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Abstract

The increasing amount of data to be processed on
edge devices, such as cameras, has motivated Arti-
ficial Intelligence (AI) integration at the edge. Typ-
ical image processing methods performed at the
edge, such as feature extraction or edge detection,
use convolutional filters that are energy, computa-
tion, and memory hungry algorithms. But edge
devices and cameras have scarce computational re-
sources, bandwidth, and power and are limited due
to privacy constraints to send data over to the
cloud. Thus, there is a need to process image data
at the edge. Over the years, this need has incited a
lot of interest in implementing neuromorphic com-
puting at the edge. Neuromorphic systems aim to
emulate the biological neural functions to achieve
energy-efficient computing.

Recently, Oscillatory Neural Networks (ONN)
present a novel brain-inspired computing approach
by emulating brain oscillations to perform auto-
associative memory types of applications. To speed
up image edge detection and reduce its power con-
sumption, we perform an in-depth investigation
with ONNs. We propose a novel image process-
ing method by using ONNs as a hetero-associative
memory (HAM) for image edge detection. We sim-
ulate our ONN-HAM solution using first, a Mat-
lab emulator, and then a fully digital ONN de-
sign. We show results on gray scale square evalua-
tion maps, also on black and white and gray scale
28x28 MNIST images and finally on black and white
512x512 standard test images. We compare our so-
lution with standard edge detection filters such as
Sobel and Canny. Finally, using the fully digital
design simulation results, we report on timing and
resource characteristics, and evaluate its feasibility
for real-time image processing applications. Our
digital ONN-HAM solution can process images with
up to 120x120 pixels (166 MHz system frequency)

respecting real-time camera constraints. This work
is the first to explore ONNs as hetero-associative
memory for image processing applications.

Keywords— Edge detection, Hetero-Associative
Memory, Neuromorphic Computing, Oscillatory Neural
Networks

1 Introduction

In the last decade, we have witnessed a fast prolifera-
tion of edge devices for personal use and in all industry
sectors. In particular, smart edge cameras are widely
used for multiple applications such as security, auto-
motive and human-computer interaction among others
[11]. They perform image capture and processing to
identify an image or detect objects [23]. For privacy rea-
sons, edge devices recently have some sort of Artificial
Intelligence (AI) embedded by using Artificial Neural
Networks (ANNs). But the increase of data to be pro-
cessed combined with limited computational resources,
bandwidth, and energy at the edge, has led to explor-
ing novel beyond-von Neuman computing paradigms in-
spired by the brain, such as neuromorphic computing.
Oscillatory Neural Networks (ONNs) [22, 6, 26, 7]
are a novel neuromorphic computing paradigm based
on coupled oscillators to mimic brain waves observ-
able on electroencephalogram (EEG) [19]. Informa-
tion is represented in the phase relation between oscil-
lators to limit voltage amplitude and allow low-power
computation [24]. Coupled oscillators exhibit rich dy-
namics for Auto-Associative Memory (AAM) tasks [14],
like in Hopfield Neural Networks (HNNs) [12]. Simi-
larly, as HNNs, thanks to their AAM feature, ONNs
are commonly used for pattern recognition applications
[1]. But, ONNs can be devised to perform other func-
tionalities beyond AAM. For example, [27] proposed a
solution for image segmentation using a network of oscil-
lators. Another work, [10] developed a large-scale ONN
to resolve combinatorial optimization problems. In this
work, we propose a new functionality on ONNs such
as Hetero Associative Memory (HAM), which can be
advantageous for image edge detection applications.



Edge detection is an image processing function de-
tecting brightness and color variations in images. It also
helps for more complex image processing operations like
feature extraction, image classification, image segmen-
tation, or object detection. Usual algorithms are based
on convolutional filters, such as in Convolutional Neural
Networks (CNNs) [2].

CNNs are state-of-the-art ANNs used for image pro-
cessing applications. They are multi-layer ANNs with
first layers comprising convolutional filters to extract
features from images, like edges. Previous work from
[5] proposes a solution to use ONN as a CNN first-layer
filter. They use ONN as AAM to perform edge detec-
tion on 28x28 MNIST images.

