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Abstract Mathematical programming formulations are developed for deter-
mining chains of organ-donation exchange pairs in a compatibility graph where
pairwise exchanges may fail. The objective is to maximize the expected value
where pairs are known to fail with given probabilities. In previous work, namely
that of Dickerson et al. (2019) this NP-hard problem was solved heuristically
or exactly only for limited path lengths. Although the problem appears highly
nonlinear, we formulate it as a mixed-integer linear program (MILP). A com-
putationally tractable layered formulation that approximately solves larger in-
stances is also proposed and a computational study is presented for evaluating
the proposed formulations.
Keywords: Longest path, MILP, layered formulation, clearing algorithms,
kidney exchange, failure aware barter exchange

1 Introduction

In this paper we consider a maximum expected value partially successful (s, t)-
path problem (PSPP), where each (s, v)-subpath of an (s, t)-path, up to some
vertex v along the path, has a value of the product of probabilities of arcs
along the (s, v)-subpath, times the sum of arc profits.

Kidney exchange market clearing problems are barter exchanges where
donors and recipients interact without exchange of monetary means; pairs
of recipients and donors enter the market when they are not physiologically
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compatible and a suitable exchange is sought so that the recipient can be
accommodated. Paired-kidney donation graphs indicate donor-recipient com-
patibility using directed arcs. Each vertex in such a graph corresponds to a
pair of a recipient (patient) and donor – typically a family member who is will-
ing to donate a kidney in exchange for the related patient receiving one [1,22,
23]. The market clearing problem is that of matching all recipients with donors
via cycles [23], and paths [1]; see also later work [7,2] and references therein.
Paths or chains can be formed when altruistic donor vertex is available to
initiate the exchange chain without requiring any donation in return (there is
no related recipient and so an altruistic vertex by definition only has outgoing
arcs in the donation graph). Exchange cycles and chains are illustrated using
small compatibility graph examples in Figure 1. Additional work concerning
kidney-transplant exchanges using cycles and/or paths initiated by altruistic
donors includes [12,19].

There is significant uncertainty with respect to the success of a particular
donation to take place as a part of the exchange: Physiological incompatibilities
may be detected at later stages prior to the transplantation. In addition, a
particular donor may become unavailable due to illness or simply because
reneging on the agreement. Yet, chains are considered less risky than cycles
because a failure of one donation does not necessarily prevent the entire chain
of transplants from taking place. This setting with uncertainty gives rise to
partially successful paths and the objective considered in this paper; see the
expected utility of chains formulated in [9] and the future work discussion
in [18]. The corresponding problem for a cycle, where all edges must succeed
in order for it to be deemed successful, is also considered in [9] as well as other
work including [6].

Most literature to date has considered heuristic methods for solving the
pricing subproblem of barter-exchange market clearing optimization problem.
Yet some exact solutions approaches have been considered in the absence of
uncertainty, as [2,12] that consider a cycle and path subproblems (i.e., match-
ing failures). On the other hand, the pricing problem of the failure-aware
market clearing problem introduced in [9], has been solved by heuristic means
for both cycles and paths. In particular, it appears that exact approaches for
the failure-aware path subproblem (i.e., PSPP) has not been considered in
previous work. However, solving the pricing problem exactly is important for
two reasons. First, exact column generation and/or branch-and-price schemes
ultimately need to solve the pricing problem exactly at least in the last few
iterations. Second, PSPP is arguably of interest in its own right, and more so
than the corresponding cycle problem, because as altruistic donors are scarce
and their offer to donate may expire, the PSPP may arise in an online setting.

Uncertainty of the planned donations and failed matches are also consid-
ered in stochastic setting with recourse where the probabilities of success are
known (similar to the probabilities given as a part of the problem’s input in
the current setting), for example in [17], or in adjustable robust settings with
finite uncertainty sets [5]. Both stochastic and robust approaches consider dif-
ferent types of recourse such as “back-arcs recourse” [17,5], where exchanges
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Fig. 1 Examples of a cycle and chain in organ compatibility graphs. Blood types of recip-
ients and donors are indicated on the top part and lower part, respectively, of each vertex.
Dashed and solid edges indicate unmatched or matched donations, respectively. Here com-
patibility is assumed to depend only on the blood types but in practice compatibility graphs
may be sparser due to additional compatibility considerations.

may take place along the planned chains (or cycles) up to the failed match.
This is in contrast with complete recourse that allows for re-planning of entire
cycles and chains in the event of failure. The current model with kidney dona-
tion chains maximizes the expected value while allowing for such “back-arcs”
recourse.

