null condi-

tion. To compare these two conditions, we needed to cancel out the order effects of the two

experimental conditions. We thus newly recruited another fifteen participants. Those who

passed initial screening experienced the LIPF-PEC first and then the LIPF-Null conditions.

These experiments in the two conditions were again separated by at least one week. The exper-

imental procedure in Experiment-3 is also the same as Experiment-1 except that in the LIPF-

PEC condition, the participants performed the 155 de-adaptation trials in the PEC.

Data analysis

Target error (TE) and lateral deviation (LD) were used to evaluate motor adaptation. The TE

was defined as x-deviation of the final hand position from the straight line joining the start cir-

cle to the target (Fig 1B). The final hand position was defined as the position at the moment

when the hand velocity fell below 20 mm/s. The LD was defined as the x-deviations midway

(at 75 mm from the start circle) from the straight line joining the start circle to the target.
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To draw the participant-averaged trajectories for each of the VDCF (Experiment-1), LIPF

(Experiment-1), PSPF (Experiment-2), and CPVF (Experiment-2) conditions, we sampled the

x-axis data at the fifteen y positions: 7.5 (target radius size), 10, 20, 30, 40, 50, 60, 70, 80, 90,

100, 110, 120, 130, 140, and 150 (target position) mm for each participant. These sampled data

were averaged across participants for each y position and plotted in Fig 3A.

All statistical tests conducted in this study were two-tailed with a significance level of 0.05.

To examine changes in each of TE and LD during motor adaptation, we separately performed

one-way ANOVAs across trial epochs (6 epochs:1st, 3rd-5th, 136th-155th adaptation trials and

1st, 3rd-5th, 131st-150th de-adaptation trials). When assumptions of heterogeneity of covariance

were violated, the number of degrees of freedom was corrected with the Greenhouse-Geisser

procedure. Post-hoc pairwise comparisons were performed using Tukey’s method. For other

tests, we performed paired or unpaired t-test was performed. The ANOVAs were performed

using SPSS Statistics ver. 25 (IBM) and the t-tests were performed using MATLAB version

R2018b (Mathworks).

Data exclusion

Trials were excluded from the analysis when the reach distance was less than 75 mm as the LD

could not be evaluated (Fig 1B). 34 trials (0.098% of the total number of trials) were excluded.

Only one participant in the CPVF group was excluded from the analysis because the partici-

pant showed unstable trajectory changes over the last 100 de-adaptation trials with at least

three large jumps (> 20 mm) across the x-axis as well as an outlying value of the LD over the

last 20-de-adaptation trials (outside of 3 s.d. from the mean). 14 participants were thus ana-

lyzed for the CPVF group (Experiment-2). Note that for the t-test on the first de-adaptation

trial of the CPVF group, the statistical degree of freedom was 12 since the first de-adaptation

trial of a participant was excluded due to the trial exclusion criterion.

Participant screening

We screened participants in all the experiments based on trajectory deviation in the baseline

sessions. With pilot experiments, we anticipated the persisting curved null trajectory would

appear after adaptation to TE-inducing force fields as seen in Fig 3. To assess this phenome-

non, we wanted to examine how much the curved trajectories differ from null trajectories in

the baseline. However, our pilot experiments observed that some participants showed consid-

erably curved null trajectories (LD of *10 mm) in the baseline session because we did not

provide participants with any instruction on reaching trajectory for the sake of the research

question. Thus, to ensure that baseline null trajectories are the same across all the participant

groups, only the participants whose LD averaged over the last 20 trials in the baseline session is

less than 4.5 mm proceeded to the learning session. In fact, there were no significant differ-

ences in the LD in the baseline session across all the groups: the VDCF, LIPF, PSPF, LIPF

groups and the participant group who performed the PEC-LIPF condition first (one-way

ANOVA: F(4, 73) = 1.430, p = 0.223, ηp
2 = 0.077). The other screened out participants after-

wards performed similar reaching experiments which is not related to this study, and thus

their data were not further analyzed for this study.

Simulation

To explain adaptive behaviors in the VDCF and the LIPF of the Experiment-1, we utilized two

motor learning models: one is proposed by Izawa et al. [23], which we refer to as the flat OFC

model, and the other is proposed by Franklin et al. [25], which we refer to as the flat VS model.

