
HAL Id: lirmm-03521022
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03521022

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying Metamodel Inaccurate Structures During
Metamodel/Constraint Co-Evolution

Elyes Cherfa, Soraya Mesli-Kesraoui, Chouki Tibermacine, Régis Fleurquin,
Salah Sadou

To cite this version:
Elyes Cherfa, Soraya Mesli-Kesraoui, Chouki Tibermacine, Régis Fleurquin, Salah Sadou. Identifying
Metamodel Inaccurate Structures During Metamodel/Constraint Co-Evolution. MODELS 2021 -
ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems,
Oct 2021, Fukuoka, Japan. pp.24-34, �10.1109/MODELS50736.2021.00012�. �lirmm-03521022�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03521022
https://hal.archives-ouvertes.fr

Identifying Metamodel Inaccurate Structures During
Metamodel/Constraint Co-Evolution
Elyes Cherfa

Segula Engineering France
IRISA – University South Britanny

Vannes, France
elyes.cherfa@univ-ubs.fr

Soraya Mesli-Kesraoui
Segula Engineering France

Lanester, France
soraya.kesraoui@segula.fr

Chouki Tibermacine
LIRMM, Univ Montpellier, CNRS

Montpellier, France
chouki.tibermacine@lirmm.fr

Régis Fleurquin
IRISA – University South Britanny

Vannes, France
regis.fleurquin@univ-ubs.fr

Salah Sadou
IRISA – University South Britanny

Vannes, France
salah.sadou@univ-ubs.fr

Abstract—Metamodels are subject to evolution over their
lifetime. UML metamodel for instance evolved through different
versions, ranging from 0.8 to 2.5 minors. These metamodels
are sometimes accompanied with constraints defined using OCL
(Object Constraint Language). Many works in the literature
developed methods for managing and assisting the co-evolution
of metamodels and their constraints. These methods enable a
developer to update, in an automated (or semi-automated) way,
the constraints associated to a metamodel starting from the
deltas identified between versions of this metamodel. In this
work we complement this assistance by notifying the developer
with potential inaccurate structures in the metamodel that may
be introduced during evolution. We introduce in this paper an
original evolution assistance method which focuses rather on
the problem (notifying metamodel inaccurate structures) than
on the solution (generating OCL constraints using patterns of
them). The ultimate goal of this assistance is not only to enable
the developer to complete existing/updated constraints with new
ones, but also to accompany her/him to further check existing
constraints and to test whether they still hold. A case study is
presented to show the relevance of the method.

Index Terms—Model-driven Engineering, Metamodelling,
OCL, Co-Evolution

I. INTRODUCTION: CONTEXT & PROBLEM STATEMENT

Metamodels define the syntax and part of the semantics
of modeling languages. In the Model-Driven Engineering
field, these are defined using languages like MOF [11]. Their
specification includes sometimes constraints defined using
the OMG’s Object Constraint Language (OCL [34]). These
constraints enable to make the semantics of the metamodel
more precise in order to be compliant with the business
domain.

For many reasons, metamodels are subject to evolution.
Sometimes, this evolution is motivated by a syntax change or
the introduction of new modeling elements (eg. the evolution
of UML metamodel from version 1.5 to 2.0). It can also be
motivated by refactoring the metamodel in order to improve
and simplify its structure (eg. from UML 2.4 to UML 2.5).
However, to keep the metamodel consistent, it is important

to also evolve the constraints associated with it accordingly.
This problem is known under the name Metamodel/Constraint
coevolution. Many works in the literature proposed methods
for coevolving metamodels and their constraints [16], [25],
[26], [30]. These works provided efficient tools for automating
as much as possible the identification of impacted constraints
when a change occurs in the metamodel. Sometimes they even
offer a solution for rewriting the constraints impacted by the
change [15], [19]. Thus, they offer a precious assistance to
developers when changing their metamodels, by freeing them
from managing the changes on OCL constraints.

However, these works concern only the constraints that have
been already defined. It is true that a modification on the
metamodel can certainly induce a modification on the existing
constraints, but sometimes it can generate the need to add
new constraints. Indeed, if a portion of a metamodel is enough
precise without constraints, its modification can be less precise
and thus requires constraints. Existing works do not propose
any means to identify potential new OCL constraints when the
metamodel evolves.

In this work, we tackle the problem of new constraints
needed for a consistent Metamodel/Constraint coevolution.
Thus, we propose a new method for assisting this coevo-
lution which complements existing solutions. This method
considers a new way of providing assistance to developers,
by focusing on the problem domain (what are the structures
in the metamodel that potentially cause problems and which
need OCL constraints?) instead of exploring the solution
domain (generating the missing constraints). Concretely we
reuse two existing works to provide such assistance: one
concerns the needed operators to evolve a metamodel [20]
and the other concerns the definition of Metamodel Inaccurate
Structures (MIS) [3]. We believe that this way of assistance is
informative, because it highlights the potential bad structures
in the new version of a metamodel. This implies either writing
new OCL constraints or reconsidering some existing ones.

In the rest of the paper, we present in Section II, an example

illustrating the problems tackled by our work. We detail in
Section III the approach we have proposed to solve this
problem. Section IV presents the application of our approach
on the case study: StateMachine metamodel and its evolution
from version 1.5 to 2.0. The results of this evaluation are
presented and discussed in Section V. Section VI discusses
the different threats to the validity of the results of the of this
case study. We end this paper with a conclusion (Section VIII)
after presenting the related work (Section VII).