Our problem bears similarities with the probabilistic all-or-nothing prob-
lem, which is to select a subset of items so as to maximize the expected total
profit – the product of probabilities of selected items times the sum of profits
of these items. In particular, the all-or-nothing probabilistic path problem [13],
has the subsets of items corresponding to paths in a graph, each of which has
an expected value that is equal to the product of its underlying arc probabil-
ities times the sum of its arc profits. Other all-or-nothing problems have been
considered over all unrestricted subsets of a given ground set, and matchings
in a graph [15]. In the context of failure-aware barter-exchange this “all-or-
nothing” objective is considered more appropriate for cycles than for paths [9].

Next we formally describe PSPP and relate our mixed-integer nonlinear
programming (MINLP) formulation to the optimization problem as it appears
in the literature. We then propose a linearization and reformulation of the
MINLP, followed by an extended formulation based on a layered graph. Finally,
we conclude with computational experiments on simulated kidney exchange
data to evaluate the proposed formulations along with attempts to strengthen
them.
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2 Problem definition

We now formally state the (PSPP) problem. Let G = (V,E) be a directed
graph, s, t ∈ V be the source and the sink, and let δ+(u) = {v ∈ V : (u, v) ∈ E}
and δ−(u) = {v ∈ V : (v, u) ∈ E} be sets of direct successors and predecessors
of vertex i ∈ V , respectively. The problem with multiple sources and sinks
can be also handled, by constructing a supersource s and a supersink t that
are connected to the multiple sources and sinks, respectively. For each edge
e = (u, v) ∈ E, we are given a positive profit ce = cuv ≥ 0 and a probability
of success pe = puv ∈ [0, 1]. Let m = |E| and n = |V |. Given a path π ∈ P(t)
from s to t, where P(t) ∈ 2m is the set of all elementary paths from s to t
(meaning every vertex appears at most once), for v ∈ π we define π(v) as the
subpath of π joining s and v. Following [9] (see also the future work discussion
in [18]), the maximum expected value PSPP is to find a path π ∈ P(t) so that
the objective function

z(π) =
∑

(u,v)∈π

(1− puv)
∑

e∈π(u)

ce
∏

f∈π(u)

pf +
∑
e∈π

ce
∏
f∈π

pf , (1)

is maximized. First, the following proposition simplifies objective (1) to a form
that can be exploited in order to propose an MILP for this problem.

Proposition 1 The objective (1) is equivalent to

z(π) =
∑

(u,v)∈π

cuv
∏

f∈π(v)

pf (2)

Proof By straightforward algebra,

(1) = −
∑

(u,v)∈π

puv
∑

e∈π(u)

ce
∏

f∈π(u)

pf +
∑

(u,v)∈π

∑
e∈π(u)

ce
∏

f∈π(u)

pf +
∑
e∈π

ce
∏
f∈π

pf

= −
∑

(u,v)∈π

∑
e∈π(u)

ce
∏

f∈π(v)

pf +
∑

(u,v)∈π

∑
e∈π(v)

ce
∏

f∈π(v)

pf

=
∑

(u,v)∈π

cuv
∏

f∈π(v)

pf

= z(π)

ut

Then, the maximum expected value PSPP is

max{z(π) : π ∈ P(t)}. (3)

Evidently the problem (3) with pe = 1 for all e ∈ E is a longest path problem
that is strongly NP-hard in general directed graphs [11].

