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Electrical impedance tomography (EIT) is a medical
imaging technique with many advantages and great
potential for development in the coming years.
Currently, some limitations of EIT are related to the
ill-posed nature of the problem. These limitations
are translated on a practical level by a lack of
genericity of the developed tools. In this paper,
the main robust data acquisition and processing
tools for EIT proposed in the scientific literature are
presented. Their relevance and potential to improve
the robustness of EIT are analysed, in order to
conclude on the feasibility of a robust EIT tool capable
of providing resistivity or difference of resistivity
mapping in a wide range of applications. In particular,
it is shown that certain measurement acquisition tools
and algorithms, such as faulty electrode detection
algorithm or particular electrode designs, can ensure
the quality of the acquisition in many circumstances.
Many algorithms, aiming at processing acquired data,
are also described and allow to overcome certain
difficulties such as an error in the knowledge of the
position of the boundaries or the poor conditioning of
the inverse problem. They have a strong potential to
faithfully reconstruct a quality image in the presence
of disturbances such as noise or boundary modelling
error.

1. Introduction
Electrical impedance tomography (EIT) is an innovative
imaging tool widely employed among the scientific
community over the last decades. EIT requires compact
and inexpensive equipment compared with other

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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imaging modalities such as Magnetic Resonance Imaging or Computerized Tomography scan,
and is found to be safe for the patient. These advantages made EIT popular for many biomedical
applications such as chest [1] and brain [2] examination. However, EIT suffers from a relatively
low spatial resolution, and requires a good knowledge of the experimental parameters such
as the exact position of the electrodes. This required knowledge about the parameters can be
seen as a lack of robustness. Many contributions have been made in the scientific literature in
order to improve precision of the reconstruction but also to make it more robust, i.e. ensuring
precision in the presence of modelling errors. However, many of the tools providing robustness
are still unconventional or even rarely used. Although EIT is constantly advancing, its use is often
confined to applications exhibiting certain simplifying assumptions. These assumptions can be a
two-dimensional representation, a restriction to a bounded domain or even cases where electrode
positions can be known with a good precision and where they can be regularly distributed. Thus,
the inverse problem, aiming to reconstruct the admittivity of a body, can be solved despite its
ill-posed nature.

These examples emphasize that the goal of many works is to obtain good precision for a
particular application case. The conventional EIT is currently not robust to modelling errors.
This is particularly true in clinical applications where the experimental parameters are difficult
to control. To cite a few examples, in [3], limitations and challenges due to a lack of robustness in
stroke volume and pulmonary artery pressure examination are presented. In particular, the issue
of electrode belt displacement and electrode detachment are highlighted. In [4], problems due to
electrode positions, among others, are also discussed. Several reviews focus on recent advances
in EIT algorithms, techniques, etc. [5–7], and can be consulted for additional information. In this
review, the objective is to highlight tools developed over the past decades that can improve the
robustness of EIT, and thus enable or contribute to the achievement of high-performance imaging
even with significant modelling errors or constraints.

This paper presents the most common tools for robust EIT. It is organized as follows: first, the
usual resolution tools are briefly presented. They aim to provide an understanding of how EIT is
commonly performed. Performance criteria are defined and provide a framework for the study.
Robust data acquisition and processing methods are then presented in correlation with these
criteria. Difference EIT, a popular choice in many applications, is studied, in particular regarding
its contributions in terms of robustness as well as its limitations. Tools from the literature that
bring precision and robustness to the EIT will be presented, first at the acquisition level and then
at the data processing level. The objective is to determine the potential of recently developed tools
for a robust EIT, i.e. to provide an image in the presence of significant model uncertainties. Finally,
the last section concludes on the state of the art for robust EIT and gives perspectives.

2. Usual resolution tools in EIT
EIT allows to map the admittivity of a medium. Information on medium properties is obtained
from a multitude of impedance measurements made with a large number of electrodes, providing
a large amount of data. In this section, some conventional resolution tools are presented. The
set of robust tools and methods will be presented in the following sections. The direct problem,
for a given admittivity distribution inside a body, consists in determining the corresponding
electric potential at the electrodes. In EIT, the aim is to solve the inverse problem, i.e. to provide
a map of the admittivity distribution in the body from electrical measurements [8]. Assuming an
operational hardware, reconstructing the admittivity of a medium by EIT can be summarized in
five steps:

— defining a current injection/voltage measurement strategy,
— acquiring voltages,
— numerically modelling the body with the electrodes,
— defining a regularization method and implementing it,
— defining an inversion method and applying it.
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In a common application case including a large number of electrodes, using all possible pairs for
current injection and voltage measurement is irrelevant. Some information is indeed redundant.
A simple and often relatively efficient method is to apply the so-called adjacent pair drive,
consisting in using only adjacent pairs for injection and measurement. Data acquisition requires
a hardware, the main elements of which are a signal generator and an acquisition unit, and a
commutation stage allowing to address four among the N electrodes of the body boundary (two
for current injection and two for voltage measurement). Injection and measurement electrode
pairs are sequentially switched, which allows to obtain a large number of measurements.
A numerical model is commonly used and discretizes the domain into small elements so that an
approximate solution is obtained. A general approach is to perform difference imaging, the aim
of which is to find a stable value of resistivity ρ that minimizes the difference between measured
voltages U and reference voltages U(ρ):

min
ρ

{
||U − U(ρ)||2

}
. (2.1)

Reference voltages can be obtained experimentally at a different time, and only changes in
the medium will theoretically appear once the resistivity is reconstructed. Another approach
for difference imaging is to use a numerical model that can simulate potential values on the
electrodes. This is generally done by assuming the medium homogeneous, the resistivity of
which is the assumed resistivity of the largest surface/volume fraction of the medium, and then
extracting the induced voltages after application of currents.