Here, we propose for the first time a new solution
to perform edge detection using ONN as HAM. It re-
duces the number of parameters compared to convolu-
tional edge detection filters. Moreover, this work opens
up ONNSs to other image processing applications using
multi-dimensional association. Our contributions can
be summarized as 1) development of a solution to use
ONN as HAM for image edge detection application, 2)
the development and simulation of our solution using an
HNN-based Matlab emulator on multi-scale black and
white and gray scale images, and 3) a study of the real-
time performances of the hetero associative ONN on
edge detection, using a fully-digital ONN design from
[1] simulated on FPGA.

The paper is organized as follows. In Section 2 we
describe the ONN paradigm and its AAM computation
capabilities. In Section 3 we discuss the ONN adap-
tation to perform HAM tasks. Next, in Section 4 we
present our hetero associative ONN solution to perform
edge detection. The Section 5 describes the Matlab em-
ulator and the digital design used for simulation. Then,
in Section 6 we show results obtained with the HNN-
based Matlab emulator and the digital ONN design on
multiple black and white and gray scale images. Ad-
ditionally, we compare them with standard Sobel and
Canny edge detection algorithms. Finally, in Section 7
we provide timing and resource characteristics and dis-
cuss advantages and limitations of our ONN-HAM so-
lution.

2 Oescillatory Neural Net-

works

ONNSs are a novel brain-inspired computing paradigm
based on coupled oscillators. This section details the
ONN computing paradigm, its ability to deal with AAM
tasks, and the associated learning algorithm.

2.1 Computing Paradigm

ONNSs are recurrent neural networks made of coupled
oscillators where each neuron is an oscillator coupled
with analog components such as resistors or capacitors.
The phase relationship between oscillators encodes the
information. For example, for binary information, an
oscillator with a 0° phase difference from a reference
oscillator represents a logic ’0’, and an oscillator with a
180° phase difference represents a logic ’1’, see Fig. 1.
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Figure 1: An oscillatory neural network representa-
tion with AAM type of computation.
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Figure 2: An oscillatory neural network representa-
tion with HAM type of computation.



ONN exploits the switching dynamics between oscil-
lators [13] to compute. The process starts by defining
the coupling between oscillators with the learning algo-
rithm, which depends on the task to be executed. After-
ward, the input information defines oscillators’ phases
to initialize the network. The network evolves until it
stabilizes, and once it is stable, the output information
is obtained by measuring and decoding the oscillators’
phases.

ONNs appear as good solutions for hardware imple-
mentation on edge devices due to the fast and energy-
saving computation [24]. The phase computation allows
to use signals with low voltage amplitude to limit the
power consumption. As well, the highly parallel dy-
namic computation of oscillators enables fast computa-
tion, proportional to the oscillators’ frequency.

2.2 Auto-Associative
(AAM)

The coupling between oscillators defines the ONN be-
havior. It has been shown that using a specific coupling,
ONNSs can compute AAM tasks such as pattern recog-
nition applications [14], like with HNNs [12]. An AAM
network can memorize patterns in a way that it can
retrieve one of the memorized patterns from corrupted
input information. For example, ONN initialized with
a corrupted pattern will evolve for various oscillating
cycles and stabilize in one of the memorized patterns,
see Fig. 1. In an image, each oscillator corresponds to
a pixel, whereas the oscillator’s phase represents the
pixel’s color. If we initialize the network with any im-
age (corrupted or not), it will evolve and stabilize to
the closest memorized image. Note, in AAM, input and
output have the same dimension and are represented by
the same neurons. Also note, it is possible for the net-
work to never stabilize to a memorized pattern. In this
case, we consider the input image as unstable. The main
advantage of ONNs over HNNSs is the analog implemen-
tation allowing parallel low-power computing [24].