II. PROBLEM ILLUSTRATION

To illustrate in a simple way the problem addressed in our
work, we take a small example from the UML StateMachine
metamodel and its evolution from version 1.5 to version 2.0
(Fig. 1). This evolution was made by applying the following
evolution operations:

• PullUp property submachineState from SubmachineState
to CompositeState

• PullUp property submachineState from CompositeState to
State

Fig. 1. Evolution of the StateMachine (excerpt)

During this evolution, the reference submachineState
initially typed by SubmachineState class has been Pulled
up to the CompositeState class and then typed by State
class. According to the adaptation operations existing in
the literature, the application of this evolution operation
would require a coevolution of the constraints relating to the
submachineState reference. In fact, all constraints of type:

OCLExpression. submachineState [Rest], such as
OCLExpression is of type StateMachine, will be coevolved
after applying the first PullUp operation in:

OCLExpression. submachineState ->select(v | v.
oclIsTypeOf(SubmachineState)) -> forAll(s | s[Rest])

and after applying the second PullUp operation in:

OCLExpression. submachineState -> select(v
| v.oclIsTypeOf(CompositeState)) -> select(v |
v.oclIsTypeOf(SubmachineState)) -> forAll(s | s[Rest])

But, the PullUp operation also generated a new MIS which
may require a new OCL constraint. Indeed, all the sub-
classes of the State class, which now contains the reference
submachine, inherit this reference. It may be possible that
these sub-classes do not need to inherit the reference and
thus require a new constraint to reduce the multiplicity of this
inherited reference. Indeed, in the StateMachine 2.0 version,
the following constraint has been added. This constraint
reduces the multiplicity of the inherited reference submachine
in the FinalState sub-class.

context FinalState
inv inv: self.submachine->isEmpty()

In the same vein, we studied in this paper the different
metamodel inaccurate structures that may require the addition
of new constraints or the removal of the existing one(s), after
the application of an evolution operation.

III. BACKGROUND AND PROPOSED APPROACH

Our approach relies on OCL constraint coevolution opera-
tors and Metamodel Inaccurate Structures. Thus, for a better
understanding of our approach, we need to explain the main
elements of these two works from the literature.

A. Metamodel coevolution operators

During the coevolution phase, a metamodel undergoes sev-
eral changes. Examples of needs leading to changes on the
metamodel are adding/removing concepts or refactoring it
in order to simplify its comprehension and make it easy
to maintain. In the literature, the coevolution problem con-
cerning metamodels has been addressed by many studies
aiming at identifying the changes that are usually applied.
As a result, a set of 16 evolution operators was introduced
by Wachsmuth [30] for coevolving metamodels and models.

Besides this, Marković and Barr [25] proposed 15 rules to
coevolve class diagrams and OCL constraints. These have been
completed by [15] with 7 operations for coevolving metamod-
els and OCL constraints. Table I taken from [20] summarises
all identified EMOF metamodel evolution operators which
help in solving coevolution problems.

TABLE I
OVERVIEW OF THE OPERATORS FOR EMOF METAMODEL EVOLUTION

Type Operator Name

Add / Remove Element

Add Class
Remove Class
Add Package
Remove Package
Add DataType, PrimitiveType, Enumeration
Remove DataType, PrimitiveType, Enumeration
Add EnumerationLiteral
Remove EnumerationLiteral
Add Property
Remove Property
Add Association
Remove Association
Add Operation (Class / DataType)
Remove Operation (Class / DataType)
Introduce Generalization
Remove Generalization

Property Manipulation

Move Property
Push Simple Property
Push Complex Property
Pull Simple Property
Pull Complex Property
Restrict (Unidirectional) Property
Generalise (Unidirectional) Property

Refactoring Pattern

Extract Class
Inline Class
Extract Superclass
Flatten Hierarchy
Association to Class
Generalization to Composition
Introduce Composite Pattern

The evolution operators are grouped into four categories:
1) Those for adding or removing new modeling elements

like: class, association, attribute, operation, generaliza-
tion, package, etc;

2) Those that help in the manipulation of the properties
such as: Move property, PullUp property, etc;

3) The third category groups the operators that manipulate
hierarchies (Inheritance relations);

4) The last group represents all complex operators that were
proposed to refactor structures based on patterns.

OCL constraints are the main artifacts that are affected by
the metamodel changes. For example, removing an attribute
needs to be followed by the removal of the OCL constraints
that target this attribute. Following this rule, previous research
works have identified a set of OCL coevolution operators that
are triggered by one or more metamodel coevolution operators.
These approaches are efficient when it comes to modification
and removal operators. However, when the changes concern
a part of the metamodel which was not associated with
constraints, these operators give no indication. This is normal
since their goal is to identify the constraints that need to be
changed after a change in the metamodel. But sometimes, a

change in a metamodel may raise the need for new constraints
to be more precise, as shown in the example of the previous
section.

B. Metamodel Inaccurate Structures

In [3], the authors have analyzed a dataset containing 10
metamodels and more than 800 OCL constraints. The analysis
was done by studying all the metamodel structures that are
targeted by at least one constraint. These structures have been
grouped into sets, each of which can be defined by a generic
structure. The latter is named Metamodel Inaccurate Structure
(MIS). Thus, the presence of a MIS in a metamodel suggests
the presence of weaknesses and therefore the need for OCL
constraints to make the relevant part of the metamodel more
precise. One of these weaknesses is inheritance. Inheritance
(Generalization) allows to generalize common properties from
many classes and factorize them into one class which will be
inherited from all the other classes which need one or all of
these properties. The problem that may occur is that in order
to generalize a property that can be found in many classes,
the multiplicity and the set of possible values of this property
need to be relaxed to contain all the possible multiplicities
or values that the property can take in the sub-classes. As
a consequence, some classes will inherit a property with a
wider multiplicity or a wider range of values, which needs to
be precised (restricted) by adding a new OCL constraint. The
authors have pointed out 10 MIS as illustrated in Table II.