Solving the inverse problem consists in calculating the resistivity distribution when the
injected current is known and the voltages are measured at the electrodes. The inverse problem
is ill posed: the solutions are not unique, due to the nature of involved physical phenomena and
the limited amount of data. The problem is generally regularized to obtain an acceptable solution.
Regularization consists in adding information to a problem, which usually reduces the complexity
of the model. Regularization is done thanks to the introduction of a priori information on the
solution. A largely employed regularization tool in EIT, and more generally for the resolution of
ill-posed/inverse problems, is the regularization of Tikhonov [9]. In order to favour a particular
solution endowed with properties which seem relevant, the regularization term is introduced in
the minimization:

min
ρ

{
||U − U(ρ)||2 + α||Lρ||2

}
, (2.2)

where α is here the regularization hyperparameter and L a regularization matrix. This method
allows to improve the conditioning of the inverse problem. The employed resolution method in
EIT mainly depends on the desired performance in terms of speed and accuracy. It also depends
on the type of regularization used. Numerous inversion methods are proposed in the literature,
these will be described later. The resolution is most often carried out iteratively: after resolution,
the discretized model is updated. When the solution provides voltage values at the level of
the electrodes sufficiently close to the values obtained experimentally, the associated resistivity
distribution is retained. An open-source software, EIDORS [10,11], contains a wide range of tools
for solving EIT problems.

3. Tools for robust imaging

(a) Study framework
This review aims at describing works that may potentially contribute to improve static
reconstruction performances. Static reconstruction indeed theoretically allows to obtain the best
results in terms of error. Dynamic imagery as well as associated constraints will not be treated.

(b) Performance criteria
Generally speaking, robustness of a system can be defined as its ability to maintain good
performance in the presence of external conditions (called disturbances) of high amplitude.
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conductive area

area of interest

electrodes

Figure 1. Illustration highlighting some reported issues induced by a lack of robustness in EIT. In this case, the electrodes are not
placed in a precisemanner, are partially distributed (absence at the level of the belly), and domainmodellingmust be truncated.
(Online version in colour.)

These disturbances represent a difference between the theoretical and the real model. For an EIT
system, from challenges commonly cited in the literature [3,4,12], robustness criteria can be of the
following forms:

— Robustness against error on spatial localization of borders and electrodes
Modelling boundaries and electrode position on these boundaries is often challenging in
practice, in particular in the medical field where each patient has a specific morphology.
Popular methods like difference imaging allowing to overcome this issue are not always
applicable, in particular in the absence of time variation inside the domain. Developed
tools allowing to consider uncertainities about boundaries will thus be investigated.

— Robustness against non-optimal electrode configuration
Unbounded domains, often associated with congestion that forbids some areas of the
boundaries to integrate electrodes, are unconventional in EIT due to the difficulty to
reconstruct admittivity in the areas where electrodes are few or absent. Theoretical
tools and performed experiments will be presented to enhance expectable future
improvements.

— Robustness against noise and bias
Measurement noise, contact impedance, faulty skin/electrode contact, etc: many sources
of external disturbances can affect the reconstruction. Tools allowing to reject or overcome
these disturbances will be investigated at both hardware and software levels.

A robust reconstruction by EIT is therefore a successful reconstruction in these different
circumstances. An illustration of some common issues that point out a lack of robustness in
EIT is given in figure 1. In this hypothetical case, the irregular placement of the electrodes and
congestion in particular will lead to modelling errors as well as a lack of sensitivity in some
regions.

As mentioned earlier, robustness describes the ability of the system to maintain good
performance despite disturbances. These performances can be assessed in different ways, the
most relevant probably being precision. Precision of an EIT system is regularly employed to
represent a global performance of a system. It is expressed in per cent and corresponds to the
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normalized difference between the reconstructed and real admittivities:

p = γ − �γ

γ
.100, (3.1)

with γ the admittivity vector and �γ the admittivity difference vector. Precision depends on
many factors at both hardware and software levels.

Robustness can be improved by selecting appropriate tools for data acquisition and processing.
The following sections aim at describing such tools from recent literature.

(c) Difference EIT
(i) Description

EIT can be divided into two distinct subcategories: absolute and differential EIT, as shown in
figure 2. Each of these subcategories has its own specificities. Absolute EIT exploits a single set
of experimental data in order to reconstruct the body admittivity. Although still theoretically
applicable, this technique lacks robustness and is not yet mature. In differential EIT, the difference
between two datasets is minimized. This technique is more robust against modelling errors such
as an error on the electrode positions. Solving the inverse problem is generally computationally
lighter as well. The objective is to calculate the difference between two voltage sets, then to
find the admittivity distribution that minimizes this difference. Used data in differential EIT can
be obtained in different ways. The first way is to obtain one set experimentally and another
one with numerical simulations that serves as reference data. A popular and more robust way
is time-difference EIT (tdEIT). Here, the two sets are experimentally obtained at a different
time. Although having many advantages, one drawback is that a time evolution is necessary.
tdEIT is therefore only applicable to specific application cases. For example, in lung imaging,
it is well suited to trace time-varying physiological phenomena like lung ventilation and perfusion [1].
Another possibility to perform difference EIT is to acquire reference data using a homogeneous
medium beforehand [13,14]. Alternatively to tdEIT, a technique allowing to face modelling errors
emerged more recently: frequency-difference EIT (fdEIT). Although this tool is not yet mature, it
is very promising, and makes it possible to overcome constraints associated with conventional
differential measurement (tdEIT). The principle here is no longer to substract data acquired at
different times. The difference in the measured voltages is obtained using different frequency
excitation signals. Briefly, at low frequencies (typically less than 100 kHz), the highly capacitive
cell membrane prevents electrical currents from penetrating the cell, which will thus mainly pass
through the extracellular medium. At higher frequencies, the current passes through both the
extracellular medium and the cells, as illustrated in figure 3. The difference between signals
measured at low and high frequencies thus depends on the cell sizes and medium and cell
electrical properties. More detailed explanations are available in the literature [15]. The electrical
response as a function of frequency being specific to each tissue, these differences can thus lead to
the reconstruction. Discussions about potential applications of fdEIT are available in the literature
[16,17]. fdEIT is therefore suitable, for example, for cancer detection, cancerous cells having
different electrical properties than healthy ones [18], with a difference being a function of the type
and stage of the cancer. Although fdEIT is quite practical, sensitivity will depend on the difference
between medium electrical properties at different frequencies, which may be insufficient for some
application cases. In [19–21], an algorithm was developed and later validated with experimental
data. The robustness of the approach against boundary modelling errors is highlighted. Also, the
authors propose to use weighted frequency differences of complex voltage data with a complex
sensitivity matrix to properly handle the interplay of conductivity and permittivity values upon
measured complex voltage data. Denoting uω the voltages on the electrodes at angular frequency
ω, the principle of weighted frequency difference EIT consists in calculating the difference:

uω1 − αuω2 with ω1 �= ω2, (3.2)
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EIT

absolute
EIT

differential
EIT

« – »

� always applicable

lack of robustness � robustness against modelling errors

not always applicable 

1 set of experimental data 2 sets of experimental data  

I

V

I

V

Figure 2. The two subcategories of EIT. Absolute EIT can always be used but lacks robustness. Differential EIT is more robust
but requires particular conditions to be applied. These conditions are the possibility ofmakingmeasurements with andwithout
the object to be detected (in time differential imaging), or distinct frequency electrical properties (in frequency differential
imaging). (Online version in colour.)

cell extra-cellular 
medium

electrode

electrode

high-frequency
low-frequency

Figure 3. Illustration of the path of alternative electrical current at low and high frequencies through biological tissues. (Online
version in colour.)

where α is a parameter determined from the assumed background admittivities at pulsations
ω1 and ω2. The use of this difference with a complex sensitivity matrix allows to minimize
undesirable effects of modelling errors. Simulations and experiments exhibit better results
with the weighted fdEIT (wfdEIT) than with the simple fdEIT, as highlighted in figure 4.
In [22], presented results validate the method in three dimensions. The author demonstrated
that the method provides good results in terms of contrast reconstruction for the case of a
simple inhomogeneous background. More complex inhomogeneous background cases remain
to be investigated to fully validate the method. In a general way, the efficiency of the method
depends on the admittivity contrast of the anomaly with respect to the background at different
frequencies. wfdEIT thus gives reconstruction that is robust against modelling errors, and
the two required datasets can be acquired easily. In recent work [23], a new approach is
proposed to improve conventional wfdEIT: the calibrated fdEIT. The principle consists in
using an equivalent circuit model of the system (electronics + electrodes + body) to compensate
for the measurement errors. The author takes into account a capacitive coupling between
the terminals of the voltmeter and the input of the voltmeter which is a virtual ground.
This capacitive effect induces, among other things, a dependence of the measurement on the
electrode-body contact impedance. The method is particularly useful in miniature EIT imaging
where voltage variations introduced by the samples can be lower than measurement errors.
Validation was performed in simulation and experimentally, making this technique a promising
tool.
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banana

real part

imaginary
part

mixture of carrot
pieces and saline

simple difference fdEIT weighted difference fdEIT

20
10

–10
–20

0

20

10

–10

–20

0

Figure 4. Images reconstruction from a phantomusing fdEIT andwfdEIT. The fdEITmethod produces larger artefacts compared
with the use of the weighted difference method. Source: from [20]. © Institute of Physics and Engineering in Medicine.
Reproduced by permission of IOP Publishing. All rights reserved. (Online version in colour.)

Table 1. Summary of different proposed tools for precise and robust detection with difference EIT.

method description
interest in term of robustness
and precision target application

time-difference EIT two sets of voltages are collected
then substracted, the
reconstructed admittivity
map represents the difference
between admittivities
acquired at different times

robustness against
modelling errors, but
not always applicable in
practice

time variations of
admittivity, boundary
modelling errors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

frequency-difference EIT the two sets of data are here
acquired with two different
excitation signal frequencies

robustness against
modelling errors

boundary modelling
errors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Summary and discussion

Difference EIT in its two forms tends to face modelling errors, as summarized in table 1. In
particular, fdEIT is very promising, potentially allowing reconstruction without time variation.
However, the method is not mature, requires extra hardware and sensitivity of fdEIT, depends on
the electrical frequency properties of the tissues being studied, and may not be sufficient in some
cases. Making the absolute EIT a robust tool is an important challenge. The next sections present
the main tools in the literature that can be associated with it.

(d) Acquiring voltage measurements
(i) Description

The data acquisition method being directly related to the quantity of information collected and
used for reconstruction, it is critical to obtain a good precision. Data acquisition is performed
from an electronic device that injects electrical signals into a body and then measures the induced
voltages. The quality of the reconstruction will depend on the quantity and quality of the acquired
data. In particular, the injection and measurement strategies, the quality of the measurements, etc.,
will all have an impact on the final result.
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Figure 5. Illustration of classic data collection strategies in EIT: the adjacent pair drive and the opposite pair drive. (a) Adjacent
pair drive. (b) Opposite pair drive. (Online version in colour.)

Injection and measurement. If two electrodes seem sufficient to inject a current and measure
the corresponding voltage inside the body, this choice is not actually relevant in many cases.
The measured impedance will actually be equal to the sum of the impedance of the tissue
and the impedances resulting from the contact between the electrodes and the tissue, called
contact impedance. This impedance is due to the so-called ‘double layer’ effect, mainly capacitive.
The contact impedances being unknown and frequency-dependent, a different technique using
four or more electrodes, called multi-pole measurement, is generally preferred. This consists
in using distinct electrodes for current injection and voltage measurement. While two-pole
measurement is simpler to implement, four-pole measurement, for example, provides better
results in most application cases, because contact impedances do not influence the measurements,
provided that the input impedance of the measuring device is high compared with them [24].