Note that although a particular source and destination are assumed there
can be many altruistic donors and a chain may not have to end in any partic-
ular recipient. Accordingly, a super-source s is created with arcs (s, a) having
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Fig. 2 Example organ compatibility graph with two altruistic donors (a1 and a2) and six
vertices corresponding to donor-recipient pairs (v1, . . . , v6).

probability psa = 1 and profit csa = 0 for all altruistic donors a ∈ V . Similarly
the super-sink t with arcs (v, t) having probability pvt = 1 and cvt = 0 reflects
the fact that any recipient may be last in the transplant chain. An example of
such a graph with two altruistic donors and six donor-recipient pairs is shown
in Figure 2. Finally, note that although altruistic donors are typically used to
initiate chains, universal recipients (i.e., patients with an AB blood type) cor-
responding to vertices that have an in-degree of n− 3, may also be effectively
used, since they are compatible with each and every possible donor who may
terminate the exchange.

3 MILP formulations

We now present mixed-integer linear programming (MILP) formulations to
exactly and approximately solve (3).

3.1 Exact formulation

Although the problem (3) appears to be highly nonlinear in fact it can be
formulated as a MILP. Given a graph G = (V,E), with s, t ∈ V , let the path
flow polytope be denoted by

Π =
{
x ∈ R|E|+

∣∣∣ ∑
u∈δ−(v) xuv=

∑
u∈δ+(v) xvu for v ∈ V \ {s, t}∑

u∈δ+(s) xsu=
∑
u∈δ−(t) xut=1

}
. (4)
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and consider the following MILP formulation.

max
∑

(u,v)∈E

cuvquv (5a)

subject to:
∑

w∈δ−(u)

qwu =
∑

v∈δ+(u)

1

puv
quv u ∈ V \ {s, t} (5b)

quv ≤Muvxuv (u, v) ∈ E (5c)

x ∈ Π (u, v) ∈ E (5d)

xuv ∈ {0, 1}, quv ≥ 0 (u, v) ∈ E, (5e)

where 0 < Muv ≤ 1 is a sufficiently large probability constant. For each
(u, v) ∈ E the decision variable xuv is used to indicate whether (u, v) is
selected as a path edge, and the auxiliary variables quv is used to define
quv =

∏
(u,v)∈π(v) puv as in z(π). The constraints corresponding to (5d) are

the s − t path-flow conservation constraints. Constraint (5c) enforces that
quv = 0 for each (u, v) ∈ E with xuv = 0. Finally, (5b) implements the recur-
sion to accumulate the probability product for each pair of selected incident
edges (w, u) and (u, v) with xuv = xwu = 1, it requires that qwupuv = quv.

To strengthen the formulation (5) it is desirable to select Muv for each
(u, v) ∈ E as small as possible. It can be observed it suffices to set Muv =
p̄(u)puv where p̄(v) denotes the maximum probability of a path from s to v
for all v ∈ V \ {s} and p̄(s) = 1. It is known that p̄ can be determined in
polynomial time by solving a maximum reliability problem. In particular, it
can be observed by considering the shortest path problem with arc costs − ln pe
for each e ∈ E (in an exact arithmetic setting) or replacing the addition in the
Bellman equations with multiplication.

To prevent solutions that are feasible for (5) from containing cycles, cycle-
breaking inequalities must be added. We consider two alternative ways of
breaking the cycles. First, following [25], we consider generalized cutset in-
equalities,∑

(u,v)∈δ+(S)

xuv ≥
∑

(w,v)∈δ+(w)

xwv S ⊆ V \ {s, t} : |S| ≥ 2, w ∈ S. (6)

These constraints break any cycle by enforcing that the number of arcs leaving
S be not smaller than the number of arcs outgoing from any vertex k of S.

A second type of inequalities will prevent cycles if the probabilities are
strictly less than unity (specifically their product along cycles). The sufficiency
of the inequalities ∑

v∈δ+(u)

xuv ≤ 1 u ∈ V \ {t}, (7)

for prevention of cycles, given the condition that success is uncertain along
cycles, is established by the following proposition.

