
HAL Id: lirmm-03557516
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03557516

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structure-Driven Multiple Constraint Acquisition
Dimosthenis C. Tsouros, Kostas Stergiou, Christian Bessiere

To cite this version:
Dimosthenis C. Tsouros, Kostas Stergiou, Christian Bessiere. Structure-Driven Multiple Constraint
Acquisition. CP 2019 - 25th International Conference on Principles and Practice of Constraint Pro-
gramming, Sep 2019, Stamford, CT, United States. pp.709-725, �10.1007/978-3-030-30048-7_41�.
�lirmm-03557516�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03557516
https://hal.archives-ouvertes.fr

Structure-driven Multiple Constraint
Acquisition

Dimosthenis C. Tsouros1, Kostas Stergiou1, Christian Bessiere2

1 Dept. of Informatics & Telecommunications Engineering,
University of Western Macedonia, Kozani, Greece

dtsouros@uowm.gr, kstergiou@uowm.gr
2 CNRS, University of Montpellier, France

bessiere@lirmm.fr

Abstract. MQuAcq is an algorithm for active constraint acquisition
that has been shown to outperform previous algorithms such as QuAcq
and MultiAcq. In this paper, we exhibit two important drawbacks of
MQuAcq. First, for each negative example, the number of recursive calls
to the main procedure of MQuAcq can be non-linear, making it imprac-
tical for large problems. Second, MQuAcq, as well as QuAcq and Multi-
Acq, does not take into account the structure of the learned problem. We
propose MQuAcq-2, a new algorithm based on MQuAcq that integrates
solutions to both these problems. MQuAcq-2 exploits the structure of the
learned problem by focusing the queries it generates to quasi-cliques of
constraints. When dealing with a negative query, it only requires a lin-
ear number of iterations. MQuAcq-2 outperforms MQuAcq, especially
on large problems.

1 Introduction

Constraint acquisition learns the model of a constraint problem using a set of
examples that are posted as queries to a human user or to a software system [1,
2]. Constraint acquisition is an area where constraint programming meets ma-
chine learning, as the problem can be formulated as a concept learning task.
In passive acquisition, examples of solutions and non-solutions are provided by
the user. Based on these examples, the system learns a set of constraints that
correctly classifies all the given examples [3–6, 1]. A major limitation of passive
acquisition is the requirement, from the user’s part, to provide diverse examples
of solutions and non-solution to the system. In contrast, active or interactive
acquisition systems interact with the user while acquiring the constraint net-
work. This is a special case of query-directed learning, also known as “exact
learning” [7, 8]. In such systems, the basic query is to ask the user to classify
an example as solution or not solution. This ”yes/no” type of question is called
membership query [9], and this is the type of query that has received the most
attention in active constraint acquisition [10, 1, 11]. The system can also ask the
user to classify partial examples [12] or to provide a violated constraint when

a proposed example is considered as incorrect [13]. Other types of queries, e.g.
recommendation and generalization ones, have also been considered [14, 15].

Quacq is a state-of-the-art interactive constraint acquisition algorithm that
uses partial queries [12]. Given a negative example, QuAcq finds a constraint that
is violated by repeatedly posting partial examples to the user. QuAcq needs a
number of queries logarithmic in the size of the example to locate the scope of
a violated constraint. Another relevant algorithm is MultiAcq [16]. This algo-
rithm learns all the constraints that are violated by a negative example, but it
needs a linear number of queries to learn each one. Recently, an algorithm called
MQuAcq, that combines the strengths of QuAcq and MultiAcq and outperforms
both of them, was proposed [17]. MQuAcq requires a logarithmic number of
queries to locate the scope of each violated constraint, and discovers all the
violated constraints from a negative example.

In this paper, we further enhance the efficiency of active constraint acquisi-
tion by identifying and addressing two important deficiencies of MQuAcq. We
first show that there exist negative examples where the process of learning all
the violated constraints can make Ω(|Y |2) recursive calls, where |Y | is the num-
ber of variables of the given example. This has important practical implications
as MQuAcq becomes unacceptably slow when the size of the problems grows,
and as a result it can be outperformed by its generally less efficient predecessor
QuAcq. Another deficiency of MQuAcq (and also QuAcq and MultiAcq) is that
although non-random problems usually display some structure/patterns in the
way their constraints are interleaved, this is ignored by the acquisition process.
By identifying and exploiting these patterns we could possibly speed up the pro-
cess. Such patterns have for instance been exploited to detect types of variables
suitable for generalization [18].

Aiming at addressing the above problems, we propose an algorithm called
MQuAcq-2 that learns multiple constraints from a negative generated query, but
not necessarily all of them as opposed to MQuAcq, and also exploits structure
that may be present in the problem to better focus its queries. MQuAcq-2 blends
together the following two ideas. First, MQuAcq-2 exploits the structure of the
learned network to focus on some of the violated constraints instead of exhaus-
tively searching in the generated example. In our implementation, we used the
detection of quasi-cliques in the learned network and then focus on the missing
constraints (i.e., the ones required to complete the cliques). Second, when try-
ing to learn constraints from a negative example, the entire scope of a learned
constraint is removed from the example as soon as the constraint is acquired.
This means that the algorithm no longer guarantees to find all the violated con-
straints from a negative example, but nevertheless it may find several of them,
and crucially, it only requires a linear number of iterations to achieve this. With
the integration of these ideas we achieve the benefits of learning several con-
straints from each generated query and we also avoid the extensive search for
scopes of MQuAcq. Experimental results with benchmark problems demonstrate
that MQuAcq-2 offers significant improvements compared to MQuAcq, both in

terms of time and number of queries, especially on large problems. Importantly,
the new algorithm outperforms MQuAcq even in the absence of structure.