Different current injection and measurement methods exist in multi-pole measurement. This
involves defining certain electrode configurations that will be used for current injection, and
other configurations that will be used for measurement. The most popular are called pair-wise
injection strategies, whereby only two injection electrodes are used. Among these methods, the
most commonly used are the adjacent pair drive and the opposite pair drive. These methods consist
in injecting the current with respectively adjacent and opposing electrodes. For both, the resulting
voltage is measured for each pair of adjacent electrodes (differential measurement) that can be
formed. An illustration of these methods is given in figure 5. These methods are regularly chosen
because they are simple to implement and provide relatively effective results: for each area of
the medium, there are electrodes having sufficient sensitivity for detection. Adjacent pair drive
provides a better sensitivity, but favours detection near the electrodes. Opposite pair drive tends
to homogenize sensitivity [25]. In four-pole sensing, the injection method influences the current
distribution within the structure and the measurable voltages [26]. It therefore has a direct link
with the sensitivity of the system. The spatial resolution is in turn influenced by the measurement
method. It is also possible to define injection and measurement strategies based on the angle
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α formed by the electrodes with respect to the centre of a circular area [27]. In order to obtain
independent measurements, the following measurement strategy is recommended:

60◦ ≤ α = 360
N

(skip + 1) ≤ 150◦, (3.3)

with N the number of electrodes, skip being the number of electrodes included between the
two electrodes tested. To the best of our knowledge, optimal current injection and voltage
measurement strategies have not been extended to three-dimensional cases. In general, for a
planar configuration with regularly distributed electrodes, a pair selection criterion can be defined
so as to [27]:

— standardize the distinction of ROIs within the study domain,
— maximize the number of independent measurements, intrinsically linked to spatial

resolution reachable by an EIT system [28].

Complex injection and measurement methods can also be implemented in order to optimize
the current distribution inside the structure [29]. However, the use of several current sources
involves a more delicate phase of equipment calibration. Other injection and measurement
possibilities are numerous. For example, it is possible to perform asymmetric measurement,
which uses a common reference, instead of differential measurement. However, in order to favour
a measurement strategy, the technical constraints should be noted: differential measurements
attenuate electromagnetic and electrostatic interference in common mode and have a reduced
dynamic range, while asymmetric measurements do not suffer from loss of accuracy due to
non-zero common mode amplifier gain. Also, active electrodes, where it is possible to inject
current and measure potential in the same electrode, are of interest. They help minimize noise
and improve hardware performance while maintaining a small size [30,31]. According to [30], the
key feature of active electrode-based EIT instrument architecture is to have a voltage buffer very closely
to the body. This offers several advantages compared with the passive electrode architecture: (1) reduces
the sensitivity to electromagnetic perturbation, (2) reduces the need for active and/or passive shielding, (3)
stabilizes the input impedance of each electrode and (4) reduces, by using in-electrode multiplexing, the
number of cables running from the patient to the main electronics.

Managing electrodes. The number of electrodes to be used in EIT remains an open problem.
However, it has been shown that increasing the number of electrodes used tends to improve
the resolution of the image obtained, provided that each one is used as a source [26]. By way
of example, Zhang et al. [13], in their work, highlight the influence of the number of electrodes
used to recognize hand movements from differential imaging at the wrist. Increasing the number
of electrodes, in this case, increases the accuracy of detection. The gain in precision however
decreases when the number of electrodes increases. The number of electrodes used is thus
a compromise between precision, measurement time and processing time induced. It should
also be noted that increasing the number of electrodes can lead to reduce their size, and thus
increase contact impedance. More generally, in order to quantify the theoretical resolution, it
is interesting to know that the best EIT image has a resolution of 32 × 32 pixels with 32 electrodes
[26]. An order of magnitude of resolution for a two-dimensional circular body surrounded
by N regularly distributed electrodes is given by the number of independent measurements:
1/

√
N(N − 3)/2 [32]. With 16 electrodes, the expected resolution is here about 10% of the diameter.

Some elaborated devices were developed, allowing to rotate the electrodes and thus get a large
number of measurements with few electrodes [33]. Although this kind of device is interesting for
precise reconstruction, it may be difficult to implement it in many application cases. Electrode
characteristics are also parameters that significantly influence the quality of the reconstruction.
The main challenges related to the electrodes are the insurance of a good contact, the exact
knowledge of their position and consideration of the electrode-body contact impedance. Ensuring
good contact is particularly delicate for biomedical applications because the electrodes are often
placed on a deformable tissue (muscle or fatty tissue). The objective is there to ensure that the
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electrode conforms to the tissue, does not excessively deform it, and that adhesion is sufficient to
maintain a good contact in the presence of disturbances. These disturbances are generally related
to movements of the patient, and are sources of modelling errors. Improving the robustness of
detection at this level can be done in two ways. The first way is to select electrodes dedicated
to the application. The use of flat electrodes is common in the literature. However, in particular
for tissue characterization, the electrode-tissue contact may be absent or changing. This induces
a variable contact impedance, which can potentially induce large reconstruction errors. An
alternative for tissue characterization is to use volume electrodes, for example, spiky electrodes
[34]. The advantage of these electrodes lies in the quality of the contact with the tissue. They
are however invasive. In order to limit tissue damage, these electrodes should be of reasonable
size. Electrode size reduction on the one hand limits the quantity of injectable current, and on the
other hand tends to increase the contact impedance, which must be taken into account in order to
guarantee the quality of the reconstruction. A second way to ensure measurement robustness
is to implement a faulty contact detection [35,36]. In [36], the method allows accounting for
faulty electrodes in EIT image reconstruction without a priori knowledge of which electrodes
are at fault. The method is able to compensate for biased data and to provide high-quality
images. It also allows real-time detection of at least one faulty electrode. This method is quite
simple to implement and provides good results according to the author. While a punctually
biased measurement is not a critical problem, this method alone, without the use of sophisticated
electrodes, may be sufficient. At last, in [37], robustness of single-ended measurement to electrode
errors is studied. An interesting result indicates that single-ended measurement is more robust
and gives better images than differential measurement after compensating for electrode errors in
case of faulty contact.