Proposition 2 The problem (5) with (7) has an acyclic optimal solution if∏
f∈c pf < 1 for each cycle c ⊆ E.
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Proof Consider (x, q) that is a feasible solution of (5) with (7). Note that by
the flow-conservation constraints and the integrality of x, the support of x is
a union of one path π from s to t and a set of cycles C ⊂ 2E . Suppose that
there is some u ∈ V that is incident to edges in two different cycles, or an edge
in a cycle and an edge in π. Then, by the integrality of x,

∑
v∈δ+(u) xuv > 1,

thereby violating (7). It follows that the cycles c ∈ C and the path π are all
vertex disjoint. Now further suppose for the sake of deriving a contradiction
that (x, q) is an optimal solution with minimal |C| > 0 and consider a cycle
c ∈ C. If qe = 0 for each e ∈ c, then a new solution (x′, q) can be defined (using
(x, q)) by setting x′e = 0 for each e ∈ c. The objective value of (x′, q) is equal
to that of (x, q) and has one less cycle, thereby establishing a contradiction.
Otherwise, if qe > 0 for some e ∈ c, constraints (5b) written for all (u, v) ∈ c
imply that

∏
f∈c pf = 1. ut

3.2 Rounded formulation

The formulation from the previous section tends to have a weak linear pro-
gramming relaxation, due the big-M coefficients involved in constraints (5c).
We present in this section an alternative and stronger approach that is based
on layered graphs, where multiple copies of graph vertices and edges are cre-
ated and “stacked on top of each other”; see for example [16]. Specifically,
we consider next a base 0 < α < 1 and define the rounded logarithms of
the probabilities as re = dlogα pee. The set of rounded logarithms values is
K = {0, . . . , nmaxe∈E{re}}. Define V0 = V \ {s, t} and let its induced sub-
set of edges be denoted by E0 = E[V0]. Then, consider copies of V0, one for
each k ∈ K, to be denoted by V k0 = {(v, q) ∈ V0 ×K | q = k }; each mem-

ber (v, k) ∈ V k0 is the k-th copy of v ∈ V0 in V̂ . The layered graph is then

Ĝ = (V̂ , Ê), where V̂ = {(s, 0), (t, 0)} ∪
⋃
k∈K V

k
0 and

Ê =

{
(u, k, v, k + ru,v)

∣∣∣∣ (u, v) ∈ E0, k ∈ {0, . . . , nmax
e∈E
{re} − ru,v}

}
∪
{

(s, 0, v, rs,v)
∣∣ v ∈ δ+(s)

}
∪
{

(u, k, t, 0)
∣∣ u ∈ δ−(t), k ∈ K

}
.

Notice that Ĝ is acyclic. Let Π̂ be the corresponding path flow polytope Π
given by (4), defined for the layered graph Ĝ in place of G, with (s, 0) and
(t, 0) as the source and the sink vertices. Evidently, all paths in this graph
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correspond to extreme points of this polytope. Consider the formulation

max
∑

e=(u,k,v,k̄)∈Ê

αk̄cuvxe (8a)

subject to:
∑

v∈V \{s}:∃k̄∈K
e=(u,k,v,k̄)∈Ê

xe ≤ 1 u ∈ V \ {t} (8b)

x ∈ Π̂ (8c)

xe ∈ {0, 1} e ∈ Ê. (8d)

Note that while any path π̂ = ((u1, q1) = (s1, q1), (u2, q2), . . . , (ul, ql) = (tl, ql))

in Ĝ is elementary, its projection onto V , π = (u1 = s, u2, . . . , ul = t) might
contain a cycle. We forbid such paths π̂ (whose projection contain one or more
cycles) by limiting the number of outgoing arcs from any u ∈ V \ {s} to
at most one in constraints (8b). Also note that the rounding makes solving
formulation (8) an inexact solution of (5) (and (3)). However, if α is chosen
close enough to one, the worst-case performance of the optimal solution of (8)
can be bounded from the theoretical viewpoint as formalized below.

Observation 1 For α ≤ (1− ε)1/(n−1), then each solution that is optimal to
(8) is an (1− ε)-approximate solution to (5) with (7).