Memory

2.3 Learning

The predominant learning algorithm used to perform
AAM tasks is the Hebbian learning rule [20]. It is an
unsupervised learning rule introduced by Hopfield to
resolve AAM tasks on HNNs. For a network of N neu-
rons, to learn k patterns X*. The unsupervised Heb-
bian learning rule defines the weight w;; between neuron
¢ and neuron j as:

1
wy =5 S xkxgt (1)
k

with w;; = 0V ¢ = j. Note that the Hebbian learning
rule was developed for learning binary (0,1) or bipolar
(-1,1) patterns. Thus, for image processing, it can learn
only black and white images. However, ONN uses oscil-
lator’s phases to encode information, so it can tolerate
learning and stabilization of patterns with additional
values corresponding to phases among 0° and 180°. Also
note, the Hebbian learning rule enables ONN to retrieve
memorized patterns and opposite ones.

3 Hetero-Associative Memory

(HAM)

HAM are networks executing associative memory tasks
between inputs and outputs with different dimensions.
Inputs and outputs use different neurons to represent
different information. HAM can be considered as a two-
layer network that associates input information with
output information, or reconstructs in-out pairs, see
Fig. 2. For example, it can associate an input image
with an output class. Thus, learning algorithms use
patterns of in-out pairs.

In this section, we first discuss existing HAM neural
networks and their limitations. Then, we explain how
to modify ONNs to allow HAM functionality. Finally,
we present the learning algorithm adapted for hetero
association with ONNs.

3.1 State-of-the-Art

The principle of the HAM network was presented by
Kohonen in [17] and is referred to as the Linear As-
sociative Memory (LAM). It uses perceptron neurons
to process sequentially as a two-layer feed-forward net-
work with input influencing output depending on the
synapse’s weights. It is a ”one-shot” memory associa-
tion with limited accuracy. To overcome this limitation,
Kosko introduced the Bidirectional Associative Memory
(BAM) [18]. It sequentially uses both forward and back-
ward communications between input and output layers
to perform hetero association. Using a simple adapted
Hebbian learning algorithm, they were able to perform
HAM tasks better than LAM. Intrinsically, ONNs com-
pute in parallel and do not support feed-forward com-
putation due to always coupled oscillators. Such as if
neurons from input and output layers are coupled, they
will interact and evolve in parallel. This parallel com-
putation takes advantage of both forward and backward
communications for fast hetero association computa-
tion. Therefore, we need to adapt the standard ONNs
to enable hetero association functionality.

3.2 ONN Adaptation

The primary constraint to performing HAM tasks with
ONN is the coupling among all oscillators. In both LAM
or BAM, only neurons from the input layer are initial-
ized, and the network figures out the output. But in
ONNs, all coupled oscillators interact simultaneously.
Thus, if only neurons of the input layer are initialized,
neurons of the output layer will also impact the input
layer due to coupling. A solution to counter this effect is
to initialize output oscillators with neutral values, such
that they do not influence the dynamic. Presently, we
only use bipolar output values with our ONN (-1,+1)
due to the Hebbian learning algorithm limitation. Con-
sequently, to avoid the influence of one of the bipolar
values, we use two neurons for each output informa-
tion and initialize one with -1 and the other with +1.
Hence, one output has the same influence for each possi-
ble bipolar value. Note, we interconnect output neurons
as they represent the same information. Also note, the



learning algorithm will use patterns with doubled out-
put information.

3.3 Learning

For HAM applications, learning is performed with multi
dimensional in-out data pairs such as image-class pairs.
The learning algorithm to train HAM is an adapted
Hebbian learning rule. It reproduces the Hebbian algo-
rithm while connections among input and output neu-
rons are removed. If we consider k pairs of patterns with
4 neurons in the input layer X and j neurons in the out-
put layer Y, the weight w;; between input neuron ¢ and
output neuron j is:

k

To keep the connections between output neurons, we
translate each in-out pair pattern into a unique vector.
Then, we compute the classical Hebbian rule of Sec. 2.3,
but we set to 0 all connections among the input neurons.