The rest of this paper is organized as follows. In Section 2 the necessary
background on interactive constraint acquisition is presented. Section 3 reviews
the basics of multiple constraint acquisition with MQuAcq. Section 4 presents
the proposed methods. An experimental evaluation is presented in Section 5.
Section 6 concludes the paper.

2 Background

The vocabulary (X,D) is a finite set of n variables X = {x1, ..., xn} and a
domain D = {D(x1), ..., D(xn)}, where D(xi) ⊂ Z is the finite set of values
for xi. The vocabulary is the common knowledge shared by the user and the
constraint acquisition system. A constraint c is a pair (rel(c), var(c)), where
var(c) ⊆ X is the scope of the constraint and rel(c) is a relation between the
variables in var(c) that specifies which of their assignments are allowed. |var(c)|
is called the arity of the constraint. Two constraints c1, c2 are overlapping when
var(c1) ∩ var(c2) ̸= ∅. A constraint network is a set C of constraints on the
vocabulary (X,D). A constraint network that contains at most one constraint
for each subset of variables (i.e., for each scope) is called a normalized constraint
network. Following the literature, we will assume that the constraint network is
normalized. Besides the vocabulary, the learner has a language Γ consisting of
bounded arity constraints.

An example eY is an assignment on a set of variables Y ⊆ X. eY is rejected
by a constraint c iff var(c) ⊆ Y and the projection evar(c) of eY on the variables in
the scope var(c) of the constraint is not in rel(c). A complete assignment that is
accepted by all the constraints in C is a solution to the problem. sol(C) denotes
the set of solutions of C. An assignment eY is called a partial solution iff it is
accepted by all the constraints in C with a scope S ⊆ Y . Observe that partial
solution is not necessarily part of a complete solution. An implied constraint c
in C is a constraint such that, if removed from the constraint network, the set
of solutions remains the same.

Using terminology from machine learning, concept learning can be defined
as learning a Boolean function from examples. A concept is a Boolean function
over DX that assigns to each example e ∈ DX a value in {0, 1}, or in other
words, classifies it as negative or positive. The target concept fT is a concept
that assigns 1 to e if e is a solution to the problem and 0 otherwise. In constraint
acquisition, the target concept, also called target constraint network, is any con-
straint network CT such that sol(CT) = {e ∈ DX | fT (e) = 1}. The constraint
bias B is a set of constraints on the vocabulary (X,D), built using the constraint
language Γ . The bias is the set of all possible constraints from which the system
can learn the target constraint network. κB(eY) represents the set of constraints
in B that reject eY .

In exact learning, the classification question asking the user to determine if
an example eX is a solution to the problem that the user has in mind is called

Algorithm 1 The MQuAcq Algorithm
Input: B, X, D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL : a constraint network
1: CL ← ∅;
2: while true do
3: Scopes.clear();
4: if sol(CL) = ∅ then return “collapse”;
5: Generate e in DX accepted by CL and rejected by B;
6: if e = nil then return “CL converged”;
7: if ¬findAllCons(e,X, 0) then return “collapse”;

a membership query ASK(e). The answer to a membership query is positive if
fT (e) = 1 and negative otherwise. A partial query ASK(eY), with Y ⊆ X, asks
the user to determine if eY , which is an assignment in DY , is a partial solution or
not. Following the literature, we assume that all queries are answered correctly
by the user.

The acquisition process has converged on the learned network CL ⊆ B iff CL

agrees with E and for every other network C ⊆ B that agrees with E, we have
sol(C) = sol(CL). If there does not exist a constraint network C ⊆ B such that
C agrees with E then the acquisition collapses. This happens when the target
constraint network is not included in the bias, i.e. CT ⊈ B.

3 Multiple Constraint Acquisition

We briefly describe the MQuAcq algorithm for multiple constraint acquisition
[17], and we identify an important deficiency of this algorithm. MQuAcq (Algo-
rithm 1) takes as input a bias B on a vocabulary (X, D), and returns a constraint
network CL equivalent to the target network CT . It uses functions FindScope-2
[17] and FindC [12].

MQuAcq starts by initializing the network CL to the empty set (line 1) and
then it enters the main loop (line 2). The array Scopes, which is initialized to
be empty in line 3, is used within function FindAllCons as explained below. If
CL is unsatisfiable, the algorithm collapses (line 4). Otherwise, an assignment e
is generated (line 5), satisfying CL and violating at least one constraint in B. If
such an example does not exist then the acquisition process has converged (line
6). Otherwise, it calls the function FindAllCons to find all the constraints that
are violated by the example e and remove from B those that are surely not in
CT . If findAllCons return false then we have collapsed (line 7).

The recursive function FindAllCons (Algorithm 2) is used to find all the
constraints from CT that are violated by the generated negative example. It
takes as parameters an example e, a set of variables Y , which defines the set
of variables to search for the constraints, and an integer variable s, which is
an identifier for the scopes. It returns false if collapse has occurred and true
otherwise. FindAllCons adds to CL all the constraints from CT that are violated

Algorithm 2 findAllCons
Input: e, Y, s (e: the example, Y : set of variables, s: scopes identifier)
Output: not_collapsed : returns false if collapsed, true otherwise
1: function FindAllCons(e, Y , s)
2: if κB\CL

(eY) = ∅ then return true;
3: if s < |Scopes| then
4: for xi ∈ Scopes[s] do
5: if ¬findAllCons(e, Y \ {xi}, s+ 1) then return false;
6: else
7: if ASK(eY) = “yes” then B ← B \ κB(eY);
8: else
9: scope← FindScope-2(e, ∅, Y, false);

10: c← FindC(e, scope);
11: if c = nil then return false;
12: else CL ← CL ∪ {c}; B ← B \ {c};
13: Scopes.push(scope);
14: if ¬findAllCons(e, Y, s) then return false;
15: return true;

by the example e in Y . It uses the array Scopes to store all the scopes of the
constraints that have been found from the current generated query.

