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Abstract: The atom graph of a graph is a graph whose vertices are the atoms obtained by clique
minimal separator decomposition of this graph, and whose edges are the edges of all possible atom
trees of this graph. We provide two efficient algorithms for computing this atom graph, with a
complexity in O(min(nω log n, nm, n(n + m)) time, where n is the number of vertices of G, m is
the number of its edges, m is the number of edges of the complement of G, and ω, also denoted
by α in the literature, is a real number, such that O(nω) is the best known time complexity for
matrix multiplication, whose current value is 2,3728596. This time complexity is no more than the
time complexity of computing the atoms in the general case. We extend our results to α-acyclic
hypergraphs, which are hypergraphs having at least one join tree, a join tree of an hypergraph being
defined by its hyperedges in the same way as an atom tree of a graph is defined by its atoms. We
introduce the notion of union join graph, which is the union of all possible join trees; we apply our
algorithms for atom graphs to efficiently compute union join graphs.

Keywords: clique separator decomposition; atom tree; atom graph; clique tree; clique graph; α-acyclic
hypergraph

1. Introduction

Decomposition by clique minimal separators (into subgraphs called atoms) was intro-
duced by Tarjan [1] in 1985 as a useful hole- and antihole-preserving decomposition. It
turns out that this decomposition is unique when clique minimal separators are used [2].

This decomposition has given rise to recent interest, both in the general case [2–5] and
for special graph classes [6–11]. Applications have arisen in the fields of databases [12],
text mining [13], and biology [14,15].

Berry et al. [4] introduced the concept of atom tree, which organizes the atoms of the
clique minimal separator decomposition into a tree as a generalization of the clique tree for
chordal graphs: the nodes are the atoms, and the edges correspond to the clique minimal
separators of the graph. However, as is the case for the clique tree, the atom tree is not
uniquely defined. This can be a problem, for instance, with the promising use of an atom
tree as a visualization tool.

In this paper, we focus on the atom graph, whose vertices are the atoms and whose
edges are those of all possible atom trees.

The notion of atom graph was introduced in 2007 in [15], in the context of visualizing
biological clusters. An efficient construction algorithm was proposed in 2010 in [16].

In the case of chordal graphs, atoms are the maximal cliques, and atom trees are clique
trees. A related graph that has been extensively studied in this context is the clique graph
(see, e.g., [17,18]), which is the intersection graph of the maximal cliques. The weighted
clique graph of a chordal graph has been used to construct a clique tree of this graph [19,20],
its clique trees being the maximum weight spanning trees of its weighted clique graph.
Thus, the atom graph of a chordal graph is a subgraph of its clique graph. In the context
of efficiently constructing a clique tree, in 1991, Blair and Peyton [19] studied the family

Algorithms 2021, 14, 347. https://doi.org/10.3390/a14120347 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a14120347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14120347
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14120347?type=check_update&version=2


Algorithms 2021, 14, 347 2 of 20

of all possible clique trees, an object very close to the atom graph of a chordal graph. In
1995, Galinier et al. [21] used the weighted atom graph of a chordal graph but misguidedly
called this object the ‘clique graph’. In 2012 in [22], this object is further studied and called
the ‘reduced clique graph’.

Our first goal in this paper is to propose efficient algorithms to compute the atom
graph, both in the general case and in the case of chordal graphs.

Given a graph, all known algorithms for computing the decomposition into atoms
first compute a minimal triangulation of the graph [2–4], with the exception of some special
graph classes [6,7]. A minimal triangulation can be computed in O(min(nω log n, nm, n(n +
m))) time, where n is the number of vertices of G, m is the number of its edges, m is the
number of edges of the complement of G, and ω, also denoted by α in the literature, is a
real number such that O(nω) is the best known time complexity for matrix multiplication,
whose current value is 2,3728596 [4,23,24]. From this minimal triangulation, an atom tree
can be computed in O(min(nω, nm, n(n + t))) time [2,4,5], where t is the number of two
pairs of the minimal triangulation, and thus t ≤ m. As a result, an atom tree can be
computed in O(min(nω log n, nm, n(n + m))) time.

To compute the atom graph efficiently, we present two different approaches. One takes
as input an atom tree as well as the inclusion relation between the separators represented
by its edges, and the other takes as input the weighted intersection graph of the atoms. In
both cases, we provide an O(n2) algorithm to compute the atom graph from the input. Our
global complexity when taking the graph itself as input comes to O(min(nω log n, nm, n(n+
m))) time.

We then go on to remark that the atoms of a graph G = (V, E) can be seen as the
hyperedges of an α-acyclic hypergraph, whose vertex set is V, since G has an atom tree,
which is a join tree of this hypergraph. However, the atoms of a graph are pairwise non-
inclusive, which is not a requirement for α-acyclic hypergraphs, where a hyperedge can be
included in another. Fortunately, our algorithms also work in this more general context.

We introduce the notion of union join graph, which is the union of all join trees, and
provide algorithms to compute this object efficiently.