These original models implement only the internal model learning and can explain monotonic
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trajectory adaptation as observed in the VDCF. However, they cannot explain non-monotonic

trajectory adaptation, nor a persistent change in the null trajectory in the LIPF. We thus

extended the two models by introducing a TE-driven kinematic plan adaptation that hierar-

chically interacts with the internal model adaptation (Fig 6A). We referred to the extended

models as the hierarchical OFC model and the hierarchical VS model, respectively.

OFC model. The original model (i.e., flat OFC model) utilizes optimal feedback control

(OFC) theory [24,71] to simulate reaching trajectories during adaptation to a state-dependent

novel force field, based on a concept that motor learning is a process to acquire a model of the

novel environment and use the model to re-optimize movements. Accordingly, in this frame-

work, motor adaptation is characterized by the knowledge of the environment (the novel force

field) which the motor system gradually acquires. The external force imposing to the arm is

written by the form:

Ft ¼ Dxt ð1Þ

where Ft and Xt are the external force vector and the current state vector of the plant (arm and

environment) at time t, respectively. D is the force matrix (e.g. for VDCF, D = B1[0–1;1 0]).

What the motor system needs to perform the optimal movement in the force field is the full

knowledge of D, which is assumed to be gradually acquired. The knowledge of D during adap-

tation is represented by the form:

bD ¼ aD ð2Þ

where bD is the estimated force matrix, and α is the learning parameter, which is assumed to

gradually increase from 0 to 1 with adaptation. During adaptation, the motor system predicted

the external force using bD as follows:

bF t ¼
bDbx t ð3Þ

bF t is the predicted external force vector at time t and bx t is the estimated state vector of the

plant and is obtained through the optimal state estimator (see [71]). Accordingly, the motor

system produces the motor command optimized for the environment where the predicted

external force could impose on the arm. Only when α = 1, does the system have the full knowl-

edge of D and produce the optimal motor commands for the actual environment. When 0< α
< 1, the system has an incomplete knowledge of D and would produce a sub-optimal move-

ment for the actual environment. Thus, by changing the value of α, Izawa et al. simulated

reaching trajectories in several phases of motor adaptation using OFC.

For the hierarchical OFC model, we borrowed the idea of a kinematic bias of movement

direction proposed by Mistry et al. [26], which we refer to as directional bias. Mistry et al.

extended the cost function of OFC by including a directional bias to explain a directional pref-

erence of reaching trajectories observed during motor adaptation to an acceleration-based

force field. The directional bias represents the desired direction of movement, which is repre-

sented by the form:

Qd ¼
d2
y � dxdy

� dxdy d2
x

" #

ð4Þ

Where Qd is the directional bias matrix and d = [dx dy]T is the desired directional vector

represented as a unit vector. While the original cost function consists of the error term (first

term) and the motor cost term (second term) (Eq 5), the cost function of the hierarchical OFC

model (Eq 6) has the additional term related to the directional bias (third term in Eq 6) so that
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any position or velocity perpendicular to the desired direction was penalized as follows:

xT
t Qtxt þ uT

t Rut ð5Þ

xT
t Qtxt þ uT

t Rut þ e� t=tðkpp
T
t Qdpt þ kvv

T
t QdvtÞ ð6Þ

where xt is the current state vector of the plant (the arm and environment) at time t, ut is the

motor command vector, pt and vt are the position and velocity vector, respectively, and kp and

kv are the weight of bias for position and velocity, respectively. Qt is the weight matrix of state

cost, and R is the weight matrix of motor cost. The exponential decay term is included because

the directional bias need not exist for the entire motion. In our simulation, these parameters

were set as follows: kp = kv = 0.5, τ = 130 (ms). The cost parameters included in Qt and R were

determined to produce trajectories similar to those in the experiments (see S2 Text). The

reaching movement was simulated for 0�t�T+TH where T is the maximum movement com-

pletion time and TH is the time for which the hand was supposed to hold a position at the tar-

get after movement completion (see [23]). T and TH were set to 400 (ms) and 50 (ms),

respectively.