In any recursive call, FindAllCons starts by checking if there exists any vio-
lated constraint in B, not already in the learned network CL. If not, it is implied
that ASK(eY) = “yes” and the function returns true (line 2). After that, at line
3, FindAllCons checks if s is smaller than the size of Scopes (s acts an identifier
of the scopes in which it has already branched). If s < |Scopes| , it means that
the scope of a found violated constraint still exists in eY . Thus, FindAllCons is
called recursively on each subset of Y created by removing one of the variables
of the scope at position s of Scopes (lines 4-5), and increasing s by 1 to continue
with the next scope in each recursive call.

If s = |Scopes|, branching has finished. The system asks the user to classify
the partial example (line 7). If the answer is positive then the constraints in B
that reject e are removed. Otherwise, function FindScope-2 is called to find the
scope of a violated constraint (line 9). FindC will then find a constraint from
B with the discovered scope that is violated by e (lines 10-12). In lines 13-14,
FindAllCons is called recursively to continue searching.

Functions FindScope-2 and FindC are described in [17] and [12] respectively
and are not included here due to space limitations.

MQuAcq models the query generation problem in line 5 of Algorithm 1 as an
optimization problem that looks for a (partial) solution of CL that maximizes
the number of violated constraints in B. This heuristic is called maxB [17]. We
will see in Section 5 that there are some cutoffs imposed.

Although MQuAcq offers improvements over its predecessors QuAcq and
MultiAcq, both in terms of queries and cpu time, it still suffers from two weak-
nesses. We prove in Proposition 1 that the number of recursive calls to function

FindAllCons to learn all the violated constraints from a negative example can
be non-linear in the number of variables of the example given. This non-linear
number of calls can significantly hinder the cpu time performance of MQuAcq.

Proposition 1 Given a negative example eY , MQuAcq may require a number
of recursive calls to function FindAllCons in Ω(|Y |2) to learn all the constraints
of CT that are violated by eY .

Proof. Consider a constraint network and a negative example eY with |Y | = 2·p.
Assume that κCT

(eY) = {c1,2, c2,3, . . . , cp−1,p}, where ci,j denotes a constraint
with scope var(c) = {i, j}. Assume that κB\CT

(eY) = {c1,p+1, c2,p+2, . . . , cp,2p}.
With this pattern, we have |κCT

(eY)| = p− 1 and |κB\CT
(eY)| = p.

We know that the branching takes place for each one of the variables in the
scope of each learned constraint, meaning that two recursive calls are made to
function FindAllCons at each branching point. In addition, we know that the
depth of the tree of the recursive calls to FindAllCons can be up to |κCT

(eY)|+
1 = p, as it branches once for each scope included in Scopes at line 5, whose size
in the end will be equal to |κCT

(eY)|. The maximum depth is reached as all the
constraints of κCT

(eY) are learned in the first branch.
Due to the structure of κCT

(eY) and κB\CT
(eY), in each level we will have one

more branching point than the previous. This happens because every constraint
in κCT

(eY) has in common the first variable of its scope with one constraint in
κB\CT

(eY). Thus, after the first variable removal in each level, one constraint
from κB\CT

(eY) will not be violated by e′Y and the algorithm will have to follow
the right branch to remove it, adding a new branch to each level. Also, we
know that the constraints from κB\CT

(eY) will not be removed by the function
FindScope-2, as a constraint from κCT

(eY) will be found first and returned.
Now, let us prove that this results in a total number of nodes N = 1 +

(Y2 − 1) · Y
2 . As in each level l we have one more branching point than the

previous, we know that each level l of the tree will have 2 more nodes than the
level l − 1, without counting the first level with the root node. This results in
N = 1+2+4+ ...+2 · (p−1) = 1+2 ·

∑p−1
k=1 k = 1+2 · (p−1)·p

2 = 1+(Y2 −1) · Y2 .
Therefore, MQuAcq requires a number of recursive calls to function FindAllCons
in Ω(|Y |2) to learn all the constraints of CT that are violated by eY . ⊓⊔

Another weakness of MQuAcq is that the extensive branching it makes to
find all the constraints violated by a negative example yields a lot of (small)
partial positive queries. It is better when positive queries violate a large number
of constraints from B because we want to prune the bias as much as possible.
It would thus be better to focus on asking small partial queries on specific
constraints that have greater probability to be included in CT instead of focusing
on all the violated constraints.

4 MQuAcq-2
In this section we propose MQuAcq-2, a new algorithm that acquires multiple
constraints from each negative generated example, but not necessarily all of them

Algorithm 3 MQuAcq-2: Quick Acquisition learning multiple scopes
Input: B,X,D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL : a constraint network
1: CL ← ∅;
2: while true do
3: if sol(CL) = ∅ then return “collapse”;
4: Generate e in DY accepted by CL and rejected by B;
5: if e = nil then return ”CL converged”;
6: Y ′ ← Y ;
7: do
8: if ASK(eY ′) = “yes” then B ← B \ κB(eY ′);
9: else

10: Scope← FindScope-2(eY ′ , ∅, Y ′, false);
11: c← FindC(eY ′ , Scope);
12: if c = nil then return “collapse”;
13: else CL ← CL ∪ {c}; B ← B \ {c};
14: NScopes← Scope;
15: NScopes← NScopes ∪ analyze&Learn(eY);
16: for Scope ∈ NScopes do
17: Y ′ ← Y ′ \ Scope;
18: while κB(eY ′) ̸= ∅

as opposed to MQuAcq. The intuition is to focus on constraints that are more
likely to be included in CT instead of exhaustively searching in the generated
example, and thus to decrease the run time as well as the number of queries
needed to learn the target network.