(2)

4 Edge Detection with ONN

Edge detection extracts edges from image contrasts.
It typically occurs between two regions of an image.
It is often employed for image pre-processing like im-
age filtering, or feature extraction (like corners, curves,
etc.). This section discusses existing edge detection al-
gorithms, and we present the ONN adaptation to filter
the image with the chosen learning patterns.

4.1 State-of-the-art

There exist different types of edge detection algorithms.
Commonly used edge detection algorithms [16], such as
Sobel [25] and Canny [3] algorithms, use convolutional
kernels to process. Kernels are small-size matrices (usu-
ally from 3x3 to 7x7) whose parameters are applied as
convolutional operators on a small part of the image.
Convolutional results are then used to calculate a gra-
dient of the small image part which identify if there is
an edge. Another step applies a threshold to the ob-
tained gradient to select only strong edges. Each kernel
scans the entire image to identify edges at each pixel
location of the image. So, these algorithms are scalable
to every image size.

Both Sobel and Canny algorithms use at least two
kernel matrices to detect edges, one to detect horizon-
tal edges and the other for vertical edges. Note that
other solutions exist with more than two filter matri-
ces to increase precision. Also note, Canny algorithm
adds a pre-processing gaussian filter to remove noise and
smooth images.

4.2 ONN adaptation

We adapt ONN to perform image edge detection by us-
ing it as a 3x3 filter with a 1-pixel stride, see Fig. 3.
Note, the image size is scaled down as we scan without
any padding. We define the ONN input with a 3x3 im-
age and the ONN output with the detected edge. We

iy
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Figure 3: Complete image filtering by scanning with
ONN-HAM solution.

inputs |-2 |0 |2 0|0 |0

outputs

D A A A A A

WIVIVIV)

Figure 4: ONN-HAM training patterns and weights
for image edge detection application.

configure the network to detect two types of edges rep-
resented by 1 bipolar output information, such as -1
represents one type of edge, and +1 represents another
type. However, to deal with the oscillators’ parallel dy-
namics as explained in Section 3.2, we use two neurons
at the output layer to represent each bipolar output.

Once the ONN architecture is defined, it remains to
choose training patterns. We first explored multiple
combinations of bipolar vertical, diagonal, and horizon-
tal edges to find the best training patterns. However, we
finally found out the two kernels used for Sobel convolu-
tion can efficiently be used as training patterns to define
weights, see Fig. 4. One pattern associates the horizon-
tal edge kernel with white pixels output (41, +1), and
the second associates the vertical edge kernel with black
pixels output (-1, -1). We also expect ONN to detect a
no-edge case by stabilizing to a non-memorized output,
like (41, -1) or (-1, +1).

5 ONN-HAM designs

We validate and test our ONN-HAM solution with two
ONN designs adapted for hetero-association. A first
ONN Matlab emulator design based on HNN, described
in Section 5.1, and a second fully digital ONN design
specified in Section 5.2.



5.1 ONN Matlab emulator

We first test our ONN-HAM solution with a Matlab
emulator based on HNN. HNN state evolution is defined
by the following update rule. For each neuron i with
active state s!, connected to j neurons with synaptic
weights w;;, the next neuron state is:

sttt = sign()_wijst) (3)
J

The Matlab emulator uses a fully connected 11-
neuron HNN where the 9 first neurons represents the
3x3 input image, and the 2 last neurons represents the
output, using synaptic weights from Fig. 4. Note, this
network only outputs binary or bipolar values. How-
ever, neuron initialization can be done with in-between
values, as necessary for gray scale images.

5.2 ONN fully digital design

After validation of the ONN-HAM solution with the
Matlab emulator, we simulate it with a fully digital
ONN design. The design was presented in [1]. It took
inspiration from a hybrid analog-digital design proposed
by [15]. The fully digital design uses phase-controlled
digital oscillators to emulate neurons and a memory ta-
ble to emulate synapses weights. In this design, each
oscillators period is encoded with 16 clock cycle period,
allowing 9-stage phases between 0° and 180° (from 0 to
8). So, each neuron (image pixel) can be initialized with
up to 9 different gray levels. To do so, gray scale images
are converted into 9 gray levels encoded into the differ-
ent oscillator’s phases. Note the oscillators’ frequency
is defined as Fosc = Flsys/(16 % 4) with Fiys, the system
frequency, to ensure system computation.