Here, we further extended this idea by introducing a directional bias modulated by trial-by-

trial TE (upper panel, Fig 6B). The directional bias is inclined in the opposite direction of TE

to reduce it. The direction of the directional bias in the i-th trial is represented by φi, the angle

from the target direction (clockwise as positive). The TE is equivalent to the directional error

represented by θi, defined as the angle between the target direction from the start position and

the direction from the start position to the endpoint of the reaching. In the presence of TE

(i.e., TE> target size), the directional bias is updated according to the directional error as fol-

lows:

φiþ1 ¼ b φi � ryi
ð7Þ

where the constant b is the forgetting rate and is set to 0.95. The constant r is the sensitivity to

the degree of the directional bias update to the directional error and set to 0.85. The initial

value of the directional bias is 0 (i.e. φ1 = 0).

In the absence of TE (i.e., TE< target size), we assumed that the direction bias subtly decays

across trials to the original direction towards the target as follows:

φiþ1 ¼ b φi ð8Þ

Additionally, we assume that the kinematic plan adaptation is also affected by the motor

cost (Eq 6, and see S2 Text) of the generated reaching, and the decay of the directional bias

stops, i.e., b = 1 when the cost goes below less than 0.01. The threshold value was arbitrarily

determined to produce curved null trajectories similar to those in the experiments.

Once a TE greater than the target size occurs, the kinematic bias is active. In contrast, if the

TEs keep within the target size throughout the experiment, the kinematic bias remains

inactive.

Next, to simulate the internal model adaptation in novel force fields, we changed the value

of learning rate α. In the adaptation phase, α is increased from 0 to 0.8 such that αi = 0.8�log
(log(i)+1)/log(log(155)+1) for 1�i�155. In the de-adaptation phase, α is decreased from 0.8 to

0 in the first 30 de-adaptation trials because de-adaptation process is well known to be much

faster than adaptation process[72]. This was given by αi = 0.8�log(log(i−155)+1)/log(log(30)+1)

for 156�i�185; αi = 0 for 186�i�305. The update rule for α was determined to well reproduce

the experimental observations.
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We simulated the reaching trajectory of the arm modeled as a point mass in the Cartesian

coordinates. The movement distance was 150 mm. B1 and K1 were set to 7 Ns/m and 120 N/m

for the simulation of VDCF and LIPF, respectively to produce trajectories similar to those in

the experiments. PEC was applied over the second half of movement (y> 75 mm) as a one-

dimensional spring force (1500 N/m) and damper (100 Ns/m) along x-axis. We discretized the

system dynamics with a time step of Δt = 10 ms and performed the model simulation in a simi-

lar way as that introduced by Izawa et al. [23], except for the directional bias modulated by his-

tory of TE. Please see S2 Text for further detail of the model (section of OFC model).

V-shaped model. The original model (i.e., flat VS model) assumes that desired trajectory,

which the motor system should trace, is a fixed straight line joining the start and target and

that the motor command is gradually corrected to reduce the difference between the actual

and desired trajectory, which is defined as movement error. In simulation with the model, the

error is represented in coordinates of muscle length and written by the form:

E ¼ l � l0 ð9Þ

where E is the movement error which is the difference between the actual muscle length, λ and

the desired muscle length, λ0. This error is used to update feedforward command to the indi-

vidual muscle of the arm on a trial-by-trial basis, based on a simple V-shaped learning function

(see S2 Text). The feedforward command for each muscle k is updated from ui
k to uiþ1

k accord-

ing to the following learning law:

uiþ1
k ðtÞ � ½u

i
kðtÞ þ Du

i
kðt þ �Þ�þ; ½��

þ
� maxf�; 0g

Dui
kðtÞ ¼ aε

i
k;þðtÞ þ bε

i
k;� ðtÞ � g; ½��

�
� ½� � �

þ

εikðtÞ ¼ Ei
kðtÞ þ gd _Ei

kðtÞ

ð10Þ

where Ei
kðtÞ is the stretching/shortening in muscle k at time t for trial i, and Δu is phase

advanced by ϕ>0, which is feedback delay. α and β are the learning parameters (α>β>0) and

γ (>0) is a constant de-activation parameter. The term gd (>0) indicates the relative level of

velocity error to length error. By implementing this learning law to a 2-joint 6-muscle arm

model, Franklin et al. [25] and Tee et al. [73] simulated the reaching trajectories in a broad

range of novel force field environments.