The correctness of this observation follows from the fact that if path π =
(u1, . . . , ul) is optimal in the original graph then there is a path π̂ in Ĝ, whose
projection onto V is π, and whose objective value is

∑
(u,k,v,k̄)∈π̂

αk̄cuv =

l−1∑
i=1

α
∑i
j=1 rujuj+1 cuiui+1

≥
l−1∑
i=1

cuiui+1
αi

i∏
j=1

pujuj+1
≥ αn−1z(π).

4 Computational results

In this section we experiment with simulated kidney compatibility graphs that
are publicly available [20] or randomly generated following the structure sug-
gested in kidney exchange literature. All data used is maintained in a public
repository [14].

Graph topology simulated according to [4] (graph[n]a[A] datasets). We gener-
ate a “sparse-dense” graph with the vertex connectivity generated according
to the panel reactive antibodies (PRA) levels as suggested in [4], and we make
use of additional data given in [3,9]. In particular, graph vertices are created
with a highly sensitized recipient with probability 0.27. Such highly sensi-
tized patients (with a high PRA value) are less likely to be compatible with a
random donor. Accordingly, these recipients are then connected with donors
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(corresponding to an incident incoming edge) with probability 0.03. The fail-
ure probabilities are assigned also based on PRA levels and highly sensitized
patients are matched with a success probability of 0.5. Otherwise, low PRA
recipients are compatible with donors with probability 0.5, 57% of them are
matched with a success probability of 0.75 (cross-match failure rate of 0.25)
and 43% of them are matched with a success probability of 0.95 (cross-match
failure rate of 0.05). The values of matching PRA recipients are generated from
a normal distribution with mean 10 and standard deviation 2. The values of
matching highly sensitized recipients are a factor of 1.5 greater (so the mean
is 15) as suggested in [9].

Graphs based on simulated donor data instances of [8] and [9] (MD[n] datasets).
These instances were generated using a simulator based on [24]. Graph arcs
were constructed based on blood-type compatibility and we set the weights
to be either unitary in datasets MD[n]unit or normally distributed with mean
10 and standard deviation 2 in datasets MD[n]-stoch. For patients that are
considered highly sensitized with PRA levels exceeding 0.73 in the original
data, the arc values considered were twice as much as initially generated. The
success probabilities are set to 0.5 for highly sensitized patients (determined
by the PRA levels). Otherwise, a success probability of 0.75 is set with proba-
bility 0.57 and success probability of 0.95 is set with probability 0.43 (similar
to the graph[n]a[A] datasets).

4.1 Implementation details

All algorithms have been coded in Julia 1.3.1 on a platform using a (Intel
i7-10510U) 1.80GHz CPU with 4 cores and an 8MB cache and 16GB of RAM.
The mathematical programs are modeled using the JuMP v0.21.1 [10] and
Gurobi v0.7.6 packages and solved with the Gurobi 9.0.1 solver running 4
threads.

None of our instances contain an edge with a probability equal to 1. Al-
though, if an instance has multiple altruistic donors, we then connect super-
sources and supersinks to all vertices with edges having probability 1, but
this may not lead to cycles c such that

∏
f∈c pf = 1. Hence, the condition of

Proposition 2 holds so inequalities (7) are enough to guarantee the existence of
optimal acyclic solutions. This being said, inequalities (6) are not dominated
by inequalities (7), so separation of the former through callbacks might further
improve the overall performance of the formulation.

Following [25], we thus tested the separation of inequalities (6) at both
fractional and integer solutions by checking whether they are satisfied on each
strongly connected component of the graph induced by the positive compo-
nents of x that is optimal to (a relaxation of) (5). Our results indicated a wors-
ening of the overall performance: the relaxation improvement, often nonexis-
tent, is too little to compensate for the time spent in the separation procedure.
Therefore, we do not use inequalities (6) in the results presented next.
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4.2 Description of the results