TABLE II
OVERVIEW OF THE MIS [3]

MIS
Attribute Value Restriction

Enumeration Literals Restriction
Type Relation

Enumeration Type Relation
Inherited Attribute Value Restriction

Inherited Attribute Multiplicity Restriction
Inherited Association Multiplicity Restriction

Inherited Operation Value Restriction
Cycles Restriction

Different Paths Restriction

Figure 2, taken from the StateMachine metamodel, illus-
trates the Enumeration Type Relation MIS. This MIS occurs
when a class contains an Enumeration typed attribute, and one
or more incoming associations. Often, constraints are specified
to precise the attribute literals value that the association must
have (i.e. the type of the association is restricted by the
enumeration). Here, the Pseudostate (Fig. 2) instances that are
linked to the ConnectionPointReference instances through the
association entry must be restricted to the literal entryPoint.
This is also the case for the association exit with the literal
exitPoint. A MIS suggests that a structure is possibly inac-
curate. So, the metamodel designer (domain expert) needs to
analyze each MIS occurrence in order to determine whether
the structure is really not precise and hence needs to be
completed with OCL constraints.

Fig. 2. Enumeration Type Relation from State Machine

C. Proposed Approach

Initially, as illustrated in figure 3, we have identified 30
operators (A) that evolve metamodel from (B) version to a new
version (C). To guarantee that the existing OCL constraints
(E) are conforming to the new metamodel version, a set
of constraints coevolution operators (D) is applied to these
constraints to coevolve them to be conforming to the new
metamodel version (F). Since the set of constraints (F) is
incomplete and hence does not cover all the concepts of the
new metamodel version, a set of MIS that can arise from the
evolution operators (H) is automatically searched (G). This set
of MIS instances is then analysed by metamodel designer (I) to
remove all the instances that do not require OCL constraints.
After this sorting, the resulted MIS instances set (J) encom-
passes only instances that require OCL constraints. To this end,
we have developped a tool that proposes OCL (K) constraints
for each MIS instance. The proposed constraints are instances
of OCL patterns that are frequently used to precise MIS. After
that, the domain expert will validate the set of constraints (L)
relying on its domain knowledge. Consequently, the resulted
set of OCL constraints (M) includes all the new OCL con-
straints that are applied to precise new metamodel elements
resulting from the metamodel evolution. This set of constraints
(M) union the set of constraints resulted from coevolving the
OCL constraints (F) from the old metamodel using coevolution
operators give place to a complete set of OCL constraints (N)
that are conforming to the new metamodel version.

To take benefit from the knowledge acquired from the MIS
and to complete the OCL coevolution, we performed an anal-
ysis over each metamodel coevolution operator. This analysis
aims at identifying all the MIS that may arise following the
application of a metamodel evolution operator. To do so, for
each evolution operator, we have taken a set of structures and
applied it, then searched for MIS instances to know which
MIS may result from which metamodel evolution operator.

As a result, we obtained a set of MIS for each evolution
operator. This results show which MIS can be generated after
the application of an evolution operator. Table III summarizes
our findings.

To be more precise, we have divided some operators such as
pullUp property into pullUp association, and pullUp attribute
to precise the resulted MIS. The table contains three types of
metamodel evolution operators (I). Each type encompasses a
set of operators (II) that we have taken from the literature. For
each operator, we state if its application may cause a change
that impacts OCL constraints, which require the coevolution
of at least one constraint (III). For example, adding a class
does not affect any OCL constraint, but removing an attribute

requires removing/refactoring all the constraints that were
referenced. After that, for each operator, we state if it may
engender one or many MIS or not, and if it is the case,
we list all the MIS that may be triggered from an evolution
operator (IV). Finally, we give some conditions predominantly
related to the metamodel structure, making the rise of a MIS
possible (V). For example, the application of the operator
”add association” may trigger the MIS ”Cycle” only if the
association is reflexive.

Figure 4 illustrates the application of Add Association
operator in a metamodel structure. From this evolution results
the Inherited Association Multiplicity Restriction MIS. This
MIS occurs when a super-class contains an association with
a multiplicity. Often, an OCL constraint is added to one of
the sub-classes to restrict the association multiplicity. The
operator Add Association does not affect the correctness of
existing constraints. However, the added association may need
constraints. This shows that the existing OCL coevolution
operators are not sufficient to make the evolved metamodel
precise. Consequently, relying on coevolution operators to
coevolve existing constraints and search MIS instances raised
from the metamodel evolution is an efficient combo to cover
all the metamodel structures with constraints. The strength of
our approach lies in its capacity to identify the need for new
constraints that did not appear in the old metamodel version.

IV. CASE STUDY

To evaluate the performance of our method in OCL co-
evolution assistance, we conducted a case study. The purpose
of this study is to provide answers to the following research
questions.

A. Research Questions

• RQ1. What is the performance of our method in the
coevolution of OCL constraints?
This question assesses the ability of our approach to cor-
rectly coevolve the OCL constraints during the evolution
of their meta-model.

• RQ2. What is the performance of our method in
the notification of potential new constraints related
to MIS?
This question aims to study the ability of our method
to notify structures which will potentially require new
constraints or the removal of already existing constraints
and thus complete the coevolution of OCL constraints
during the evolution of a metamodel. The results of
this question will highlight the originality of our method
compared to methods from the state of the art.

B. Selected case study

We chose to evaluate our method on the State machine
metamodel evolved from version 1.5 (Fig. 5) to version 2.0
(Fig. 6). This choice is guided by: 1) accessibility of the
metamodel and its OCL constraints with a complete documen-
tation; 2) the number of significant evolution operations (73
operations that were required to evolve the metamodel from

Fig. 3. Proposed approach to coevolve OCL constraints

Fig. 4. Inherited Association Multiplicity Rest. resulted from Add Association
operator

1.5 to 2.0), this covers many evolution operators (19), which
allows us to validate the co-evolution of constraints such as
existing approaches from the literature. Also, it enables the
identification of new constraints that are needed to refine the
new metamodel version; 3) the metamodel is widely used in
practice which proves its good construction; 4) maneuverabil-
ity: the metamodel is concise compared to the whole UML
metamodel. In the following, we present the StateMachine
metamodel based on its 2.0 version (Fig. 6).