4.1 Algorithm description

MQuAcq-2 (Algorithm 3) starts with an empty CL and a bias B containing
constraints that can be built using the constraint language Γ on the vocabulary
X,D. MQuAcq-2 returns the learned constraint network CL, equivalent to the
target network CT . MQuAcq-2 iteratively generates examples and posts them
as queries to the user. If the answer from the user is negative (i.e., at least one
constraint from CT is violated from the query posted), it tries to learn multiple
constraints. MQuAcq-2 achieves that with the two following steps:

– It exploits the structure of the learned network to focus on specific violated
constraints from B,

– In case no more constraints can be learned by exploiting the structure of
CL, it tries to find some non-overlapping constraints of CT . As we explain
below, this allows us to alleviate the high run time that MQuAcq incurs
when searching for all the violated constraints from each negative example.

MQuAcq-2 generates a (partial) example e satisfying CL and rejecting at
least one constraint from B (line 4). If it has not converged or collapsed, it tries

to acquire multiple constraints of CT violating e. At first it posts the example as
a query to the user (line 8). In the case the answer of the user is positive then it
removes from the bias the set κB(eY ′) of all the constraints from B that reject
eY ′ . If the answer is negative it tries to find a constraint by using the functions
FindScope-2 and FindC like in MQuAcq (lines 10-13).

The first novelty is that after a constraint is added to CL, the system calls
the function analyze&Learn (line 15) to analyze the structure of CL and to ask
partial queries on scopes of constraints violated by the initial example that seem
to fit in that structure. The above steps are done repeatedly, removing from Y ′

the variables of the scope of each violated constraint it has already learned (lines
16-17) that are stored in the set NScopes. When no more constraint from B can
be acquired by analyzing the structure of CL, MQuAcq-2 tries to learn multiple
non-overlapping constraints (lines 10-13). The iterative process ends when the
example eY ′ does not contain any violated constraint from the bias (line 18).

The second novelty is that MQuAcq-2 removes the entire scope of the ac-
quired constraints at lines 16-17 to avoid the exhaustive branching that MQuAcq
does by removing one variable in each call to findAllCons. We lose the guaran-
tee to learn all the constraints violated by a generated example, as in MQuAcq,
but on the other hand we achieve better performance in practice. The fact that
MQuAcq-2 does not learn all the violated constraints from a generated example
does not mean that it will not learn the entire network. The “missed” constraints
will be learned at another example.

4.2 Using the structure of the problem to learn constraints
Function analyze&Learn (Algorithm 4) is used to analyze the structure of the
learned network and then to focus on some of the violated constraints of the
bias that fit in the structure, and thus are likely to be part of CT . The type of
structure that we have investigated so far is that of tightly connected groups
of variables that form quasi-cliques that are hopefully extendable to complete
cliques. Quasi-cliques are subgraphs with an edge density exceeding a threshold
parameter [19, 20]. More formally, given a threshold γ ∈ [0, 1], a (sub)graph
G = (V,E), with V the set of vertices and E the set of edges, is γ-dense if
|E(G)| ≥ γ · |V |∗|V |−1

2 . If in addition G is connected, it is a quasi-clique. We used
quasi-clique detection to focus subsequent queries on the constraints that are still
in B and could be included in CL to possibly complete a detected quasi-clique
to form a clique.

The algorithm we use for finding quasi-cliques is similar to the one used
in [18]. It is based on the well-known Bron-Kerbosch’s [21] algorithm for finding
maximal cliques in a graph. It is a recursive backtracking function that searches
for maximal quasi-cliques in the graph of constraints of CL. We consider any
type of constraint as an edge, as opposed to the algorithm used in [18], which
considers only constraints with same relation.

Function analyze&Learn takes only the generated negative example eY as a
parameter. It returns the set NScopes, which contains the scopes of the con-
straints learned. Function analyze&Learn starts by initializing the set NScopes

Algorithm 4 analyze&Learn

Input: eY : the example
Output: NScopes : the set of scopes of the constraints that have been learned
1: function analyze&Learn(eY)
2: NScopes← ∅;
3: QCliques← FindQCliques(X, ∅, ∅);
4: CQ ← {c | c ∈ κB(eY) \ CL ∧ ∃q ∈ QCliques | var(c) ⊆ q};
5: PScopes← {Y ′ | c ∈ CQ ∧ var(c) = Y ′};
6: for Y ′ ∈ PScopes do
7: if ASK(eY ′) = “yes” then B ← B \ κB(eY ′);
8: else
9: Scope← FindScope-2(eY ′ , ∅, Y ′, false);