The paper is organized as follows: Section 2 provides some necessary preliminaries.
Section 3 discusses useful properties of the atom graph. Section 4 presents our algorithms to
compute the atom graph. Section 5 defines the atom hypergraph and relates it to α-acyclic
hypergraphs. Section 6 discusses how to compute the union join graph of an α-acyclic
hypergraph. We conclude in Section 7.

2. Preliminaries

The graphs considered in this paper are finite and undirected. For a graph G =
(V, E), n = |V| and m = |E|. For any subset X of V, G(X) denotes the subgraph of
G induced by X. For any vertex v of G, NG(v) denotes the neighborhood of v in G:
NG(v) = {w ∈ V | vw ∈ E}. For any subset X of V, NG(X) denotes the neighborhood of X
in G: NG(X) = (∪v∈X NG(v)) \ X. We will omit the subscripts when there is no ambiguity.
A clique of G is a set of pairwise adjacent vertices of G, and G is complete if V is a clique of G.
The union of two graphs G1 = (V, E1) and G2 = (V, E2) is the graph G1 ∪ G2 = (V, E1 ∪ E2).

G denotes the complement of G, and m denotes the number of its edges. ω is a real
number, such that O(nω) is the best known time complexity for matrix multiplication. For
any set V, P(V) is the power set of V. For any subset A of P(V), the intersection graph of
A is the graph (A, E), where E is the set of pairs of A whose intersection is non-empty. For
each graph G, K(G) denotes the set of maximal cliques of G, and the clique graph of G is
the intersection graph of K(G). If X and Y are nodes of a tree T, PT(X, Y) denotes the path
in T between X and Y.
Separation. Let S be a subset of vertices of a connected graph G = (V, E). S is a separator
of G if G(V \ S) is disconnected. For any vertices a and b in V \ S, S is an ab-separator of G
if a and b are in different connected components of G(V \ S). S is a minimal ab-separator if
it is an inclusion-minimal ab-separator, and a minimal separator if there is some pair {a, b}
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of vertices, such that S is a minimal ab-separator. Given a minimal separator S, C is a full
component of S if C is a connected component of G(V \ S) and NG(C) = S. S is a minimal
separator if and only if S has at least 2 full components, and S is a minimal ab-separator if
and only if a and b lie in 2 different full components of S. Given three subsets S, A, and
B of V, S is a (minimal) AB-separator of G if it is a (minimal) ab-separator of G for each
a ∈ A and each b ∈ B.

A 2-pair of a connected graph G is a pair {x, y} of non-adjacent vertices such that every
chordless path between x and y is of length 2, i.e., every sequence of consecutively-adjacent
vertices with x and y as endpoints and being minimal for these properties according to the
relation of subsequence has 3 vertices, or equivalently, such that N(x) ∩ N(y) is a minimal
xy-separator of G. The number of 2-pairs of a graph is denoted t, with t ≤ m.

If G is disconnected, then a (minimal) (ab-)separator of G is a (minimal) (ab-)separator
of one of its connected components. Thus, the set of minimal separators of a graph is the
union of the sets of minimal separators of its connected components, and so it is for its set
of 2-pairs.
Chordal graphs. A graph is chordal or triangulated if it has no chordless cycle of length
at least 4. A graph is chordal if and only if all its minimal separators are cliques [25]. A
chordal graph has at most n maximal cliques, and the sum of their sizes is bounded by
n + m. A connected graph is chordal if and only if it has a clique tree [20,26].

Definition 1. Let G = (V, E) be a connected chordal graph. A clique tree of G is a tree
T = (K(G), ET), such that, for each vertex x of G, the set Kx of nodes of T containing x induces a
subtree of T.

Characterization 1 ([19]). Let G = (V, E) be a connected chordal graph, let T be a clique tree of
G, and let S ⊆ V; then, S is a minimal separator of G if and only if there is an edge XY of T, such
that S = X ∩Y.

If G is a disconnected chordal graph, we associate with G a forest whose connected
components are clique trees of the connected components of G. A clique tree (forest) can
be computed in linear time [19].
Atoms. Atoms are the subgraphs obtained by applying the decomposition by clique
minimal separators (see [3] for a survey).

Characterization 2 ([2]). An atom of a graph G = (V, E) is an inclusion-maximal subset of V
inducing a connected subgraph of G with no clique separator.

We will denote the set of atoms of G by A(G).

Property 1. The atoms of a chordal graph are its maximal cliques.

Property 2 ([2]). The intersection of two distinct atoms is a clique.

Notation 1. For a graph G = (V, E), G+ denotes the graph whose vertex set is V and whose edges
are the pairs of V that are contained in a common atom of G (this graph is denoted G∗ in [2]).

Property 3 ([2]). For a graph G, G+ is chordal, its maximal cliques are the atoms of G, and for
each clique S of G and each pair {a, b} of V \ S, S is a minimal ab-separator of G if and only if S is
a minimal ab-separator of G+.

