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On the chromatic numbers of signed triangular and hexagonal grids ?

Fabien Jacques

LIRMM, University of Montpellier, CNRS, Montpellier, France

Abstract

A signed graph is a simple graph with two types of edges. Switching a vertex v of a signed graph corresponds to changing
the type of each edge incident to v.

A homomorphism from a signed graph G to another signed graph H is a mapping ϕ : V (G)→ V (H) such that, after
switching any number of the vertices of G, ϕ maps every edge of G to an edge of the same type in H. The chromatic
number χs(G) of a signed graph G is the order of a smallest signed graph H such that there is a homomorphism from
G to H.

We show that the chromatic number of signed triangular grids is at most 10 and the chromatic number of signed
hexagonal grids is at most 4.
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1. Homomorphisms of signed and 2-edge-colored
graphs

A 2-edge-colored graph or a signed graph G = (V,E, s)
is a simple graph (V,E) with two kinds of edges: positive
and negative edges. We do not allow parallel edges nor
loops. The signature s : E(G)→ {−1,+1} assigns to each
edge its sign. For the concepts discussed in this article,
2-edge-colored graphs and signed graphs only differ on the
notion of homomorphisms.

Given two 2-edge-colored graphs G and H, the map-
ping ϕ : V (G) → V (H) is a homomorphism if ϕ maps
every edge of G to an edge of H with the same sign. This
can be seen as coloring the graph G by using the vertices
of H as colors. The target graph H gives us the rules that
this coloring must follow. If vertices 1 and 2 of H are ad-
jacent with a positive (resp. negative) edge, then every
pair of adjacent vertices in G colored with 1 and 2 must
be adjacent with a positive (resp. negative) edge.

Switching a vertex v of a 2-edge-colored or signed graph
corresponds to reversing the signs of all the edges that are
incident to v.

Given two signed graphs G and H, the mapping ϕ :
V (G)→ V (H) is a homomorphism if there is a homomor-
phism from G to H after switching some subset of the ver-
tices of G and/or switching some subset of the vertices of
H. However, switching in H is unnecessary (as explained
in Section 3.3 of [1]).
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The chromatic number χs(G) of a signed graph G is
the order of a smallest signed graph H such that G admits
a homomorphism to H. The chromatic number χs(C) of a
class of signed graphs C is the maximum of the chromatic
numbers of the graphs in the class.

Homomorphisms of signed graphs were introduced by
Naserasr, Rollová and Sopena [1]. This type of homomor-
phism allows us to generalize several classical problems
such as Hadwiger’s conjecture [1, 2] and have therefore
been studied by many researchers. Here are several known
results on the chromatic number of some classes of signed
graphs that are related to the classes we study in this ar-
ticle.

Theorem 1. The chromatic number of signed planar graphs
is at most 40 [3].

Theorem 2. The chromatic number of signed planar graphs
with girth at least 6 is at most 6 [4].

Theorem 3. The chromatic number of connected signed
graphs with maximum degree 3 is at most 6 [5].

Theorem 4. The chromatic number of signed graphs with
maximum average degree less than 3 is at most 6 [5].

Theorem 5. The chromatic number of signed square grids
is at most 6 [6].

Theorem 6. The chromatic number of 2-edge-colored square
grids is at most 9 [7].

In Section 2 we present our results on the chromatic
number of hexagonal and triangular grids and in Section 3
we introduce the target graphs that we use in Sections 4
and 5 to prove these results.
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2. Results

A square (resp. triangular, hexagonal) grid is a finite
induced subgraph of the graph associated with the tiling of
the plane with squares (resp. equilateral triangles, equilat-
eral hexagons). See Figures 4 and 5. Since signed hexago-
nal grids have maximum degree 3 and therefore maximum
average degree at most 3, we already know that their chro-
matic number is at most 6 by Theorem 3 or by Theorem 4.
Theorem 2 allows us to reach the same conclusion. More-
over, signed triangular grids are planar and have therefore
chromatic number at most 40 by Theorem 1. We improve
these bounds as follows.

Theorem 7. The chromatic number of signed hexagonal
grids is 4.

Theorem 8. The chromatic number of signed triangular
grids is at most 10.