Table 1 shows for the particular kidney exchange graph instances that we
experimented, statistics and characteristics including the number of vertices,
edges, number of altruistic donors, length of the longest path from the su-
persource to any vertices in the graph, and the root relaxation gap (in %).
Solution times are reported in seconds in Tables 2 and 3. Here T indicates
that a time limit of 1800 seconds is reached and M indicates that the solver
has exhausted the available memory. Several observations can be made from
the results of these tables. First, we see that the extended formulation (8)
scales reasonably well, as long as the memory limit is not exceeded. Some
of the large MD instances, namely 84unit, 84stoch, 125unit, are solved faster
than formulation (5). Second, the exact formulation (5) appears to be more
efficiently solved with instances MD than with instances “graph”. To further
investigate this behavior we refer to the graph instance characteristics in Ta-
ble 1. The table data shows that graph30a2 and instances MD43 – MD70
have comparable numbers of vertices and edges. However, graph30a2 cannot
be solved in 1800 seconds, while these MD instances are all solved within a
few seconds, except instance 66unit which requires roughly 72 seconds. A par-
tial explanation of this behavior could lie in the strong root relaxation gap
of (5) for these MD instances, ranging from 6 to 20% while for the graph30a2
instance it equals 31%. The strength of the relaxation appears to correlate
with the length of paths in these graphs (directly impacting Muv); for the MD
instances with 34 vertices the length ranges from 17 to 22 hops, compared
with 30 hops in graph30a2.

Next, the third group of gap columns of Tables 2 and 3 provide the ratio of
the best solution found by the extended formulation (8) for different values of
α, to the best solution determined by the exact formulation (5) (expressed as
%). All instances in this table may exceed the time limit when solved exactly
by formulation (5) and thus lead to negative gap values. Evidently, α < 0.8
seems to lead to poor solutions, while setting α higher than 0.8 appears to
yield only marginal improvements. Finally, we remark that for the instance
MD125unit that cannot be solved to optimality, the layered formulation (8)
even provides slightly better solutions than the best solution found by the
exact formulation (within the 30 minute time limit). Note that the theoretical
gap of Observation 1 for entries in these tables ranges from ε ≤ 1−αn−1 ≤ 43%
for n = 12, α = 0.95 to more than 99% for most table entries where α ≤ 0.9
and n ≥ 50 (or even n ≥ 20 when α = 0.75). Evidently, the gap appearing in
practice tends to be much smaller than the theoretical guarantee.

5 Conclusions and future work

In this paper we proposed a linear formulation for the maximum expected
value partially successful path problem. For this formulation we prove and
evaluate cycle prevention inequalities that outperform standard longest path
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Instance |V | |E| na LP Root gap
MD12stoch 18 96 1 9 9
MD12unit 18 96 1 9 10
MD19stoch 18 150 1 14 7
MD19unit 18 150 1 14 4
MD21stoch 18 114 2 10 7
MD21unit 18 114 2 10 1
MD23stoch 18 121 2 13 17
MD23unit 18 121 2 13 28
MD43stoch 34 402 1 19 14
MD43unit 34 402 1 19 13
MD44stoch 34 337 1 17 15
MD44unit 34 337 1 17 11
MD51stoch 34 405 3 19 6
MD51unit 34 405 3 19 16
MD60stoch 34 371 3 19 10
MD60unit 34 371 3 19 9
MD61stoch 34 422 4 19 16
MD61unit 34 422 4 19 17
MD66stoch 34 403 4 22 20
MD66unit 34 403 4 22 16
MD70stoch 34 332 4 18 13
MD70unit 34 332 4 18 18
MD81stoch 66 2205 3 55 15
MD81unit 66 2205 3 55 20
MD84stoch 66 1512 3 36 29
MD84unit 66 1512 3 36 27
MD125stoch 130 6026 6 73 7
MD125unit 130 6026 6 73 12

Instance |V | |E| na LP Root gap
graph20a1 22 178 1 20 25
graph30a2 32 329 2 30 31
graph40a2 42 681 2 41 30
graph50a3 52 981 3 51 23
graph60a3 62 1387 3 61 17
graph70a4 72 1851 4 71 13
graph80a4 82 2247 4 81 10

Table 1 Kidney exchange graph instance main characteristics. LP stands for longest path
and the root gaps are in % with respect to formulation (5). Here na denotes the number of
altruistic donors.