State machines offer a range of concepts to model the
discrete behavior of a system as a graph of vertices and transi-
tions. The vertices are of different types: states, pseudostates,
and connection point references (Fig. 6). The states describe
a situation in which a condition is verified [10]. States can
be simple, composite, sub-machines, or final states. Unlike
a simple state, a composite state can contain other states
and transitions often clustered in regions. A composite state,
containing at least one region, may contain several regions.
In this case, the state is called orthogonal because the regions
can run in parallel. A final state is the last state to go through
when running a state machine. Pseudostates are transient states
(Execution never stops in these states). The state machine
diagram offers 10 pseudostates (entryPoint, exitPoint, initial,
deepHistory, shallowHistory, join, fork, junction, terminate, or

choice). On the other hand, the connection point characterizes
the entry and the exit points of a sub-machine.

A transition is an arc from a source vertex to a target vertex.
A transition is fired at the reception of a given event and/or if
its related guard is true. On the version 2.0 [10], three types
of transitions were defined: internal, local, and external. An
internal transition is a transition that connects a state to itself
and it does not cause a state change during its execution. A
local transition is a transition that does not come out of a
composite state, it is always performed in the composite state.
On the other hand, the execution of an external transition leads
to the exit of the composite state from which it is outgoing.

C. Data

We studied the evolution of state machine diagrams from
version 1.5 to 2.0. For both versions, we used the official state
machine specification provided in [8]. Then, for both versions,
we built an ECORE metamodel and a ”.ocl” file containing
the OCL constraints associated with this metamodel.

The metamodel 1.5 (Table IV) is composed of 47 modeling
elements: 14 classes, 1 enumeration, 5 attributes, 2 operations,
and 25 associations. On this metamodel, 30 OCL constraints
were specified [9]. Of these 30 constraints, we were able to use
only 25 constraints. The other 5 constraints have been removed
either because they do not parse (they contain errors) or they
relate to modeling elements contained in other packages of the
UML metamodel that were not taken into account in this case
study.

On the other hand, the metamodel 2.0 (Table IV) contains 69
modeling elements and 49 OCL constraints [10]. Only 38 out
of 49 constraints were used in this study. 11 OCL constraints
were excluded for the same reasons mentioned above.

Once the OCL metamodels and constraints were collected,
we identified the set of evolution operations that make
Statemachine metamodel 1.5 evolving to 2.0. We manually
compared the two versions of the metamodel and extracted
all the evolution operations. We have identified 73 evolution

TABLE III
MAPPING BETWEEN METAMODEL COEVOLUTION OPERATORS AND MIS

Type (I) Operator Name (II) OCL coevolution (III) May engender MIS (IV) Condition (V)

Add / Remove

Element

Add Class no no /
Remove Class yes no /
Add Package no no /
Remove Package no no /
Add DataType , Primitive Type, Enumeration no no /
Remove DataType, Primitive Type, Enumeration yes no /

Add EnumerationLiteral no Enumeration Literal Restriction If the enumeration wherein the literal is added will contain at least two literals

Enumeration Type Relation If the class containing an Enumeration
attribute contains an incoming association

Remove EnumerationLiteral yes no /

Add Attribute no
Attribute Value Restriction /

Inherited Optional Attribute If the attribute is added with the multiplicity [0..1]
to a class containing subclasses

Inherited Attribute Value Restriction If the attribute is added to a class containing subclasses
Remove Attribute yes no

Add Association no

Type Relation If the source or the target class or both
containt subclasses

Association Multiplicity Restriction
If the association multiplicity upper bound is higher
than the lower bound and the class containing
the association is specialized

Cycle If the association is reflexive

Different Paths If there is another association with the same
source and target class

Remove Association yes no /

Add Operation (Class / DataType) no
Inherited Operation Value Restriction If the class containing the operation is specialized

Cycle If the operation returns elements from same
type as its containing class

Different Paths
if the operation returns class instances as output, and
if the class containing the operation have an association
targetting the class

Remove Operation (Class / DataType) yes no /

Introduce Generalization yes

Inherited Optional Attribute If the superclass contains an optional attribute
Inherited Attribute Value Restriction If the superclass contains an attribute
Enumeration Literals Restriction If the superclass contains an enumeration attribute
Inherited Operation Value Restriction If the superclass contains an operation
Type Relation If the superclass contains an association
Association Multiplicity Restriction If the superclass containts an association

Cycle If the subclass contains an association that
targets its superclass

Different Paths

Remove Generalization yes Remove Cycle /
Remove Different Path /

Property

Manipulation

Move Property yes

Inherited Optional Attribute If the class in which the attribute is moved is specialized
Inherited Attribute Value Restriction If the class in which the attribute is moved is specialized
Type Relation If the class in which the attribute is moved is specialized
Inherited Association Multiplicity Restriction If the class in which the attribute is moved is specialized
Attribute Value Restriction
Cycle If the property is a reflexive association

Different Paths If the class in which the association is moved contains
another association with the same targetted class.

PushDown attribute/operation yes no

Push Down association yes

Remove Type Relation MIS
on the other subclasses /

Remove Inherited Association Multiplicity
Restriction on the other subclasses /

Cycle on the subclass If the association is reflexive

PullUp Attribute/Operation yes

Attribute value restriction
Inherited Optional Attribute /
Inherited Attribute Value Restriction /
Inherited Operation Value Restriction /
Type Relation If it is an enumeration attribute

PullUp Association yes

Type relation Between the superclass and the association source class
Association multiplicity restriction Between the association source class and the subclasses
Cycle /
Different path /

Restrict Property yes may trigger the removal of Inherited
Association Multiplicity Restriction If the multiplicity [1..1]

Generalise Property yes Inherited Association Multiplicity Restriction /

Refactoring

Pattern

Extract Class no Type Relation If the source class in specialized
Inline Class yes no /
Extract Superclass no no /
Flatten Hierarchy yes no /
Class to Association yes no /
Association to Class yes no /

Generalization to Composition yes Removal of Cycle /
Removal of Type relation /

Introduce Composite Pattern yes /

TABLE IV
STATEMACHINE FEATURES FOR ITS TWO VERSIONS 1.5 AND 2.0

Metamodel Ocl
StateMachine Class Enumeration Attribute Operation Association Total Correct Incorrect Total
Version 1.5 14 1 5 2 25 47 25 5 30
Version 2.0 15 2 6 6 40 69 38 11 49

operations (Table V). 63% (46 out of 73) of these operations
aim to add new modeling elements in the metamodel. 14% (10
out of 73) are deletion operations and 10% (7 out of 73) are
renaming operations. Other operations (13%) concern property

manipulation such as pullUp attribute/property, pushDown
attribute/property, move property, etc.