In order to prove these theorems, we will show that
every signed hexagonal grid admits a homomorphism to
a target graph of order 4 we call T4 (see Figure 1) and
that every signed triangular grid admits a homomorphism
to a target graph of order 10 called SP+

9 . Constructions
of T4 and SP+

9 are explained in Section 3. Note that it is
conjectured that every signed planar graph admits a homo-
morphism to SP+

9 [8]. Theorem 8 brings further evidence
toward this conjecture.

3. Target Graphs

A 2-edge-colored graph (V,E, s) is said to be antiauto-
morphic if it is isomorphic to (V,E,−s).

A 2-edge-colored graph G = (V,E, s) is said to be Kn-
transitive if for every pair of cliques {u1, u2, . . . , un} and
{v1, v2, . . . , vn} in G such that s(uiuj) = s(vivj) for all
i 6= j, there exists an automorphism that maps ui to vi
for all i. For n = 1 or 2, we say that the graph is vertex-
transitive or edge-transitive, respectively.

A 2-edge-colored graph G has Property Pk,n if for ev-
ery sequence of k distinct vertices (v1, v2, . . . , vk) that in-
duces a clique in G and for every sign vector (α1, α2, ...,
αk) ∈ {−1,+1}k there exist at least n distinct vertices
{u1, u2, ..., un} such that s(viuj) = αi for 1 ≤ i ≤ k and
1 ≤ j ≤ n.
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Figure 1: The graph T4.
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Figure 2: The graph SP9, non-edges are negative edges.

The 2-edge-colored Paley graph SP9 has vertex set
V (SP9) = F9, the field of order 9. Two vertices u and
v ∈ V (SP9), u 6= v, are connected with a positive edge
if u− v is a square in F9 and with a negative edge oth-
erwise. Notice that this definition is consistent because
9 ≡ 1 mod 4 so −1 is a square in F9 and if u− v is a
square then v − u is also a square.

Given a 2-edge-colored graph G with signature sG, we
create the antitwinned graph of G denoted by ρ(G) as fol-
lows:

Let G+1, G−1 be two copies of G. The vertex corre-
sponding to v ∈ V (G) in Gi is denoted by vi.

• V (ρ(G)) = V (G+1) ∪ V (G−1)

• E(ρ(G)) = {uivj : uv ∈ E(G), i, j ∈ {−1,+1}}

• sρ(G)(u
ivj) = i× j × sG(u, v)

By construction, for every vertex v of G, v−1 and v+1

are antitwins, the positive neighbors of v−1 are the neg-
ative neighbors of v+1 and vice versa. A 2-edge-colored
graph is antitwinned if every vertex has a unique antitwin.

When coloring a 2-edge-colored graph with an antitwinned
graph, we say that two vertices have the same identity if
they are mapped to the same vertex or vertices that are
antitwinned. In an antitwinned 2-edge-colored graph we
denote the antitwin of v with v.

Lemma 9 ([9]). Let G and H be 2-edge-colored graphs.
The two following propositions are equivalent:

• The 2-edge-colored graph G admits a homomorphism
to ρ(H).

• The signed graph G′ defined by the 2-edge-colored
graph G admits a homomorphism to the signed graph
H.

Given a signed graph H, we define H+ to be H with
an added universal vertex ∞ that is positively connected
to all the other vertices (See Figure 3). We will use this
construction to create the target graph SP+

9 used in Sec-
tion 5.

We will use the following properties of our target graphs
to prove our theorems.
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H∞

Figure 3: The construction of H+.

Lemma 10 ([10]). The graph ρ(SP+
9 ) is vertex-transitive,

edge-transitive, antiautomorphic and has Properties P1,9,
P2,4 and P3,1.

Lemma 11. The graph ρ(T4) has Property P1,3 and the
following Property that we call P ∗2,1:

Let u, v ∈ V (ρ(T4)) such that u 6= v, u 6= v and
{u, v} 6= {1, 4}, {1, 4}, {2, 3}, {2, 3}. There exist at least
one vertex in ρ(T4) that is a positive neighbor of both u
and v.

The last lemma can be checked by going through every
pair of adjacent vertices in ρ(T4).