10: c← FindC(eY ′ , Scope);
11: if c = nil then return “collapse”;
12: else CL ← CL ∪ {c}; B ← B \ {c};
13: NScopes← NScopes ∪ Scope;
14: if NScopes ̸= ∅ then
15: NScopes← NScopes ∪ analyze&Learn(eY);
16: return NScopes;

to the empty set (line 2). At line 3 it finds quasi-cliques in CL via the func-
tion FindQCliques. A cutoff is imposed to this function, returning all the quasi-
cliques found within this time limit. This is done to avoid the exponential time-
complexity of finding all the quasi-cliques. QCliques contains sets of variables
where each set forms a quasi-clique in the graph of the already learned network.
Using the quasi-cliques found, we fill the set CQ with the predicted constraints,
that is, the constraints of B that have not been already learned (i.e., not in CL),
have a scope that is included in a quasi-clique (∃q ∈ QCliques | var(c) ⊆ q),
and are violated by eY (are included in κB(eY)) (line 4). We only consider con-
straints violated by the current example to avoid the overhead of generating
new examples to learn them. Next, we fill the set PScopes with the scopes of
these constraints (line 5). For each scope in PScopes (line 6), the system posts
a partial query to the user, focusing on the variables of the scope (line 7). If
the answer is positive then the constraints that reject the example are removed
from B. Otherwise, function FindScope-2 is called to find the scope of the vi-
olated constraint (line 9). This is done to ensure that the violated constraint
the user has in mind is not in a subscope. (As we use only binary problems in
the experiments, that means it looks for unary constraints.) Next, FindC will
select a constraint from B with the discovered scope that is violated by eY ′

(line 10). If no constraint is found then the algorithm collapses (line 11). Oth-
erwise, the constraint returned by FindC is added to CL (line 12) and its scope
is added to the set of found scopes (line 13). Finally, if any constraint is found
(line 14), analyze&Learn(eY) is recursively called to check if new quasi-cliques
have been formed (line 15). The scopes of the constraints learned by this call to
analyze&Learn are added to NScopes, and NScopes is returned (line 16).

Table 1. Execution of MQuAcq-2 at Example 1

repetition Y eY ASK Constraint acquired
1 x1 − x8 {1, 2, 2, 2, 3, 3, 4, 4} “no” ̸=23

1.1 x2, x4 {−, 2,−, 2,−,−,−,−} “no” ̸=24

1.2 x3, x4 {−,−, 2, 2,−,−,−,−} “no” ̸=34

3 x1, x5 − x8 {1,−,−,−, 3, 3, 4, 4} “no” ̸=56

3 x1, x7, x8 {1,−,−,−,−,−, 4, 4} “no” ̸=78

3 x1 {1,−,−,−,−,−,−,−} - -

We chose quasi-clique detection for the analysis of the structure of the net-
work because cliques are a common structure in constraint networks. Function
analyze&Learn could also look for other types of structures by simply replacing
the search for quasi-cliques by any other type of structure (such as [22–25]). The
problem of predicting which constraints of B are more likely to be included in
CT can also be seen as a link prediction problem. Any method which deals with
this problem can be exploited (e.g., [26–28, 14]).

4.3 Example and analysis of MQuAcq-2

Let us now illustrate the behavior of MQuAcq-2 on a simple example.

Example 1. The vocabulary is X = {x1, ..., x8} and D = {D(x1), ..., D(x8)}
with D(xi) = {1, ..., 8}, the target network CT is {≠12, ̸=13, ≠14, ̸=23, ̸=24, ̸=34

, ̸=56, ̸=78} and B = {̸=ij | 1 <= i < 8 ∧ i < j <= 8}. Assume that the
learned network so far is CL = {≠12, ̸=13, ̸=14} and γ = 0.6 in MQuAcq-2. Also,
assume that the current example processed (generated at line 4 of MQuAcq-2)
is e = {1, 2, 2, 2, 3, 3, 4, 4}.

The execution of MQuAcq-2 is presented in Table 1. The first column shows
the iteration of the algorithm. In the second column the variables that are con-
sidered in Y are given, while in the third column the example eY is displayed.
Column ASK shows the answer of the user to the query posted, if one is posted,
− otherwise. Finally, the constraint learned is presented.

MQuAcq-2 will post the example to the user, and after receiving a negative
answer it will find the constraint ̸=23 using functions FindScope and FindC. After
learning this constraint, it detects a possible clique among variables x1, x2, x3, x4

as shown in Figure 1. So the algorithm will now focus on constraints ̸=24, ̸=34 that
are violated by e, and will learn them via the function analyze&Learn (iterations
1.1,1.2). As no other quasi-clique (with γ = 0.6) has been detected, the algorithm
continues by removing the entire scope of the constraints learned from Y . In the
next iteration, after the negative classification by the user, constraint ̸=56 will
be learned and variables x5, x6 will be removed. In the same way, the constraint
̸=78 will be acquired next. As no other constraint from B rejects the example
eY after removing the variables from the last constraint learned, MQuAcq-2 will
return to the query generation step.

(a) (b)

Fig. 1. (a) The target network of the problem. (b) The learned network so far and the
predicted constraints

We now study the complexity of MQuAcq-2 in terms of the number of queries
it needs to converge to the target network and in terms of the repetitions required
to learn multiple violated constraints from a negative example.

Proposition 2 Given a bias B built from a language Γ , with bounded arity
constraints, and a target network CT , MQuAcq-2 uses O(|CT | · (log |X| + |Γ |))
queries to find the target network or to collapse and O(|B|) queries to prove
convergence.