Fig. 5. StateMachine metamodel version 1.5 (from [9])

Fig. 6. StateMachine metamodel version 2.0 (from [10])

TABLE V
LIST OF EVOLUTION OPERATIONS.

Add class 4 Remove association 4
Add association 23 Restrict property 2
Add attribute 4 Generalize property 1
Add operation 4 Extract class 1
Add enumeration 1 Move property 2
Add literal 6 PushDown Association 1
Add generalization 4 PullUp attribute 1
Remove class 4 PullUp association 2
Remove attribute 1 Rename Element 7
Remove generalization 1 Total 73

D. Data processing & method

To automatically execute these 73 operations on our tool,
we have developed a Java program. This program loads the
metamodel 1.5 with its 25 constraints and applies the evolution
operations one by one. The application of each operation
returns three outcomes: modification of the metamodel by
integrating the changes generated by the operation, adapting
the OCL constraints after the application of the operation, and
finally, generating a set of notifications related to MIS occur-
rences. After the application of all 73 operations on metamodel

1.5, we obtained: 1) an evolved metamodel corresponding
to version 2.0; 2) a set of adapted constraints; 3) a set of
notifications for new potential constraints (corresponding to
the identified MIS).

To answer the first research question, we calculated
the number of OCL constraints, automatically coevolved
(COEV OL) by our tool, and compared them to the con-
straints present in version 2.0 (coevolution made by UML
designers). As a result of this comparison, we obtained 4 sets:
constraints coevolved by our method and by the UML design-
ers (COEV OLTP); constraints coevolved by our tool and not
coevolved by UML designers (COEV OLFP), constraints not
coevolved by our tool and not coevolved by UML designers
(COEV OLTN), and constraints not coevolved by our tool
but coevolved by UML designers (COEV OLFN). With these
four sets, we calculated the precision and the recall of our
approach, as follows:

PrecisionCOEV OL =
COEV OLTP

COEV OLTP + COEV OLFP
(1)

RecallCOEV OL =
COEV OLTP

COEV OLTP + COEV OLFN
(2)

To answer the second search question, we calculated the
number of the notified MIS occurrences generated by our
tool. Then, for each notification, we looked for an OCL
constraint that was added or removed in version 2.0, and
that avoids the MIS occurrence indicated by our tool. Indeed,
notifications generated by our tool emit a suspicion that a
constraint must be added or removed after the application of
an evolution operation. This comparison resulted in three sets:
1) a set of MIS for which OCL constraints were added by
UML designers in version 2.0 (MISTP); 2) a set of MIS for
which constraints have not been added by the UML designers
(MISFP); 3) a set of constraints added by UML designers
that do not correspond to the identified (MISFN). With these
three sets, we calculated the precision and the recall of our
method.

PrecisionMIS =
MISTP

MISTP +MISFP
(3)

RecallMIS =
MISTP

MISTP +MISFN
(4)

V. RESULTS

A. RQ1. What are the performances of our approach in
the coevolution of OCL constraints to the evolution of their
meta-model?

The application of the 73 evolution operations on the
StateMachine metamodel 1.5 has enabled 15 OCL constraints
to be adapted from the 25 existing constraints. We obtained
a precision of 1 and a recall of 1. The precision shows that
the constraints coevolved by our tool have been well coevolved
manually by the UML designers. This result is very interesting
because the coevolution of these 15 OCL constraints took only
a few seconds, which represents a considerable time saving
compared to manual coevolution.

During this experiment, we noticed that the UML designers
adopted other coevolutions than the ones proposed by our
tool. For example, when deleting a metamodeling element,
our tool proposes the removal of constraints related to this
element. However, UML designers in some cases do not
remove the constraints but rewrite them. Taking as an example
the following constraint.

context Transition
inv inv:(self.stateMachine-¿notEmpty() and not
oclIsKindOf(self.stateMachine, ActivityGraph)) implies
self.target.oclIsKindOf(Pseudostate) implies
((self.target.oclAsType(Pseudostate).kind = #join) implies
(self.source.oclIsKindOf(State)))

Our tool proposed to remove this constraint because it
refers to the stateMachine association between the Transition
class and the StateMachine class, which was removed in

version 2.0 of the StateMachine metamodel. However, UML
designers preferred to modify it rather than to delete it as
follows.

context Transition
inv inv: ((self.target.oclAsType(Pseudostate).kind = #join)
and (self.source.oclIsKindOf(State)))

On the other hand, automatic coevolution was able to
detect constraints that should be coevolved and which have
been omitted by the UML designers. Indeed, during the
application of the evolution operation Remove association
“top” from “StateMachine” class, our tool removed the
following constraint.

context Transition
inv inv: self.source.oclIsKindOf (Pseudostate) implies
(self.source.oclAsType(Pseudostate).kind = #initial)
implies (self.source.container = self.stateMachine.top)
implies ((self.trigger-> isEmpty()) or
(self.trigger.stereotype.name =’ create’)

However, this constraint has not been removed in StateMa-
chine version 2.0 and it is one of the 11 unparsed constraints.
It was also surprising to note that this constraint dragged
into all other versions of StateMachine (from 2.0, 2.1.2, 2.2,
2.3, and 2.4) without correction. It was corrected by UML
designers in the latest version of UML, namely version 2.5.
It took 10 years for UML designers to correct this constraint
when our tool immediately detected it. These results show
that the manual coevolution of OCL constraints is a long and
error-prone process. The assistance of designers during the
evolution of metamodels by automatically coevolving the OCL
constraints is then a very useful and helpful process.