4. Proof of Theorem 7

In this section, we prove that the chromatic number
of signed hexagonal grids equals 4. To get this result, we
first prove that 2-edge-colored hexagonal grids admit a ho-
momorphism to the 2-edge-colored graph ρ(T4). Lemma 9
will allow us to conclude.

Lemma 12. Every 2-edge-colored hexagonal grid admits
a homomorphism to the 2-edge-colored graph ρ(T4).

Proof. Let G be a 2-edge-colored hexagonal grid and s be
its signature. We want to show that G admits a homomor-
phism to ρ(T4). We give two coordinates to each vertex
of G as follows. Find a planar embedding of G such that
every face of size 6 is a regular hexagon and there are hor-
izontal edges. Let l1, l2, ..., ln be the horizontal lines that
have at least one vertex on them such that li is above lj if
and only if i < j. The leftmost vertex on each line li gets
coordinates (i, 1), the second leftmost (i, 2) and so on. We
denote the vertex of coordinate (i, j) with vi,j . See Fig-
ure 4. These coordinates allow us to create an order on
the vertex set of G by saying that vi,j < vk,l if i < k or
i = k, j < l.

v1,1 v1,2 v1,3 v1,4

v3,1 v3,2 v3,3 v3,4

v5,1 v5,2 v5,3 v5,4

v2,1 v2,2 v2,3 v2,4

v4,1 v4,2 v4,3 v4,4

Figure 4: A hexagonal grid.

Let A be a 2-edge-colored graph that admits a homo-
morphism ϕ to an antitwinned graph B and let A′ be
the graph obtained after switching A at a vertex v. By
Lemma 9, A′ admits a homomorphism ϕ′ to B. It suffices
to take ϕ′ as follows:

ϕ′(u) =


ϕ(u) if u 6= v

ϕ(v) otherwise

Therefore we can, without loss of generality, start by
switching G at several vertices such that every edge vi,jvk,l
with i = k and j + 1 = l or i+ 1 = k and j = l are positive
(these edges are thicker in Figure 4).

To do that, for every vertex vi,j such that i+ j = 1
mod 2 and i ≥ 2 in the order defined earlier we do the
following:

• If s(vi,jvi−1,j) = s(vi−1,jvi−1,j+1) = −1, we switch
G at vi−1,j .

• If s(vi,jvi−1,j) = 1 and s(vi−1,jvi−1,j+1) = −1, we
switch G at vi,j and vi−1,j .

• If s(vi,jvi−1,j) = −1 and s(vi−1,jvi−1,j+1) = 1, we
switch G at vi,j .

We now create a homomorphism ϕ from G to ρ(T4)
by coloring each vertex in the order defined earlier. We
partition the vertices of G into two sets V1 and V2. In V1
we put every vertex vi,j such that i+ j ≡ 0 mod 2. In V2
we put all the other vertices.

When coloring a vertex vi,j in V1, such a vertex is ad-
jacent to one already colored vertex (unless i = 1 in which
case it is trivial to color vi,j). Therefore, Property P1,3

of ρ(T4) tells us that there are at least 3 possible colors
for vi,j with respect to its already colored neighbor. Note
that among these 3 available colors, there is no antitwins.
Thanks to this remark, it is always possible to choose one
color as follows:

• If ϕ(vi−1,j+1) = 1 or 1, ϕ(vi,j) /∈ {1, 1, 4, 4};

• If ϕ(vi−1,j+1) = 4 or 4, ϕ(vi,j) /∈ {1, 1, 4, 4};
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• If ϕ(vi−1,j+1) = 2 or 2, ϕ(vi,j) /∈ {2, 2, 3, 3};

• If ϕ(vi−1,j+1) = 3 or 3, ϕ(vi,j) /∈ {2, 2, 3, 3};

When coloring a vertex vi,j in V2, such a vertex is ad-
jacent to two already colored vertex (unless i = 1 or j = 1
in which cases it is trivial to color vi,j). Vertex vi−1,j be-
longs to V1 and we can therefore use P ∗2,1, thanks to the
restrictions on ϕ(vi−1,j) defined earlier, to find a color for
each vertex in V2.