Proof. MQuAcq-2 learns each constraint from a negative example via the func-
tions FindScope and FindC at lines 10-13 or via the function analyze&Learn
using the same functions. We know that FindScope needs at most |S| · log |Y |
queries to locate a scope of a constraint from CT , with |S| being the arity of the
scope and |Y | the size of the example given to the function [12]. Since Y ⊆ X,
FindScope needs in the worst case |S| · log |X| queries to find a scope. In addi-
tion, we know that FindC needs at most |Γ | queries to find a constraint from
CT in the scope it takes as parameter, if one exists [12]. In the case that none
exists, the system collapses with the same bound. As a result, the number of
queries necessary to find a constraint using the functions FindScope and FindC
is O(|S| · log |X| + |Γ |). Thus, the number of queries required for finding all
the constraints in CT or collapsing is at most CT · (|S| · log |X| + |Γ |) which
is O(CT · (log |X| + |Γ |)) because |S| is bounded. Concerning the convergence
problem, it is proved when B is empty or contains only implied constraints. Con-
straints are removed from B when the answer from the user is “yes” in a query in
the above cases. In the worst case, in which each positive query rejects only one
constraint from B, it leads to at least one constraint removal in each query. This
is because the example generated at line 4 of MQuAcq-2 violates at least one
constraint from B and analyze&Learn does not ask a query eY ′ when κB(eY ′)
is empty (lines 4-5 in analyze&Learn). This gives a total of O(|B|) queries to
converge. ⊓⊔

Therefore, MQuAcq-2 has a logarithmic complexity in terms of the number
of queries needed to find the scope of a violated constraint, the same as QuAcq
and MQuAcq. Now we turn out attention to the process of learning multiple
constraints from a negative example eY .

Proposition 3 The number of iterations needed by MQuAcq-2 to acquire mul-
tiple constraints from a given negative example eY is bounded above by O(|Y |).

Proof. Given a negative example eY , MQuAcq-2 enters into a do-while loop
at line 7 to acquire multiple constraints of CT . After the acquisition of each
constraint, the entire scope (i.e., all the variables of the scope) of the constraint(s)
acquired is removed from Y . Thus, assuming unary constraints are included in
the target network of the problem, in the worst case only one variable will
be removed from Y in each repetition. As a result, the worst case number of
iterations made by MQuAcq-2 to acquire multiple constraints of CT , is equal to
|Y |. ⊓⊔

Therefore, given a negative example, MQuAcq-2 learns multiple constraints
of the target network in a complexity lower than MQuAcq. As we will see in the
experiments, it significantly improves its time performance.

5 Experimental Evaluation

To evaluate our proposed algorithm, we ran experiments comparing MQuAcq-2
against MQuAcq. We also ran QuAcq as a reference point. Some more details
about our experiments:

– All the experiments were conducted on a system carrying an Intel(R) Xeon(R)
CPU E5-2667, 2.9 GHz clock speed, with 8 Gb of RAM.

– The maxB heuristic [17] was used for the generation of the queries by all algo-
rithms. maxB focuses on examples violating as many constraints as possible
from B without necessarily building a complete variable assignment. bdeg
was used for variable ordering, that is the variable with the most constraints
in B is chosen. Random value ordering was used.

– For all the algorithms we set some cutoffs in the query generation step. The
best (according to maxB) example found within 1 second is returned, even
if not proved optimal. If after 5 seconds, not a single example is found, the
system takes one by one each constraint c in B and tries to solve CL ∪ {¬c}
with a additional cutoff of 5 seconds.

– We do not check for collapse before the generation of the queries, as it can
be very time consuming, especially in large problems, with a lot of variables
and a large CT . We assume that the problem the user has in mind is solvable,
the user’s answers are correct and CT is representable by B.

– In the function FindQCliques, γ was set to 0.8.
– As finding all the quasi-cliques is an NP-hard problem, we have added a

cutoff of 1 second in the function FindQCliques, which then returns all the
quasi-cliques found within this time limit.

We used the following benchmarks in our study:
Sudoku. The Sudoku puzzle is a n2×n2 grid. It must be completed in such a

way that all the rows, all the columns and the n2 non-overlapping n×n squares
contain the numbers 1 to n. We use two variations of the problem with n = 3
and n = 4. This gives a vocabulary having 81 (256 respectively) variables and
domains of size 9 (16 respectively). The target networks for the two problems are

of size 810 and 4,992. The bias was initialized with 12,960 and 130,560 binary
constraints respectively, using the language Γ = {=, ̸=, >,<}.

Latin Square. The Latin square problem consists of an n×n table in which
each element occurs once in every row and column. That means that the domain
is of size n. We use two variations of the problem. The first one with 100 variables
(i.e., n = 10) having a target network of 900 binary ̸= constraints on rows and
columns, and the second with 225 variables (i.e., n = 15) and a target nework of
size 3,150. The language used was Γ = {=, ̸=, >,<}, resulting in a bias of 19,800
binary constraints in the first problem and 100,800 constraints in the second.

Random. We used a problem with 100 variables and domains of size 5.
We generated a random target network with 495 ̸= constraints. The bias was
initialized with 19,800 constraints, using the language Γ = {=, ̸=, >,<}.

Radio Link Frequency Assignment Problem. The RLFAP is the prob-
lem of providing communication channels from limited spectral resources [29].
We use a simplified version which consists of 50 variables with domains of size 40.
The target network contains 125 binary distance constraints. We built the bias
using a language of 2 basic distance constraints ({|xi − xj | > y, |xi − xj | = y})
with 5 different possible values for y. This led to a language of 10 different
distance constraints. In total, B contains 12,250 constraints.

AllDiff We used a problem with 50 variables and domains of size 50 with the
condition that all variables must take different values. Thus, the target network
contains a clique of 1,225 binary ̸= constraints. The bias was initialized with
4,900 constraints, using the language Γ = {=, ̸=, >,<}.

To compare all the algorithms on the same simple scenario, all our experi-
ments take the extreme case where we start from an empty constraint network.
Even for the best algorithms, this scenario leads to an overall number of queries
that can be considered as too large when the user is a human. In real applica-
tions, the user often has some background knowledge that give a frame of basic
constraints. If not, the user may take other methods, such as ModelSeeker [6], to
extract constraints from the structure of solutions of the problem. In this case,
the interactive acquisition algorithm is only used to finalize the model.