B. RQ2. What are the performances in the notification of
potential new constraints related to MIS?

Regarding MIS, our tool has generated 103 notifications
of potential MIS. Out of these 103 notifications (MISTP +
MISFP), 20 (MISTP) were actually about constraints that
have been added in version 2.0 by UML designers. With these
performances, we obtained a precision of 0.20 and a recall of
0.62 (MISFN = 12). In the light of these results, it seems
important for us to improve the performance of our approach
especially concerning the number of false positives generated
(reduction of the number of notifications). Indeed, we found
that some notifications overlapped and were therefore counted
twice. However, when looking at the results in more detail,
other factors also had an impact on the results.

False negatives (constraints that do not match the MIS) are
not really false negatives, because our approach looks only
for MIS but not for all the constraints added in version 2.0.
Indeed, the 12 constraints added by the experts and which do
not correspond to MIS, are specific constraints and are highly
dependent on the business domain and not MIS-related. If we
consider false negatives as all constrained MIS that our tool

could not notify, then we get a recall of 1. Our tool can identify
all MIS related to an evolution operation.

We also found that some false positives (notification of MIS
but no written constraints for this MIS) may be omitted by
UML designers. Indeed, we found that 3 MIS identified by our
tool have been completed in version 2.5 by 3 OCL constraints.
These MIS were about the addition of the Kind enumeration
in the Transition class. We strongly believe that other MIS
require OCL constraints but that experts have forgotten them.
For example, the operation Add association ”connectionPoint”
from State to ”Pseudostate” generated one potential MIS that
points out the need to add an OCL constraint in order to
restrict the multiplicity of the connectionPoint association for
the FinalState sub-class. In other words, maybe FinalState
should not have connection Points. While this seems logical,
no OCL constraint was found in the specification that meets
this MIS. But, we are convinced that some of this MIS does
require a constraint.

In the end, we found that the UML designers added 23 new
OCL constraints between version 1.5 and version 2.0. Out of
these 23, our tool was able to notify 11 constraints, which
corresponds to 48% of new constraints added. Knowing that,
we are convinced that some constraints have been omitted in
the specification.

VI. THREATS TO VALIDITY

In this section, we discuss below the strategies taken to
avoid some threats to the validity of the results and ensure
a certain quality of our study. According to [28], the threats
to the validity of a case study are: construct validity, internal
validity, external validity, and reliability.

A. Construct validity

Construct validity ensures that the carried measures allow to
measure what it was intended to be measured. At the level of
coevolution of OCL constraints, there are no potential threats
of this type. Because, we have compared OCL constraints. As
the OCL language is formal, there is no risk of confusion
or ambiguity. However, regarding the notification of MIS,
a risk may emerge because we have compared the existing
constraints, written in OCL, with the notifications (textual
form). To avoid this risk, we have defined a constraint template
for each MIS that allows us to avoid it. We then compared
these templates with the constraints written by the experts.

B. Internal validity

Internal validity concerns the consistency of the conclusions
drawn on cause and effect between results. Our study is less
affected by this type of validity.

C. External validity

External validity refers to the generalizability of the con-
clusions to other populations, domains, etc. We have studied
this validity along two axes: OCL coevolution and MIS noti-
fication. On the OCL coevolution aspect, we can say that the
results obtained can be generalized to other metamodels. But,

on the MIS notification one, the results cannot be generalized,
because they are strongly dependent on the type of the applied
evolution operations. Indeed, in [3], studies have shown that
the number of MIS in a metamodel is strongly dependent on
its metamodeling elements and therefore on the type of the
applied evolution operation. To avoid this threat, we chose a
case study with a large and varied set of evolution operations.
In fact, the case study allowed us to apply 18 types of evolution
operation among the 31 previously mentioned.

D. Reliability

The reliability of the study consists in the ability of the
results to be reproduced and replicated by other researchers.
To increase the reliability of our study, we chose to use a meta-
model known by the community and all the documentation of
this case study is freely accessible via the Internet. We have
also provided in this article, the set of evolutionary operations
and their impact on MIS.

VII. RELATED WORK

Related works can be divided into three categories. The
first one concerns the approaches that evolve metamodels.
The second one encompasses the OCL constraint coevolution
approaches. Lastly, the third category concerns the approaches
that study the conjunctive use of metamodels, class diagrams,
and the Object Constraints Language.

A. Metamodel evolution

The evolution of metamodels is a topic that was studied
by many research works. These works can be classified into
three categories according to [27]. The first one concerns the
approaches where the modelers encode manually the migration
strategy using programming languages such as Java, or model
transformation languages like QVT. In [7], Garces et al.
compared two metamodel versions to capture the differences
between them. The transformation rules are then used to adapt
models automatically. [13] proposes an approach to coevolve
models. It starts by detecting change either by comparing
metamodels or by analyzing the change sequence applied to
the metamodel old version. Then, the identified changes are
classified depending on their impact on the model instances.
Finally, an appropriate migration algorithm for model mi-
gration is determined. The above mentioned approaches rely
on the copy rules, which can be very complex and time-
consuming to do manually. Consequently, the second category
of metamodel evolution approaches appeared. This category
concerns the approaches that use matching techniques to infer
migration strategies by comparing the old and new metamodel
versions. In these approaches [16], [22], [23], [26], [29], the
coevolution rules are specified as transformation rules using
a unified metamodel that represents both metamodel versions.
Then, an analysis is performed to remove modeling elements
that are not present in the metamodel’s new version. Hence,
the models can be updated to be conform to the new meta-
model. The third category encompasses the approaches that
capture the metamodel changes as evolution operators [17].