Like with the Matlab emulator, we use an 11-neuron
fully connected ONN with 9 neurons as input and 2 neu-
rons as output, using synaptic weights from Fig. 4. We
use the Vivado design tool to simulate the digital ONN-
HAM design with the XC7Z020-1CLG400C FPGA as
target device.

6 Results

To test our ONN-HAM solution, we perform edge detec-
tion first on gray scale square evaluation maps, then on
black and white and gray scale 28x28 MNIST images,
and finally on large scale 512x512 black and white stan-
dard images. We compare outputs obtained with our
two ONN-HAM designs with the standard Sobel and
Canny algorithms. In this section, we present results
obtained on the different images while performing edge
detection with our ONN-HAM solution using both the
Matlab emulator and the fully digital design.

6.1 Gray scale maps

Quality evaluation of edge detection algorithms is com-
plex because a ground truth is necessary to compare
with. However, up to our knowledge, there is no ap-
proved algorithm to define the ground truth. Thus, im-
age edge detection ground truth is rarely available.

Consequently, to evaluate edge detection algorithms,
[21] proposed to use evaluation maps representing sim-
ple forms on a fixed background with different levels of
gray and different levels of noise. As a first evaluation
method of our solution, we create an evaluation map
with white background, and gray square forms with 9
levels of gray, from 0-black square, to 8-white square,
see Fig. 5. Note, we do not provide noise resistance
analyses in this work.

Fig. 5 shows output images given by the two ONN-
HAM designs and two state-of-the-art edge detection al-
gorithms, Sobel and Canny. It is important to highlight
that the ONN-HAM solution correctly identifies both
vertical and horizontal edge categories, as well as the
no-edge category with the two training patterns. ONN
sometimes retrieves horizontal edges when vertical and
the other; however, this is not an issue for a global edge
detection process.

More precisely, on the 0-black level, edges are cor-
rectly retrieved. However, Fig 6 shows our solution
detects twice each detected edge. Note the Sobel and
Canny algorithms avoid this double detection thanks to
the threshold function which select only strong edges.
Then, on gray scale levels, the ONN-HAM solution can
detect edges until the 6" level of gray, as the Canny
algorithm, while the Sobel algorithm only detects edges
until the 4" level of gray. From this point of view, the
ONN-HAM solution presents higher efficiency on gray
scale edges than Sobel algorithm. Note, the two ONN-
HAM designs give equal results for black and white
edges, while the fully digital design gives less edge than
the Matlab emulator for gray scale edges. Also note,
some gray scale edges are unstable with the fully dig-
ital design. It means, for some gray scale images, the
ONN-HAM never stabilizes to a stable output, and hes-
itates between multiple patterns. We consider unstable
outputs as no-edge category as the network does not
stabilize to one of the training pattern.

6.2 28x28 MNIST Images

After a first evaluation on a gray scale evaluation map
with only square forms, we use our ONN-HAM solu-
tion on more complex and realistic images from MNIST
database [9]. The MNIST database contains 28x28 gray
scale images representing handwritten digits. We per-
form edge detection tests on both gray scale and bina-
rized black and white images. Fig. 7 shows our ONN-
HAM solution (Matlab emulator or fully digital design)
which correctly identifies most digits edges on the black
and white image. Using only two training patterns rep-
resenting vertical and horizontal edges, the network also
identifies diagonal edges. Only left-oriented diagonal
is not retrieved every time. Like with the evaluation
map, most detected edges are detected twice. On the
contrary, Sobel algorithm misses some horizontal edges.
Again, our ONN-HAM solution seems more efficient to
detect all edges than the Sobel algorithm.