5.1 Results

We measure the size of the learned network CL, the average waiting time T̄
(in seconds) for the user, the total number of queries #q, the average size q̄
of all queries, the number of complete queries #qc, and the total time needed
to converge Ttotal. We present results of MQuAcq, QuAcq, MQuAcq-2 without
analyze&Learn (denoted by MQuAcq-2 w/o A&L) and full MQuAcq-2. Each
algorithm was run 5 times and the means are presented in Table 2.

Looking at the time performance of MQuAcq-2 without analyze&Learn we
see that in all problems except AllDiff (which is relatively small) it decreases
the total time of the acquisition process compared to MQuAcq. In the larger
problems the decrease in total time is quite significant: MQuAcq is 6.3 times
slower on Latin 15x15 and 10.7 times slower on Sudoku 16x16. This confirms our
intuition and complexity analysis. In terms of number of queries, we also have an

Table 2. Results of MQuAcq-2

Benchmark Algorithm |CL| #q q̄ #qc T̄ Ttotal

MQuAcq 3150 37176 101 27 0.18 6730.88
QuAcq 3150 31426 117 2345 0.18 5808.12
MQuAcq-2 w/o A&L 3150 28364 70 42 0.04 1069.80Latin 15x15

MQuAcq-2 3150 25517 61 49 0.11 2757.66
MQuAcq 900 8457 46 16 0.02 155.84
QuAcq 900 7997 53 784 0.13 1026.86
MQuAcq-2 w/o A&L 900 7265 33 31 0.02 139.58Latin 10x10

MQuAcq-2 900 6133 19 33 0.03 168.88
MQuAcq 4992 59953 90 18 0.49 29612.70
QuAcq 4992 42648 52 120 0.33 14092.20
MQuAcq-2 w/o A&L 4992 43958 61 36 0.06 2771.94Sudoku 16x16

MQuAcq-2 4992 40905 51 35 0.15 6098.34
MQuAcq 810 6964 32 14 0.02 124.07
QuAcq 810 6478 38 518 0.14 880.96
MQuAcq-2 w/o A&L 810 6136 24 31 0.02 94.12Sudoku 9x9

MQuAcq-2 810 4912 15 30 0.04 191.63
MQuAcq 495 5959 45 10 0.03 168.52
QuAcq 495 5500 53 472 0.10 570.96
MQuAcq-2 w/o A&L 495 4930 34 16 0.02 79.35Random

MQuAcq-2 495 4962 34 16 0.02 79.05
MQuAcq 122 1520 22 26 0.14 222.72
QuAcq 106 1168 25 71 0.23 274.01
MQuAcq-2 w/o A&L 124 1102 21 27 0.19 218.88RLFAP

MQuAcq-2 124 1113 21 23 0.19 237.27
MQuAcq 1225 3912 26 24 0.03 107.82
QuAcq 1225 5082 34 1116 0.25 1280.27
MQuAcq-2 w/o A&L 1225 4153 23 51 0.03 135.24AllDiff

MQuAcq-2 1225 2774 14 37 0.12 345.65

important decrease compared to MQuAcq in all the problems except AllDiff (up
to 26.7% in Sudoku 16x16). This decrease in the number of queries is mainly due
to the fact that avoiding the extensive branching that MQuAcq makes, MQuAcq-
2 also avoids posting a lot of small positive partial queries. As a result, the
pruning of B is achieved with fewer queries. Another observation is that although
the number of complete queries posted to the user is increased in all problems, the
average size of the queries is reduced. This reduced size of the queries is mainly
due to the smaller negative queries asked by MQuAcq-2 because, as opposed to
MQuAcq, MQuAcq-2 removes the entire scope of the previous constraint learned
(line 17) before proceeding with the search for constraints.

When MQuAcq-2 takes into account the structure of the problem by us-
ing analyze&Learn, we observe that the total time is larger than without using
analyze&Learn, but it is still significantly faster than MQuAcq on the large prob-
lems. The decrease in time is 59% on Latin 15x15, 79.4% on Sudoku 16x16 and
46.9% on Random. In contrast, the run time is increased by 8.4% on Latin 10X10,
54.5% on Sudoku 9x9, 6.5% on RLFAP and 220.6% on AllDiff. The increase in

time in these smaller problems is due to the overhead of analyze&Learn. The
largest increase is in the AllDiff problem. This is not surprising as the AllDiff
problem consists of a single clique of constraints. Focusing on the number of
queries, by using analyze&Learn to exploit the structure of the learned network,
MQuAcq-2 offers significant improvements compared to MQuAcq on all prob-
lems. The number of queries is decreased by 31.4% on Latin 15x15, 27.5% on
Latin 10x10, 30.4% on Sudoku 16x16, 29.5% on Sudoku 9x9, 17.3% on Ran-
dom 26.8% on RLFAP and 29.1% on AllDifferent. Interestingly, it seems that
the larger the target network, the bigger the gain. We also observe that the
more structured the problem is, the more queries full MQuAcq-2 saves com-
pared to MQuAcq-2 without analyze&Learn. The average size of the queries
is even smaller than with MQuAcq-2 without analyze&Learn. This is because
analyze&Learn focuses on small scopes in the most promising parts of the net-
work, avoiding the large negative queries that FindScope-2 would have asked to
find these scopes.

Looking at the performance of full MQuAcq-2 on the Random problem, we
see that both in terms of time and number of queries it dominates MQuAcq.
Random is a pure random problem without any kind of structure. Thus, al-
though MQuAcq-2 tries to exploit the structure of the problem to enhance the
acquisition process, it performs quite well even in the absence of structure. The
results with and without analyze&Learn are quite similar, confirming that in the
absence of structure the overhead of analyze&Learn is relatively small. The same
occurs on the RLFAP problem, which does not contain any cliques.