The performance of these approaches depends on the com-
pleteness of the set of evolution operators. Wachsmuth [30]
recorded a set of operators to evolve metamodels and coevolve
models. Marković and Barr [25] proposed rules to coevolve
class diagrams and OCL constraints. Hassam and al. [15]
proposed operations for coevolving metamodels and OCL
constraints. Kruse et al. [20] gathered all the operators present
in the literature and summarised them. Also, inspired by
Fowler [6] who proposed code refactoring operators, Kruse
et al. have proposed some complex metamodel evolution
operators such as Introduce Composite Pattern. Each of the
above mentioned papers have contributed in completing the
metamodel evolution library by providing additional operators
which improved considerably the operator-based metamodel
evolution approach.

B. OCL constraints coevolution

The coevolution of OCL constraints that follows the evo-
lution of metamodels was the center of attention of many
research works. We may distinguish semi-automatic coevolu-
tion methods. For example, Hassam et al. [14], [15] proposed
to highlight obsolete constraints after metamodel evolution.
The semi-automatic approach shows the updates that need
to be applied to the OCL constraints using the Query View
Transformation (QVT) language [12]. Khelladi et al. [18], [19]
propose a semi-automatic approach for recording metamodel
changes in chronological order, and thus detecting changes and
applying resolution strategies to adapt the constraints. Kusel
et al. [21] propose semi-automatic resolution actions for the
coevolution of OCL expressions in model transformations as a
response to metamodel evolution. The common point between
these approaches is the fact that they all rely on existing
OCL constraints sets. This strategy gives positive results when
the set of OCL constraints that undergoes the coevolution is
complete. Also, these approaches are straightforward when the
metamodel does not undergo too many evolutions that change
its structure. The weakness of these approaches lies in the
inability to add new constraints that complete new modeling
elements.

On the other hand, other works propose fully automated
methods. For example, Cabot et al. [2] focus mainly on
removal operations. Hence, this automatic approach has as
a goal to delete constraints or parts of them. It targets the
elements that are not present in the metamodel anymore.
This approach focuses on removing constraints that cause
inconsistencies with the conceptual schemes after subtracting
operations. The approach is very powerful to avoid inconsis-
tencies, but needs to be completed with other methods to take
into consideration the other aspects of the OCL coevolution.
Demuth et al. [4], [5] propose a template-based approach
that defines a generic structure for OCL constraints that are
then instantiated to update the constraints after metamodel
evolution. Markovic et al. [24] proposed an approach in which
they formalize the most important refactoring rules for class
diagrams and classify them with respect to their impact on
annotated OCL constraints. This approach focuses mainly on

classifying the refactoring rules depending on their impact on
the OCL constraints. Batot et al. [1] propose an automatic
two-steps process to automatically coevolve metamodels and
OCL constraints using a genetic algorithm. For each OCL
constraint, the genetic algorithm explores the possible changes
in the modeling space. The authors have defined a set of
objective functions that helps to chose the changes that respect
these objectives. The strength of this approach is the use of
randomization using genetic operators, which can give rise to
multiple OCL constraints. Just like the previous approaches, it
does not fully exploit the new metamodel structure to extract
all the new information from it.

While all the work that coevolve and refactor OCL con-
straints rely on the metamodel and the existing constraint set
to perform updates, our approach relies only on metamodel
structure. In addition to this, our approach can be used to add
new constraints that did not appear on the old version of the
metamodel.

C. Metamodel structures analysis

In our approach, we relied on the results of the analysis
made in [3] on existing metamodels and their OCL constraints.
This study had as a goal to identify metamodel structures
that are often constrained with the OCL language. Other
studies have been performed on metamodels and class dia-
grams to determine the weaknesses of both languages. Wahler
et al. [31]–[33] have captured the class diagram limits in
the form of Anti-Patterns, and proposed after that a set of
OCL constraints patterns that can be used to complete these
imprecise structures. The main reason behind our use of MIS
instead of Anti-patterns is due to the large empirical evaluation
performed in [3]. From another perspective, Cadavid et al.
have performed an analysis over metamodels and their OCL
constraints in order to investigate the conjunctive use of both
MOF and OCL languages. The study led to the identification
of a set of OCL patterns that are repeatedly found in the
metamodels. These works are powerful when it comes to
writing new OCL constraints, especially during the metamodel
creation phase. However, the metamodel structure analysis
needs to be complemented with artifacts when it is used for
refactoring metamodels.

VIII. CONCLUSION & PERSPECTIVES

In this paper, we have proposed a novel approach to assist
the coevolution of metamodels and their related OCL con-
straints by notifying raised MIS occurrences. This approach
aims at completing existing techniques that intend to coevolve
metamodels with their existing OCL constraints. Our approach
relies on the metamodel structure to identify the changes that
may need OCL constraints.

To evaluate our approach, we have performed a case study
with the UML’s State Machine metamodel by comparing the
1.5 version with the 2.0 version. The results showed that out of
23 new OCL constraints, our approach was able to notify the
need to define 48% of them, which is a promising result. Our
approach performances are still under improvement, especially

to reduce the number of false positives. Indeed, we did an
exhaustive MIS search on all the metamodel, without using
any other technique to reduce the false positive without losing
precision.

We plan to improve our help system by using machine
learning, which exploits all the data already collected, first,
by studying metamodels to propose different metamodel cat-
egorizations. This may guide MIS search according to the
metamodel family. We also think about using intelligent pat-
tern recognition algorithms to search MIS instances provoked
by the metamodel evolution only around the new concepts.
These ideas are under study and will be presented in our future
works.

REFERENCES

[1] E. Batot, W. Kessentini, H. Sahraoui, and M. Famelis. Heuristic-based
recommendation for metamodel — ocl coevolution. In 2017 ACM/IEEE
20th International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 210–220, Sep. 2017.

[2] Jordi Cabot and Jordi Conesa. Automatic integrity constraint evolution
due to model subtract operations. In International Conference on
Conceptual Modeling, pages 350–362. Springer, 2004.

[3] Elyes Cherfa, Soraya Kesraoui, Chouki Tibermacine, Regis Fleurquin,
and Salah Sadou. On investigating metamodel inaccurate structures. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing,
pages 1642–1649, 2020.