However, for gray scale images, the double detection
phenomena and the high efficiency to correctly detect
gray scale edges (as identified in Sec. 6.1), blurs the
output image by detecting too many edges. From these
results, we can tell the ONN-HAM algorithm correctly
detects black and white edges, despite the double detec-
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Figure 7: Output images obtained with different
edge detection solutions on a 28x28 black and white
and gray scale MNIST image.

tion, while it is not enough selective on gray scale edges.
Note, the double detection could be corrected with an
additional post-processing algorithm.

6.3 512x512 Standard Images

To further validate our solution on black and white im-
ages, we also perform edge detection on 512x512 stan-
dard test images. We test with grayscale images called
”cameraman,” ”lena,” and ”living room” converted into
black and white. Simulation of large scale images with
the fully digital ONN design are not feasible due to Vi-
vado simulation time and the sequential scanning. Scan-
ning sequentially a 512x512 image with a 3x3 filter and
a step of 1 pixel is equivalent to processing 260100 3x3
images. Thus, to be able to simulate large scale im-
ages, we simulate all possible combinations of black and
white 3x3 images (2° = 512 possibilities) and use the
corresponding output while scanning the large scale im-
age on Matlab. Note, performing this test with 9-stage
3x3 gray scale images remains impossible, as there are
9% = 387420489 possible inputs.

Fig. 8 presents output images obtained from ONN-
HAM, Sobel and Canny edge detection algorithms. It
validates the ONN-HAM efficiency to retrieve principal
image edges. Note that some imperfections are due to
the black and white conversion. Visually, we can state
that our ONN-HAM solution has similar precision as
Sobel and Canny algorithms on large-scale black and
white images. Additional processing demonstrates that
ONN-HAM makes double detection of edges as shown
in previous tested images.
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Figure 8: Comparison of output images obtained with the ONN-HAM solutions and standard Sobel and
Canny algorithms performing edge detection on 512x512 black and white standard test images.

7 Discussion

Simulations processed with both ONN-HAM designs,
the Matlab emulator and the fully digital ONN, high-
lighted the ability of our solution to detect edges. In
this Section, we discuss limitations of our system and
possible quality improvement. We also provide resource
and timing characteristics of the fully digital design and
evaluate its performances on real-time image processing.
Finally, we state computation advantages of the ONN
paradigm for this application.

7.1 Quality assessment

Our ONN-HAM edge detection solution shows similar
quality results as state-of-the-art Sobel and Canny al-
gorithms on black and white images. Almost all edges,
apart from left-oriented diagonal, are correctly detected.
Note, a possible solution to counter the lack of left-
oriented edge detection, would be to train the model
with an additional training pattern. However, we no-
tice that our solution detects edges twice. This limits
the edge detection efficiency on gray scale images but
can also increase edge detection for uncleared edges.
This effect can also impact the edge detection ability
on noisy images. We believe that the behavior on noisy
images requires further investigation as it is a critical
point for edge detection algorithm, hence the additional
gaussian filter in Canny algorithm. An additional post-
processing pooling function could help to counter this
double detection effect.

7.2 Timing performances

We extract timing and resource characteristics from
simulations performed with the fully digital ONN de-
sign, and we evaluate real-time image processing feasi-
bility. Table 1 shows characteristics and performances
extracted with the digital ONN design performing im-
age edge detection. It indicates that each ONN-HAM
with oscillators operating at Fose = 2.TMHz (Tose =
6ns and Fsys = 166M Hz) on a 3x3 image needs 240ns
for initialization and lus to 2us for stable computation.
This means ONN converges to a memorized pattern in
2 to 5 oscillation cycles. Note, unstable computation
is detected after 10 oscillation cycles without stabiliza-
tion. Stabilization is considered after two oscillation
cycles with equal phase stages.

Furthermore, using a sequential scanning of the im-
age, we estimate that our digital ONN-HAM solution
on FPGA can treat 28x28 images in 1.5ms, respecting
real-time cameras constraints of 25-30 images per sec-
ond. Estimation is calculated using the ONN initializa-
tion and computation time multiplied by the number
of 3x3 images to treat, as it is considered a sequen-
tial process. If we consider a camera with an output
flow of 30 images per second, our solution can do real-
time treatment of images of up to 120x120 pixel dimen-
sions. Other reported FPGA implementations of So-
bel or Canny algorithms allow faster image processing
[28, 29], by performing highly parallel computation.