(ii) Summary and discussion

The way data are acquired in EIT is not trivial, but yet is essential to obtain relevant information
for further admittivity reconstruction. Table 2 summarizes the different evoked tools and
their associated characteristics. Robustness of an EIT set-up regarding data acquisition can be
characterized by its ability to face modelling errors, and to provide measurements with the
necessary amount of information. A work on electrode design and an electrode contact quality
detection algorithm allows to ensure signal correct circulation through the circuit and/or to
avoid faulty measures. Measurement and injection techniques are well described in the literature,
and can be evaluated to provide both spatial resolution and the required information for
reconstruction. Some hardwares are proposed in the scientific literature and in trade to allow
quality measurements.

This section aimed at describing different tools allowing to get suitable data. Below, admittivity
reconstruction tools are presented.

(e) Reconstructing the admittivity map
(i) Description

Once the data have been acquired, it is necessary to use algorithmic tools in order to reconstruct
the admittivity of the body. In [38], an interesting result points out that the resolution of a
reconstructed image depends more on the reconstruction strategy than on the drive pattern,
which highlights the importance in the choice of the reconstruction method. Some methods are
explicitly dedicated to dynamic imaging, such as the maximum a posteriori approach (MAP) [39]
Kalman-type filters [40], and are not considered here. The inversion step occurs once datasets
are collected. During this step, the admittivity vector γ is estimated from voltage measurements
U(γ ). One of the open challenges of EIT is that in most experiments the body boundaries ∂Ω

are not known precisely. Traditional image reconstruction methods assume the boundaries to be
known a priori, and the only remaining unknowns are the conductivity at each point. The EIT
problem is usually solved using an approximate domain Ωm, which is an estimate of the shape of
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Table 2. Summary of different proposed tools allowing to get data for precise and robust detection.

method description
interest in term of robustness
and precision target application

multi-pole measurement Using four or more
electrodes
simultaneously to
performmeasurement

four-pole measurement allows
reducing measurement
errors due to contact. Using
more than two injection
electrodes increases
sensitivity but requires an
additional calibration step

All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choosing the number of
electrodes

trade-off between
expected resolution and
processing duration,
hardware complexity,
electrode size . . .

theoretical resolution directly
related with the number of
electrodes

All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

injection strategy electrodes used to inject
current

affects sensitivity All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

measurement strategy electrodes used to measure
voltages

affects spatial resolution.
A measurement angle
(two-dimensional) can be
used to get independent
measurements

All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

active electrodes injection andmeasurement
at the same electrode

reduced noise All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

electrode design spiky, flat, etc. robustness against biased
measurements

All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

electrode detachment
detection algorithm

algorithm allowing to
detect if one (or several)
electrode/tissue contact
is faulty

robustness against biased
measurements

All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the body Ω . However, it has been noticed that using a slightly incorrect model can lead to serious
artefacts and distortions in the reconstructed images, particularly present in absolute imaging.
Likewise, technical constraints such as unbounded domains or partially distributed electrodes on
the boundaries can complicate the resolution. Two types of reconstruction tools are commonly
described in the literature:

— regularization,
— inversion algorithms.

In the following paragraphs, these various issues as well as the associated resolution tools are
presented.

Facing the ill-posed nature of the EIT problem. The ill-posed nature of the EIT problem is reflected
in poor conditioning. A small error in the measured voltages results in large reconstruction
errors. The ill-conditioning of the inverse problem therefore represents a lack of robustness to
measurement errors.

Regularization is a popular choice in EIT. Regularization is commonly associated with the
inversion tool to improve the conditioning of the inverse problem by introducing a priori data on
the solution. It results in the addition of a term of regularization in the functional minimization
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process, given equation (2.1), which is for this particular case the L2 squared norm. Tikhonov
regularization is probably the most used regularization method in EIT, and more generally for
solving problems which are not well posed as well as for inverse problems. The principle of this
regularization was previously presented as equation (2.2). The solution obtained by a Tikhonov-
type method is therefore an approximate solution to the ill-posed problem, stable with respect
to the data but dependent on the regularization parameter α used. There are several techniques
for choosing the regularization parameter, such as the Morozov criterion [41], the cross-validation
criterion [42] or the L-curve technique [43]. For low values of the hyperparameter α, the sensitivity
to changes in admittivity is higher than for large values [39], but the regularizing effect is reduced.
There is an anisotropic variant of this regularization, more representative of living tissue [44,45].
An alternative to this method mentioned in the literature is Total Variation regularization (TV)
[46]. The TV of a conductivity image is defined as follows:

TV(σ ) =
∫
Ω

|∇σ | dΩ . (3.4)