We use Lemmas 9 and 12 to prove that the chromatic
number of signed hexagonal grids is at most 4. Note that a
cycle on 6 vertices with exactly one negative edge needs at
least 4 colors to be colored [11]. Therefore, the chromatic
number of signed hexagonal grids is 4.

5. Proof of Theorem 8

In this section, we prove that the chromatic number
of signed triangular grids is at most 10. To get this re-
sult, we first prove that 2-edge-colored triangular grids ad-
mit a homomorphism to the 2-edge-colored graph ρ(SP+

9 ).
Lemma 9 will allow us to conclude.

Lemma 13. Every 2-edge-colored triangular grid admits
a homomorphism to the 2-edge-colored graph ρ(SP+

9 ).

v1 v2 v3 vn

u1 u2 u3 un

Figure 5: A triangular grid.

Proof. Remember that SP+
9 is SP9 with an added vertex

∞ that is positively adjacent to every other vertex. Let G
be a 2-edge-colored triangular grid and s be the signature
of G. We proceed by induction on the horizontal rows
of G as depicted in Figure 5. Note that the first row of
G is trivial to color. Let G′ be G without the last row.
By the induction hypothesis, there is a homomorphism
ϕ′ from G′ to ρ(SP+

9 ). We now show that we can extend
this homomorphism to a homomorphism ϕ from the whole
graph G to ρ(SP+

9 ).
Let v1, v2, ..., vn be the vertices of the last row of G and

u1, u2, ..., un be the vertices of the second to last row of G
(the last row of G′). See Figure 5.

By Property P2,4 of ρ(SP+
9 ), we can find two colors (or

even four but we only need two) to color v1 with respect

to its already colored neighbors (u1 and u2). Note that we
do not take the color of u3 into account (yet).

Without loss of generality, we can assume that u2u3
is a positive edge, ϕ′(u2) = 0 and ϕ′(u3) = 1 because
ρ(SP+

9 ) is edge-transitive and antiautomorphic.

Suppose s(u2v1) = s(u2v2) = s(u3v2) = s(v1v2) = +1.
The four colors available for v2 by Property P2,4 of ρ(SP+

9 )
with respect to the colors of u2 and u3 are 2,∞, x+ 2 and
2x+ 2.

Since ϕ′(u2) = 0 and s(u2v1) = +1, the two colors
available for v1 belong to the set:

{1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2,∞}

If v1 is colored in 1, v2 can be colored in 2,∞, x+ 2 or
2x+ 2.

If v1 is colored in 2, v2 can be colored in ∞.
If v1 is colored in x, v2 can be colored in ∞ or x+ 2.
If v1 is colored in x+ 1, v2 can be colored in 2 or x+ 2.
If v1 is colored in x+ 2, v2 can be colored in 2x+ 2.
If v1 is colored in 2x, v2 can be colored in ∞ or x+ 2.
If v1 is colored in 2x+ 1, v2 can be colored in 2 or

2x+ 2.
If v1 is colored in 2x+ 2, v2 can be colored in x+ 2.
If v1 is colored in ∞, v2 can be colored in 2.

We can now see that any pair of vertices in {1, 2, x, x+ 1,
x+ 2, 2x, 2x+ 1, 2x+ 2,∞} allows v2 to be colored in at
least two colors.

We can proceed in a similar manner with the following
three cases and arrive to the same conclusion:

• s(u2v1) = −1, s(u2v2) = s(u3v2) = s(v1v2) = +1,

• s(u2v1) = +1, s(u2v2) = −1, s(u3v2) = s(v1v2) =
+1,

• s(u2v1) = s(u2v2) = +1, s(u3v2) = −1, s(v1v2) =
+1.

By Lemma 9, each of these four cases also accounts for
3 other cases: the signature obtained after switching at v1,
v2 and both v1 and v2. We have therefore covered all 16
(24) possible signatures of u2v1, u2v2, u3v2 and v1v2.

Therefore, v2 can be colored in at least 2 colors. Simi-
larly, we can find at least two colors for v3 and so on until
vn. Finally, we can arbitrarily choose one of these two col-
ors for vn, accordingly choose a color for vn−1 and so on
to get a homomorphism ϕ from G to ρ(SP+

9 ).