The main drawback of our ONN-HAM solution is its
run time, but there is room for improving the ONN
digital design [1] for image processing timing require-
ments. First, we can increase the FPGA frequency, and
consequently, ONN oscillation frequency. The current
FPGA device allows a maximum system frequency of



Fyys = 175M H z, however other more powerful FPGAs
could be used to increase the system frequency. Also,
in Table 1, we highlight that the ONN-HAM digital de-
sign uses small FPGA resources, with less than 1% of
the available FPGA resources. This first permits its
integration in larger architectures. And second, it pro-
poses an alternative to the sequential process, by using
multiple ONNs in parallel to accelerate the image fil-
tering process. For example, using 20 parallel ONNs
with the same system frequency of Fsys = 166M Hz,
our ONN-HAM can process 512x512 images in 30ms,
respecting real-time constraints.

Finally, the actual fully digital ONN developed in [1]
is a fully connected ONN designed for AAM tasks. We
believe it can be further adapted for HAM tasks.

7.3 Computation advantages

Despite the timing limitation, our ONN-HAM solution
for image edge detection presents computation advan-
tages. Only one ONN-HAM filter is necessary to detect
multiple types of edges instead of using multiple convo-
lutional kernels (and gaussian pre-processing for Canny
algorithm). This limits the number of parameters from
18 for two convolutional kernels to 9 for our ONN-HAM
solution. Consequently, decreasing the number of pa-
rameters reduces the memory space needed for imple-
mentation.

Finally, ONN analog computing paradigm aims to
provide a solution for low-power computation. We be-
lieve, measuring power consumption using our fully digi-
tal ONN-HAM solution is not relevant because the ONN
energy efficiency comes from its analog implementation.
This work aims to show a proof of concept of a new so-
lution to use ONN as HAM, which is efficient for edge
detection application. Further investigation and exper-
imentation are needed to report on ONN-HAM analog
computation and energy efficiency. However, research
around low power analog ONN from novel materials, to
novel devices, and up to circuit architectures encourages
new system-level architectures and applications explo-
ration [24, 22, 6, 7, 8, 4].

8 Conclusion

In this paper, we proposed a solution to process het-
ero associative memory tasks using the ONN comput-
ing paradigm for the first time. We simulate ONN-HAM
and apply it to perform image edge detection. We test
and validate our system with two different designs, a
software Matlab emulator based on HNN, and a hard-
ware fully digital ONN design. We verify our edge detec-
tion solution first on gray scale evaluation maps, made
of a white background with gray scale squares. Then,
we validate it on more complex and realistic 28x28 gray
scale and black and white MNIST images and finally,
we confirm its efficiency on large scale 512x512 black
and white standard test images.

Our ONN-HAM solution is able to retrieve principal
edges with only one filter and two training patterns on
black and white as well as gray scale images. Despite
a double edge detection phenomenon, we report sim-
ilar results with our ONN-HAM solution to the stan-

dard classical Sobel and Canny algorithms, for black
and white images. The double detection phenomenon
appears due to no processing used to select stronger
edges, as in Sobel and Canny algorithm.

We also display edge detection on gray scale images.
Our ONN-HAM solution is highly sensitive to gray scale
edges which is an advantage for soft edges, but limits
the efficiency on realistic gray scale images where too
many edges are detected.

Using ONN-HAM digital design running at a system
frequency of Fyys = 166M Hz, with an oscillation fre-
quency of Fosc = 2.TMHz (Tosc = 6ns), our system
needs 240ns for initialization of the 11 neurons (9 input
neurons and 2 output neurons), and from lus to 2us for
computation, corresponding to 2 to 5 oscillation cycles.
Considering sequential scanning of the image, we esti-
mate the processing time of a 120x120 image to 31.9ms,
respecting real time camera requirements of 30 images
per second.
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