This method has an ability to preserve edges in reconstructions, which is due to its use of the
penalty term of the L1 norm, which is discontinuous and therefore not differentiable at any point.
This type of regularization is particularly suitable when seeking to reconstruct discontinuous
functions, such as, for example, an inclusion such as a tumour, a bone, etc. TV is thus suitable
for many biological imaging applications. Expressed simply, piecewise continuous functions can
be a solution, which is not the case for Tikhonov regularization. The ability of the method to
give sharper results has been proven in vivo [47]. It should be noted that TV is more sensitive to
measurement noise, but provides satisfactory results for realistic noise amplitudes. Anisotropic
[48] and higher-order term [49] variants of TV have also been developed. However, TV often
induces a longer calculation time, due to the associated inversion method (associated inversion
is described in the previous paragraph). The chosen regularization must be associated with an
inversion method. The most widespread derive from Newton’s inversion method, such as Gauss–
Newton (GN, also called modified Newton–Raphson) [50]. It should be noted that the quality
of the reconstruction depends on the inversion method but also on prior knowledge about the
solution. Thus, these methods are not always suitable because they are incompatible with the
used prior knowledge characteristics chosen (i.e. the regularization method), such as TV, for
example, because of its non-differentiability. TV is well suited for inclusion reconstruction due
to its ability to reconstruct discontinuous functions (in the present case, of admittivity). Thus,
compatible inversion algorithms have been developed. In particular, three methods of interest:
Split Bregman (SB), Primal and Dual Interior Point Method (PDIPM) and Linearised Alternating
Direction Method of Multipliers are studied and compared in the literature [51]. From this
comparison, the SB and PDIPM methods seem to be appropriate choices due to their stability
and relatively high spatial resolution. To conclude, regularization is thus a tool that increases
robustness against modelling errors by decreasing the ill-posedness of the inverse problem. TV is
suitable for inclusion reconstruction but requires more computational time, which remains most
often reasonable for static reconstruction.

Some recent inversion methods have also been developed to overcome the ill-posedness
of the problem: Sparse Bayesian Learning (SBL). Bayesian learning is based on incorporating
a priori knowledge of a model. It is useful, for example, when one wants to provide estimates
of uncertainty in the model parameters or when there are limited data available for learning a
model. SBL was first developed by Tipping [52]. According to Zhang et al., one attraction of SBL
is that, different from the popular minimization based algorithms, whose global minimum is generally not
the sparsest solution, the global minima of SBL are always the sparsest one. In addition, SBL have much
fewer local minima than some classic algorithms, such as the FOCUSS family [53]. In structure-aware
SBL (SA-SBL), clustered sparsity and intra-cluster correlation allow to obtain better accuracy
[54]. The structure-aware modelling capability promotes clustered sparsity and eliminates
irrelevant components. It also achieves a higher spatial resolution and improved robustness
against Gaussian noise compared with current algorithms. According to the author, the Bayesian
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Figure 6. In vivo lung EIT reconstructed images usingMoM-SBL (Matching of Moment SBL). The SBLmethod is compared with
other algorithms: Gauss–Newton and Total Variation. Source: adapted from [57]. (Online version in colour.)

probabilistic approach is more suitable than usual regularization techniques to model a priori
knowledge as it allows quantification of the uncertainity in the recovery. In recent publications,
the method is extended for three-dimensional structures [55] and fdEIT, previously mentioned
[56]. An illustration of the performance of SBL is given in figure 6. In the presented works, another
variant of the SBL, the MoM-SBL (Matching of Moment SBL) is used. This approach undertakes
the image reconstruction problem’s nonlinearity, offering robustness to noise and reduced
susceptibility in modelling errors. The performance of the method is compared with that of other
common methods such as TV. Inclusions are more accurately reconstructed by SBL, with higher
correlation. At last, in [58], a learning-based reconstruction algorithm is proposed. It exploits
training datasets to generate a low-dimensional manifold of approximate solutions, which allows
to convert the ill-posed problem to a well-posed one. The deep learning framework provides a
nonlinear regression for the training data, which acts as learning complex prior knowledge of the
output. This recent method has an interesting potential due to good results and requires further
development.

Managing uncertainities on body shape and electrode positions. In the above cited methods, solvers
are associated with regularization. In a recent study, regularization-based traditional methods are
compared with a D-bar algorithm [59]. An interesting result is that D-bar appears to be much less
sensitive to electrode position errors than regularized reconstructions, holding the regularization
parameter fixed, in difference EIT. D-bar methods for EIT [60] use nonlinear Fourier transforms
specific to the EIT problem. In difference imaging, the method appears to be in particular less
sensitive to errors in electrode position than the regularized methods. In a recent publication
[61], a D-bar method is paired with a trained convolutional neural network as a post-processing
step. The training data are boundary shape independent, which gives significant improvements in
image quality. Only two-dimensional simulations being performed, this interesting tool however
requires to be developed in further works.

The various works cited below attempt to provide robustness against unknowns concerning
domain shape and/or contact impedances by integrating them as uncertainities in the model. In
[62], performances of a nonlinear reconstruction approach for tdEIT are studied. It appears that
the nonlinear approach produces better estimates of the conductivity change and is robust against
modelling errors, at least to the same extent as the conventional linear approach. In pioneering
work, a simultaneous conductivity and electrode movement reconstruction has been proposed for
differential imaging in [63,64]. These approaches are based on a linearized disturbance model and
have only been evaluated for relatively small movements of the boundary between measurement
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states. [64] is included in EIDORS. The method proposed by Kolehmainen et al. [65,66] attempts
to compensate for errors caused by an inaccurately known body shape in two-dimensional EIT
using the theory of Teichmuller mappings. The method assumes an isotropic conductivity γ

in the unknown real domain Ω . A model of the domain, Ωm, is used and represents the best
possible estimate of Ω . The author shows that it is possible to find a unique conductivity γ̂