Finally, regarding QuAcq, we observe that this algorithm is better than
MQuAcq both in run times and in number of queries on the largest problems
that had not been considered before. However, it is inferior to MQuAcq-2 both
in terms of time and number of queries on all problems.

6 Conclusion

Although the MQuAcq algorithm for constraint acquisition was shown to out-
perform previous algorithms such as QuAcq and MultiAcq, we have demon-
strated that it suffers from two important drawbacks. First, the process of
learning a maximum number of constraints from each negative generated ex-
ample is time-consuming. This makes MQuAcq inefficient for large problems.
Second, MQuAcq, as well as QuAcq and MultiAcq, does not take into account
the structure revealed as constraints are learned. We have proposed a new algo-
rithm, named MQuAcq-2, that integrates solutions to both of these problems.
MQuAcq-2 exploits the structure of the learned problem by focusing the queries
it generates to quasi-cliques of constraints that are being revealed. In addition,
it alleviates the high cpu time requirements of MQuAcq by acquiring multiple
constraints from each generated negative example, but not trying to learn all
of them. Experiments with benchmark problems demonstrate that MQuAcq-2
outperforms MQuAcq both in terms of the number of queries and in the total
time of the acquisition process, especially on large problems.

References

1. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Arti-
ficial Intelligence 244 (2017) 315–342

2. Bessiere, C., Daoudi, A., Hebrard, E., Katsirelos, G., Lazaar, N., Mechqrane, Y.,
Narodytska, N., Quimper, C.G., Walsh, T.: New approaches to constraint acqui-
sition. In: Data mining and constraint programming. Springer (2016) 51–76

3. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: International Con-
ference on Principles and Practice of Constraint Programming, Springer (2004)
123–137

4. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A sat-based version space
algorithm for acquiring constraint satisfaction problems. In: European Conference
on Machine Learning, Springer (2005) 23–34

5. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In:
22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI).
Volume 1., IEEE (2010) 45–52

6. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models
from positive examples. In: International Conference on Principles and Practice of
Constraint Programming, Springer (2012) 141–157

7. Bshouty, N.: Exact learning boolean functions via the monotone theory. Informa-
tion and Computation 123(1) (1995) 146 – 153

8. Bshouty, N.H.: Exact learning from an honest teacher that answers membership
queries. Theoretical Computer Science 733 (2018) 4–43

9. Angluin, D.: Queries and concept learning. Machine learning 2(4) (1988) 319–342
10. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M., et al.: Query-driven constraint

acquisition. In: International Joint Conference on Artificial Intelligence (IJCAI).
Volume 7. (2007) 50–55

11. Shchekotykhin, K., Friedrich, G.: Argumentation based constraint acquisition. In:
Ninth IEEE International Conference on Data Mining, IEEE (2009) 476–482

12. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska,
N., Quimper, C.G., Walsh, T., et al.: Constraint acquisition via partial queries.
In: International Joint Conference on Artificial Intelligence (IJCAI). Volume 13.
(2013) 475–481

13. Freuder, E.C., Wallace, R.J.: Suggestion strategies for constraint-based match-
maker agents. In: International Conference on Principles and Practice of Constraint
Programming, Springer (1998) 192–204

14. Daoudi, A., Mechqrane, Y., Bessiere, C., Lazaar, N., Bouyakhf, E.H.: Constraint
acquisition using recommendation queries. In: International Joint Conference on
Artificial Intelligence (IJCAI). (2016) 720–726

15. Bessiere, C., Coletta, R., Daoudi, A., Lazaar, N., Mechqrane, Y., Bouyakhf, E.H.:
Boosting constraint acquisition via generalization queries. In: European Conference
on Artificial Intelligence (ECAI). (2014) 99–104

16. Arcangioli, R., Bessiere, C., Lazaar, N.: Multiple constraint aquisition. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI). (2016) 698–704

17. Tsouros, D.C., Stergiou, K., Sarigiannidis, P.G.: Efficient methods for constraint
acquisition. In: 24th International Conference on Principles and Practice of Con-
straint Programming. (2018)

18. Daoudi, A., Lazaar, N., Mechqrane, Y., Bessiere, C., Bouyakhf, E.H.: Detecting
types of variables for generalization in constraint acquisition. In: 2015 IEEE 27th

International Conference on Tools with Artificial Intelligence (ICTAI), IEEE (2015)
413–420

19. Pardalos, J., Resende, M.: On maximum clique problems in very large graphs.
DIMACS series 50 (1999) 119–130

20. Abello, J., Resende, M.G., Sudarsky, S.: Massive quasi-clique detection. In: Latin
American symposium on theoretical informatics, Springer (2002) 598–612

21. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph.
Commun. ACM 16(9) (1973) 575–577

22. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive
graphs. In: Proceedings of the 31st International Conference on Very large data
bases, VLDB Endowment (2005) 721–732

23. Girvan, M., Newman, M.E.: Community structure in social and biological net-
works. Proceedings of the national academy of sciences 99(12) (2002) 7821–7826

24. Newman, M.E.: Modularity and community structure in networks. Proceedings of
the national academy of sciences 103(23) (2006) 8577–8582

25. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detec-
tion in social media. Data Mining and Knowledge Discovery 24(3) (2012) 515–554

26. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social networks 25(3)
(2003) 211–230

27. Leicht, E.A., Holme, P., Newman, M.E.: Vertex similarity in networks. Physical
Review E 73(2) (2006) 026120

28. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
Journal of the American society for information science and technology 58(7)
(2007) 1019–1031

29. Cabon, B., De Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency
assignment. Constraints 4(1) (1999) 79–89