Here, we extend the flat model by introducing an idea that the desired trajectory (lower

panel in Fig 6B), which is represented in the Cartesian coordinates, is updated according to a

trial-by-trial TE in a similar way to the hierarchical OFC model. The desired trajectory is

described as a curved line with a deflection, dx, 120 mm away from the start position along the

y-axis (Fig 6B). Before adaptation, the desired trajectory is the straight line towards the target,

that is, dx = 0. In the presence of TE (i.e., TE> target size), dx is updated as follows:

dxiþ1 ¼ bdxi � rTEi ð11Þ

where the constant b represents the retention of motor learning and is set to 0.95. The constant

r to the degree of update of dx to the TE in the previous trial and is set to 0.45. The constant r
is the sensitivity to the degree of the desired trajectory update to TE. In the presence of TE, dx
is modulated such that the desired trajectory is deflected in the opposite direction to a trial-by-

trial TE. The desired trajectory with dx was calculated as the minimum jerk trajectory with the

via-point at [dx 120] (mm) from the start position [74].
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In the absence of TE (i.e., TE< target size), we assumed that the desired trajectory subtly

decays across trials to the original direction towards the target as follows:

dxiþ1 ¼ bdxi ð12Þ

We again assume that the kinematic plan adaptation is affected by the motor cost of the

generated reaching, which is calculated as average muscle tension across all the 6 muscles dur-

ing movement (see S2 Text). When the cost goes below less than 350, the decay of the desired

trajectory stops, i.e., b = 1. The threshold value was again arbitrarily determined to produce

curved null trajectories similar to those in the experiments.

In simulation, the desired trajectory was converted from the Cartesian to muscle space to

apply it to the learning law (Eq 10). The start and target positions were at [0, 350] and [0, 500]

(mm) in the Cartesian coordinate (where [0, 0] is at the shoulder joint), respectively. The

reach duration was 400 ms. For simplicity, all noise parameters were set to zero. B1 and K1 (see

the section of force fields) were set to 20 Ns/m and 120 N/m, respectively, to produce trajecto-

ries similar to those in the experiments. PEC was applied over the second half of movement

(y> 75 mm) as a one-dimensional spring force (2500 N/m) and damper (1000 Ns/m) along x-

axis. We performed the model simulation in the same way as that introduced by Franklin et al.

[25], except that the desired trajectory is modulated by history of endpoint error. Please see S2

Text for further detail of the model (section of V-shaped model).

Supporting information

S1 Text. Trajectory adaptation in Experiment-2.

(DOCX)

S2 Text. Detail for the simulation.

(DOCX)

S1 Fig. Trajectory adaptation in Experiment-2: (A, C) The hand trajectories of two representa-

tive participants and learning curves in PSPF (A) and CPVF (C) averaged across all partici-

pants. Note that the scales differ between x and y axes to clearly show trajectory changes along

the x-axis. The light gray shades behind some trajectories represent a schematic image of the

force field. The adaptation of the TE and LD are shown by traces with open circles and filled

circles, respectively. The first 15 TE and LD values are plotted for every single trial, while the

subsequent trials (indicated by thick gray lines at the bottom of the figure) are plotted for every

five trials. The shaded gray areas around the lines represent standard errors. The light green

zones represent the target width (radius: 7.5 mm). (B, D) The TEs and baseline-subtracted LDs

in six trial epochs (1st, 3rd-5th, 136th-155th adaptation trials, and 1st, 3rd-5th, 131st-150th de-

adaptation trials) in PSPF (B) and CPVF (D). Gray dots represent data from individual partici-

pants. The error bars indicate standard errors. The light green zone in the TE plots represents

the target width.

(TIF)

S2 Fig. Simulation results for trajectory adaptation in CPVF, represented by TE (open circle)

and LD (filled circle) by the flat (A, B)/hierarchical (C, D) OFC (upper panels) and VS models

(lower panels). The flat learning models (only internal model adaptation) were unable to

reproduce either the non-monotonic change in LD or the curved null trajectory with a persis-

tent deviation after exposure to CPVF. However, the hierarchical OFC models (kinematic plan

learning and internal model adaptation) successfully reproduced both.

(TIF)
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