in Ωm that is as close to isotropy as possible. He finally shows that there is a function of this
unique conductivity that represents a distorted image of the original conductivity γ in the real
domain Ω , and that the distortion depends only on the model error. This method avoids that
local errors lead to non-local modifications in the reconstruction. The extension of the method
to three-dimensional EIT has been developed in [67]. Later work by the same author takes
the anisotropic conductivity model and solves the problem using a Beltrami equation [68,69].
Strong distortions appear, especially near the electrodes for conventional reconstruction, while
the image is of good quality with the presented method. In the method proposed by Dardé
et al. [70–72], the need for prior geometric information is relaxed by introducing a Newton-
type least-squares algorithm that simultaneously reconstructs the admittivity distribution and
the shape of the object. The method is constructed within the framework of the complete
electrode model and is based on the Fréchet derivative of the corresponding current–voltage
mapping with respect to the boundaries of the object. The interest of these methods appears
clearly on observation of the results for the case where significant errors on the boundaries
are present (figure 7). Finally, Nissinen et al. [73] apply the Bayesian approximation error
approach to compensate for an inaccurately known boundary shape in absolute EIT. In the
approximation error approach, the modelling error caused by an inaccurately known boundary
is treated as an auxiliary process noise (disturbance) in the measurement model. The probability
distribution of the modelling error noise is approximated as Gaussian and estimated using
an atlas of body geometries from computerized tomographic images. These statistics are then
used in the reconstruction process to compensate for uncertainty in body shape. In [74], the
approximation error approach was used to recover an approximation of the domain boundary
using the joint distribution of the modelling error and the boundary parametrization. In each
of the articles are presented good results for the reconstruction of borders, and appear to work
with large modelling errors, which is very promising. They would be worthy to be exploited
in further works. It would indeed be technically desirable to show that absolute imaging can
provide good results despite modelling errors, because absolute EIT is the simplest to implement
experimentally.

Unbounded domain. Another difficulty encountered concerns unbounded domains. In most
current EIT medical applications, boundaries are defined by a conductive and non-conductive
medium interface, which is the tissue–air interface delimiting the human body from its
environment (for example, the contour of the thorax or of the wrist). The following boundary
condition is then defined:

J · n = 0 on ∂Ω\
L⋃

l=1

el, (3.5)

with J the current density, n the outgoing normal unit vector and el the electrodes. This means
current density following the outgoing normal is assumed to be zero at the boundaries except
at the electrodes. The definition of ∂Ω becomes more complex when the studied area is not an
isolated surface/volume, i.e. when the current can circulate far beyond the region of interest due
to the absence of insulating boundaries. Delimiting the domain is then a non-trivial task. The
effect of domain truncation has been studied [75–77], an illustration of which is given in figure 8.
When the domain is truncated, the apparent resistance perceived by the measurement system is
no longer the real resistance but can be modelled as a resistance mounted in parallel with the
real resistance. If the resistance of the modelled area is not negligible compared with the actual
resistance, the total resistance is lower, giving the appearance of an area of greater conductivity.
This will induce the presence of artefacts on the reconstructed conductivity map. In other words,
if the model is truncated too close to the electrodes, errors are produced in the reconstructed
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Figure 7. Admittivity and boundaries reconstruction. (a) Phantom used in data simulation. (b) Reconstruction corresponding
to an incorrect fixed geometry. (c) Reconstruction corresponding to the exact geometry. (d) Simultaneously reconstructed
admittivity and measurement geometry. Source: from [70]. Copyright© 2013 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved. (Online version in colour.)

R1 R2 Rapp
R1R2

R1 + R2
< R1=

Figure 8. Schematic illustration of the apparent change in conductivity related to the truncation of the domain. Source: from
[76]. Reproduced by permission of Inverse Problems and Imaging. (Online version in colour.)

images. On the other hand, if the model is extended very far from the electrodes, the calculation
time may become too long in practice. The approach proposed in [76], based on a partial Dirichlet-
to-Neumann mapping, allows to compute reconstructions in a subdomain with almost the same
accuracy as reconstructions that are computed in the full domain at much reduced computational
costs.
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truth
partial data

D-bar
using

blind a priori data
using

segmented a priori data

Figure 9. Example simulating a reconstruction with partially distributed electrodes (pneumothorax in the left lung). The
simulated noisy measurement is collected from 75% ventral data. The first image displays the true conductivity with the
position of electrodes indicated. Using a partial data D-bar approach alone results in a reconstruction with low spatial
resolution, where the pathology can be hardly seen (second). Incorporating a priori data corresponding to a healthy patient
directly in the reconstruction method significantly improves the spatial resolution (third). Refining the a priori data improves
the reconstruction further, allowing even sharper visualization of the pathology (fourth). Source: from [80]. Reproduced by
permission of Inverse Problems and Imaging. (Online version in colour.)

Partially distributed electrodes. Hauptmann et al. [78,79] have proposed reconstruction tools
taking into account a domain where electrodes are partially distributed on the boundaries. This
type of tool can be useful when congestion forbids the use of electrodes all around the body,
for example, for an examination in intensive care where it is impossible to move the patient and
thus to access a part of his body with electrodes. In their works, the reconstruction is based on
a truncated and linearized D-bar method. Data are modelled as a partial map from Neumann
to Dirichlet (ND map). These data are compared with the ND map including all the boundaries.
The error linearly depends on the size of the missing part of the boundary. There is also the same
linear dependence regarding the difference in conductivities reconstructed from the partial and
full boundary data. The Neumann problem is considered rather than the Dirichlet problem, since
the partially supported Dirichlet boundary conditions are not representative of a physical system
in many applications. In this context, the author introduced a partial ND map, represented as a
composition of the ND map and a partial boundary map. It is shown that the choice of the partial
boundary map is crucial for the error analysis and the quality of the reconstruction. In [80], a
D-bar method is also exploited to reconstruct the domain conductivity from partial boundary
measurements (figure 9). As previously for the reconstruction of boundaries, the implementation
of this type of method is computationally heavy but would be a great improvement for partially
distributed electrodes application cases where static reconstruction is desired.