[4] Andreas Demuth, Roberto E Lopez-Herrejon, and Alexander Egyed.
Automatically generating and adapting model constraints to support co-
evolution of design models. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pages
302–305. ACM, 2012.

[5] Andreas Demuth, Roberto E Lopez-Herrejon, and Alexander Egyed.
Supporting the co-evolution of metamodels and constraints through
incremental constraint management. In International Conference on
Model Driven Engineering Languages and Systems, pages 287–303.
Springer, 2013.

[6] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[7] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Man-
aging model adaptation by precise detection of metamodel changes. In
European Conference on Model Driven Architecture-Foundations and
Applications, pages 34–49. Springer, 2009.

[8] Object Management Group.
https://www.omg.org/.

[9] Object Management Group. Unified modeling language 1.5.
https://www.omg.org/spec/UML/1.5/, year = 2003.

[10] Object Management Group. Unified modeling language 2.0.
https://www.omg.org/spec/UML/2.0/, year = 2005.

[11] Object Management Group. Meta-object facility 2.5.1.
https://www.omg.org/spec/MOF/2.5.1/, 2016.

[12] Object Management Group. Mof query/view/transformation 1.3.
https://www.omg.org/spec/QVT/1.3/, 2016.

[13] Boris Gruschko, Dimitrios Kolovos, and Richard Paige. Towards
synchronizing models with evolving metamodels. In Proceedings of the
International Workshop on Model-Driven Software Evolution, page 3.
Amsterdam, The Netherlands, 2007.

[14] Kahina Hassam, Salah Sadou, and Régis Fleurquin. Adapting ocl
constraints after a refactoring of their model using an mde process.
In 9th edition of the BElgian-NEtherlands software eVOLution seminar
(BENEVOL 2010), pages 16–27, 2010.

[15] Kahina Hassam, Salah Sadou, Vincent Le Gloahec, and Regis Fleurquin.
Assistance system for ocl constraints adaptation during metamodel
evolution. In 2011 15th European Conference on Software Maintenance
and Reengineering, pages 151–160. IEEE, 2011.

[16] Markus Herrmannsdoerfer, Sebastian Benz, Elmar Juergens, et al. Cope:
A language for the coupled evolution of metamodels and models. In
1st International Workshop on Model Co-Evolution and Consistency
Management, 2008.

[17] Markus Herrmannsdoerfer, Sander D Vermolen, and Guido Wachsmuth.
An extensive catalog of operators for the coupled evolution of meta-
models and models. In International Conference on Software Language
Engineering, pages 163–182. Springer, 2010.

[18] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin,
and Marie-Pierre Gervais. Detecting complex changes and refactorings
during (meta) model evolution. Information Systems, 62:220–241, 2016.

[19] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin,
and Marie-Pierre Gervais. Metamodel and constraints co-evolution:
A semi automatic maintenance of ocl constraints. In International
Conference on Software Reuse, pages 333–349. Springer, 2016.

[20] Steffen Kruse. Co-Evolution of Metamodels and Model Transformations:
An operator-based, stepwise approach for the impact resolution of meta-
model evolution on model transformations. BoD–Books on Demand,
2015.

[21] Angelika Kusel, Juergen Etzlstorfer, Elisabeth Kapsammer, Werner
Retschitzegger, Johannes Schoenboeck, Wieland Schwinger, and Manuel
Wimmer. Systematic co-evolution of ocl expressions. 11th APCCM,
27:30, 2015.

[22] Florian Mantz, Gabriele Taentzer, and Yngve Lamo. Co-transformation
of type and instance graphs supporting merging of types and retyping.
Electronic Communications of the EASST, 61, 2013.

[23] Florian Mantz, Gabriele Taentzer, Yngve Lamo, and Uwe Wolter. Co-
evolving meta-models and their instance models: A formal approach
based on graph transformation. Science of Computer Programming,
104:2–43, 2015.

[24] Slaviša Marković and Thomas Baar. Refactoring ocl annotated uml class
diagrams. In International Conference On Model Driven Engineering
Languages And Systems, pages 280–294. Springer, 2005.

[25] Slaviša Marković and Thomas Baar. Refactoring ocl annotated uml class
diagrams. Software & Systems Modeling, 7(1):25–47, 2008.

[26] Bart Meyers, Manuel Wimmer, Antonio Cicchetti, and Jonathan Sprin-
kle. A generic in-place transformation-based approach to structured
model co-evolution. Electronic Communications of the EASST, 42, 2012.

[27] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC
Polack. An analysis of approaches to model migration. In Proc. Joint
MoDSE-MCCM Workshop, pages 6–15, 2009.

[28] Per Runeson and Martin Höst. Guidelines for conducting and report-
ing case study research in software engineering. Empirical software
engineering, 14(2):131, 2009.

[29] Gabriele Taentzer, Florian Mantz, Thorsten Arendt, and Yngve Lamo.
Customizable model migration schemes for meta-model evolutions with
multiplicity changes. In International Conference on Model Driven
Engineering Languages and Systems, pages 254–270. Springer, 2013.

[30] Guido Wachsmuth. Metamodel adaptation and model co-adaptation.
In European Conference on Object-Oriented Programming, pages 600–
624. Springer, 2007.

[31] Michael Wahler, David Basin, Achim D Brucker, and Jana Koehler.
Efficient analysis of pattern-based constraint specifications. Software &
Systems Modeling, 9(2):225–255, 2010.

[32] Michael Wahler, Jana Koehler, and Achim D Brucker. Model-driven
constraint engineering. Electronic Communications of the EASST, 5,
2007.

[33] Michael S Wahler. Using patterns to develop consistent design con-
straints. PhD thesis, ETH Zurich, 2008.

[34] Jos B Warmer and Anneke G Kleppe. The object constraint language:
getting your models ready for MDA. Addison-Wesley Professional, 2003.