We conclude the proof of Theorem 8 by using Lem-
mas 13 and 9.

We say that a cycle is unbalanced if it has an odd num-
ber of negative edges. Every C4 in the signed triangular
grid from Figure 6 is unbalanced and it can be colored with
6 colors (note that the resulting target graph is SP+

5 ). We
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1 0 1 0

3 4 3 4 3

2 5 2 5 2 5

1 0 1 0 1 0 1

3 4 3 4 3 4

2 5 2 5 2

1 0 1 0

Figure 6: A signed triangular grid in which every C4 is unbalanced
colored with 6 colors.

can easily extend this construction to create a signed tri-
angular grid of any size such that every C4 is unbalanced
and it can be colored with 6 colors. To do so, we can
repeat a motif made of six vertices in all directions (the
black vertices in Figure 6 represent this motif). By Propo-
sition 3.2 of [12], this means that every signed triangular
grid such that every C4 is unbalanced can be colored with
6 colors. This is of particular interest because when color-
ing an unbalanced C4, every vertex in the cycle must have
different identities (this is not the case with a C4 that is
not unbalanced) and therefore a graph in which every C4

is unbalanced is especially hard to color with few colors.
Therefore, we conjecture the following:

Conjecture 14. The chromatic number of signed trian-
gular grids is 6.

Note that the chromatic number of signed triangular
grids is at least 6 since a wheel on 7 vertices such that ev-
ery C4 is unbalanced cannot be colored with 5 colors. To
prove it, let G be a 2-edge-colored wheel with vertex set
{u, u1, ..., u6} and center u, and let T be an antitwinned
graph of vertex set {0, 0, 1, 1, ..., 4, 4} where i is the an-
titwin of i such that G admits a homomorphism ϕ to T .
By Proposition 3.2 of [12], it is possible to switch some
of the vertices of G such that the outer cycle alternates
between positive and negative edges and every edge inci-
dent to u is positive. Assume w.l.o.g. that ϕ(u) = 0 (note
that we can relabel the vertices of T if needed). We now
show that we cannot color a pair of vertices (v1, v2) of G
with antitwins. Suppose v1 and v2 have colors that are
antitwinned. If v1 or v2 = u then we have a contradiction
because v1 and v2 are adjacent. Otherwise, v1 and v2 are
both positively adjacent to u which also gives us a con-
tradiction. Therefore we can assume w.l.o.g. that we do
not need to use colors 0, 1, ..., 4. W.l.o.g. let ϕ(u1) = 1,
ϕ(u2) = 2 and ϕ(u3) = 3. We can color u4 in either 1 or
4. Suppose we color u4 with 1. We have to color u5 in 4
and we then cannot color u6. Suppose we color u4 with

4. We can color u5 with 1 or 2 but both possibilities do
not allow us to color u6. Therefore G does not admit a
homomorphism to T . We conclude by using Lemma 9.
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[7] Janusz Dybizbański. 2-edge-colored chromatic number of grids
is at most 9. Graphs and Combinatorics, pages 1–7, 2020.

[8] Julien Bensmail, Soumen Nandi, Mithun Roy, and Sagnik Sen.
Classification of edge-critical underlying absolute planar cliques
for signed graphs. The Australasian Journal of Combinatorics,
77(1):117–135, 2020.

[9] R. C. Brewster and T. Graves. Edge-switching homomorphisms
of edge-coloured graphs. Discrete Mathematics, 309(18):5540 –
5546, 2009. Combinatorics 2006, A Meeting in Celebration of
Pavol Hell’s 60th Birthday (May 1–5, 2006).

[10] P. Ochem, A. Pinlou, and S. Sen. Homomorphisms of 2-edge-
colored triangle-free planar graphs. Journal of Graph Theory,
85(1):258–277, 2017.

[11] C. Duffy, F. Jacques, M. Montassier, and A. Pinlou. The chro-
matic number of 2-edge-colored and signed graphs of bounded
maximum degree. arXiv:2009.05439, submitted, 2020.

[12] T. Zaslavsky. Signed graphs. Discrete Applied Mathematics,
4(1):47 – 74, 1982.

5