(ii) Summary and discussion

Reconstructing the admittivity map can be challenging in many non-trivial application cases. The
main reported difficulties come from the ill-posed character of the problem, unbounded domains,
partially distributed electrodes and modelling errors due to the unknown exact boundary shape.
Table 3 summarizes the different evoked tools and their associated characteristics to overcome
these issues. The reconstruction algorithm used will have a great impact on the accuracy of the
reconstruction. The associated regularization strategy will also have an impact on the precision
because this one enables to make assumptions a priori on the form of the solution. Yet, the
proposed tools are also remarkably robust against the cited difficulties because they allow the
reconstruction of truncated or partially inaccessible domains. It can also be noted that the D-Bar
method gives promising results in several works making it possible to improve the robustness of
EIT against modelling errors. There is therefore a strong potential for improvement in EIT that
deserves to be highlighted in the future, notably with tests on biological tissues.

4. General conclusion and discussion
This paper was devoted to the study of the state of the art in EIT that could make this technology
more robust, i.e. allowing accurate detection in suboptimal cases that have been little explored
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Table 3. Summary of different proposed tools allowing to reconstruct the admittivity map for precise and robust detection.

method description
interest in terms of robustness
and precision target application

SA-SBL inversion algorithm reducing the ill-posed character of
the inverse problem: robustness
against noise and bias

All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

regularization adding a priori
information in order
to simplify the
problem

reducing the ill-posed character of
the inverse problem: robustness
against noise and bias

All EIT applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

boundary reconstruction
algorithms (Teichmuller
mapping, D-bar, etc.)

inversion algorithms provides a reconstruction that is
robust against modelling errors.
Seems efficient even with large
boundary modelling errors.
Particularly useful when
difference EIT cannot be
performed

large model uncertainities
about body shape and
electrode positions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

partial
Neumann-to-Dirichlet
mapping

inversion algorithm robust algorithm against
modelling errors when the
domain is truncated

unbounded domain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D-Bar method inversion algorithm robust algorithm against
modelling errors when
electrodes are partially
distributed. Allows
reconstruction when electrodes
cannot surround the boundaries
with a higher precision

congestion forbids
full-boundary electrode
position

model uncertainties about
electrode positions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

so far. Indeed, if EIT allows the reconstruction of quality images in many applications, the
reconstruction becomes delicate in non-standard cases, for example, when some experimental
parameters cannot be controlled with precision. Thus, in this paper, the objective was to highlight
tools that can be used in a systematic way to enable successful image reconstruction in the
presence of model uncertainties. Data acquisition and processing tools were thus studied, and
summarized in the tables 1, 2 and 3. These tables can be used as a basis for selecting robust tools.

As an illustrative example, concerning the acquisition of an EIT image of our patient in a
suboptimal configuration (figure 1), some of the developed tools can be selected from the tables.
The state of the art associated with these particular problems can thus be studied. For example,
Calvetti et al. [76] would allow to take into account the truncation of the domain. Similarly,
Hauptmann et al. [78] (presented in two dimensions) would allow in three dimensions to improve
the quality of the reconstruction due to the absence of electrodes on part of the patient’s contours.

The most powerful resolution tools generally induce an increased computational load
compared with classical tools. However, this load could be acceptable in the case of static EIT,
for example if the objective is to provide a single image by EIT as an alternative to conventional
imaging modalities. This could be considered in order to limit the cost of the acquisition
equipment, or when the space requirement does not allow their use, as in a clinical operation
room. Image registration could thus be performed from preoperative images.

Improving the robustness of EIT against these errors can also be done in several ways.
Differential measurement has proven to be a robust tool against moderate magnitude errors on
body geometry, contact impedances, electrode position, etc. The advantage of differential EIT
is that its robustness is present without a complex algorithm incorporating uncertainties in these
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parameters. Its most common form, tdEIT, is however not always applicable due to the absence of
time variation. The tools described in the literature tend to indicate that other acquisition methods
could become good candidates. For example, fdEIT data can be easily acquired because the same
body is used for the acquisition of both datasets. Although fdEIT suffers from a generally lower
sensitivity and a more delicate calibration procedure, both weighted and calibrated versions of
the method provide interesting results.

Interesting robust tools were presented for data acquisition and processing. At the level of
data acquisition, defining an injection and measurement strategy according to the application is
a mastered method, at least in two dimensions. This affects the sensitivity, and thus the SNR, and
also allows for independent measurements. A faulty contact detection algorithm could be used
to detect a potential electrode detachment. Probably the most important advances in robust EIT
imaging are in data processing. Recent developments allow to consider the use of a method whose
application has long been problematic: absolute imaging. They make it possible to integrate an
uncertainty on the position of the electrodes, a truncated domain or to reconstruct the admittance
when the electrodes are partially distributed around the body. Absolute imaging, associated with
these different tools, offers methods with high robustness for the reconstruction. Regularization-
based algorithms, such as Newton-based methods, have been shown to improve reconstruction
quality. They provide robustness by facing the ill-posed nature of the inverse problem. Some
recent inversion algorithms such as SA-SBL were also developed for this purpose, and offer
interesting perspectives. Other algorithmic tools allow to manage uncertainities on body shape
and electrode positions on the borders. Some algorithms have been developed to deal with
suboptimal configurations such as partially distributed electrodes or a truncated domain.

To conclude, robustness against moderate modelling errors is widespread with the use
of difference EIT. However, this method is limited to specific application cases. More robust
detection tools have been developed, in particular at the algorithmic level with inversion
methods such as the D-Bar method or the SA-SBL. They are applicable to absolute EIT
and therefore have the potential to make EIT be used in a wider range of applications.
The presented techniques and algorithms are very encouraging for robust EIT. In particular,
fdEIT and absolute EIT have the potential to perform robust imaging without the need
for time variation, but are not yet fully mature. Their development in the coming years
is likely to reveal the potential of EIT as a robust tool, which, combined with its other
advantages in terms of cost and size in particular, could make it a prevalent imaging
modality.
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