CPU Seconds Gap (%)

Instance
α

0.75 0.8 0.85 0.9 0.95 (5) 0.75 0.8 0.85 0.9 0.95

graph20a1 3 6 7 10 16 11 31 4 4 1 0
graph30a2 14 32 40 79 25 T 44 3 1 0 0
graph40a2 119 345 635 115 608 T 55 1 0 -1 -1
graph50a3 1198 128 407 590 114 T 49 0 -1 -1 -1
graph60a3 233 386 534 1456 216 T 71 0 -1 -1 -1
graph70a4 T 1521 1784 729 662 T 72 0 0 -1 -1
graph80a4 T T T 492 T T 74 1 20 0 –

Table 2 Solution CPU seconds and and optimality gap for approximate MILP (8) for the
“graph” instances.

cycle prevention inequalities. We then evaluated a layered formulation that ef-
fectively solved the problem within a guaranteed approximation gap for larger
instances. According to our experiments the approximation gap in practice
usually appeared much smaller than the theoretical guarantee.

The problem considered in the current paper is strongly NP-hard in general
graphs. In contrast, computing a path that maximizes the similar yet differ-
ent all-or-nothing objective remains NP-hard even in directed acyclic graphs
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CPU Seconds Gap (%)

Instance
α

0.75 0.8 0.85 0.9 0.95 (5) 0.75 0.8 0.85 0.9 0.95

MD12unit 1 1 1 1 4 1 9 0 0 0 0
MD12stoch 1 1 1 1 4 1 7 0 0 0 0
MD19unit 1 1 1 2 6 1 27 0 0 0 0
MD19stoch 1 1 1 3 18 1 26 0 0 0 0
MD21unit 0 1 1 2 6 1 1 0 1 0 0
MD21stoch 1 1 1 2 4 1 24 0 0 0 0
MD23unit 1 1 1 2 3 1 46 0 0 0 0
MD23stoch 1 1 1 1 2 1 37 2 3 2 0
MD43unit 8 28 43 57 37 2 43 0 0 0 0
MD43stoch 10 27 37 54 53 2 44 10 0 0 0
MD44unit 4 10 13 17 25 3 62 0 0 0 0
MD44stoch 4 11 13 17 13 1 52 1 1 1 0
MD51unit 15 38 49 107 46 2 37 0 0 0 0
MD51stoch 11 39 57 114 73 1 30 0 0 0 0
MD60unit 8 26 34 81 55 2 48 0 0 0 0
MD60stoch 10 21 31 59 70 1 34 2 2 0 0
MD61unit 15 33 36 72 54 1 54 0 0 0 0
MD61stoch 11 29 35 74 44 2 42 0 0 0 0
MD66unit 12 30 38 72 39 73 24 0 0 0 0
MD66stoch 18 64 121 170 62 2 59 3 3 0 0
MD70unit 7 19 28 60 27 7 58 0 0 0 0
MD70stoch 6 21 37 58 45 1 50 3 2 2 0
MD81unit 564 731 210 207 557 T 77 0 0 0 0
MD81stoch T T T T T T 63 100 27 8 1
MD84unit 367 1469 1524 T T T 54 1 0 1 1
MD84stoch 332 603 715 521 T T 49 7 5 1 0
MD125unit 409 1200 1343 M M T 64 -1 -1 – –
MD125stoch M M M M M T – – – – –

Table 3 Solution CPU seconds and optimality gap for approximate MILP (8) for the MD
instances.

(DAGs); see [13]. Although it is not difficult to extend the FPTAS suggested
for the all-or-nothing objectives to the current problem, it is a question of
theoretical interest for future work to determine whether the current problem
remains NP-hard in a DAG.

While robust optimization models have been considered where the exis-
tence of edges and the value of exchanges are subject to uncertainty [5,21],
the failure-aware model considered in this paper could be extended to a dis-
tributionally robust model in which the edge success probabilities are subject
to uncertainty. This is also a subject for future work. Finally, computational
techniques such as the network layering that is applied to our MIP could poten-
tially be applied to other kidney exchange formulations such as ones appearing
in [7].
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