It follows that a graph has at most n atoms.
Atom trees. To represent the atoms of a graph, [4] extend the notion of clique tree of a
connected chordal graph to the notion of atom tree of a connected graph:
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Definition 2 ([4]). Let G = (V, E) be a connected graph. An atom tree of G is a tree T =
(A(G), ET), such that, for each vertex x of G, the set Ax of nodes of T containing x induces a
subtree of T.

Note that an atom tree is not a decomposition tree of clique separator decomposition
as defined in [1,16], though this decomposition is called ‘atom tree’ in [16].

An atom tree of a connected graph G can be computed in O(min(nω log n, nm, n(n +
m))) time [4,5].

As for clique trees of chordal graphs, we can extend the definition of an atom tree to
the definition of an “atom forest” of an arbitrary graph G, whose connected components
are atom trees of the connected components of G.

The edges of an atom tree (forest) of a graph correspond to its clique minimal separa-
tors.

Characterization 3 ([4]). Let G = (V, E) be a connected graph, let T be an atom tree of G, and
let S ⊆ V; then S is a clique minimal separator of G if and only if there is an edge AB of T, such
that S = A ∩ B.

Property 4. For a connected graph G, the atom trees of G are the clique trees of the chordal graph
G+ (G+ is defined in Notation 1).

Example 1. Figure 1 shows a graph G and two of its atom trees. The atoms of G are A =
{1, 2, 3, 4, 5, 6}, B = {1, 2, 3, 7}, C = {1, 7, 8}, D = {1, 9}, E = {1, 10, 11}, and F =
{10, 11, 12, 13}. Denoting by Ax the set of atoms containing x for each vertex x of G, the sets
Ax containing at least 2 atoms are A1 = A(G) \ {F}, A2 = A3 = {A, B}, A7 = {B, C},
A10 = A11 = {E, F}. Thus, G has 15 atom trees, which are all the trees obtained from the forest
(A(G), {AB, BC, EF}) by adding 2 edges not containing the node F (6 containing the edge DE,
as the atom tree shown on the left, and 9 not containing it, as the atom tree shown on the right).
Each edge XY of each atom tree is labeled with the associated clique minimal separator X ∩Y of G.

•1
•2

•
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•7
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•9
•10

•
11

•
12

•13

A = {1, 2, 3, 4, 5, 6}

B = {1, 2, 3, 7}

C

D
E

F

A

B

C

D

E

F

{1, 2, 3} {1, 7}

{1}

{1} {10, 11}

A

B

C

D

E
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{1, 2, 3} {1, 7}

{1}{1}

{10, 11}

Figure 1: A graph G and two atom trees of G.

Proof: It is sufficient to prove it in the case of a connected graph G. Let T be an atom
tree of G, and let us show by induction on |A| that for each connected subset A of nodes of
T , ΣX∈A|X| ≤ nA + mA, where nA and mA are the numbers of vertices and edges of the
subgraph of G induced by VA = ∪X∈AX. It trivially holds if |A| = 1. We assume that it
holds if |A| = k. Let us show that it holds if |A| = k+1. Let X1 be a leaf of T (A), let X2 be
the neighbor of X1 in T (A), let S = X1∩X2 and let A2 = A\{X1}. By induction hypothesis
ΣX∈A2 |X| ≤ nA2 +mA2 . As T is an atom tree of G, VA is the disjoint union of X1\S and VA2 ,
so nA = |X1\S|+nA2 . By Property 2.12 S ⊆ NG(X1\S), so mA ≥ |S|+mA2 .. It follows that
ΣX∈A|X| = |X1|+ΣX∈A2|X| ≤ (|X1\S|+|S|)+(nA2+mA2) = (|X1\S|+nA2)+(|S|+mA2) ≤
nA +mA. 2

Property 2.14 The sum of the sizes of the sets X ∩Y for each edge XY of an atom tree T
of a connected graph is bounded by n+m, and these sets can be computed from T in O(m)
time.

Proof: Let T = (A(G), ET ) be an atom tree of G. We consider a rooted directed tree
Tr = (A(G), U) obtained from T by choosing an arbitrary root. Thus ΣXY ∈ET

|X ∩ Y | =
Σ(X,Y )∈U |X ∩ Y | ≤ Σ(X,Y )∈U |Y | ≤ ΣY ∈A(G)|Y | ≤ n+m by Property 2.13.
These sets can be computed by searching T and computing X ∩ Y in O(|Y |) time when
reaching Y from its neighbor X, and therefore in O(m) time.by Property 2.13. 2

6

Figure 1. A graph G and two atom trees of G.
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The following properties will be used to compute complexity bounds.

Property 5. Let A and B be distinct atoms of a graph G. Then, G(A \ B) is connected and
A ∩ B ⊆ NG(A \ B).

Proof. By Property 2, A ∩ B is a clique of G. A \ B is connected since otherwise A ∩ B
would be a clique separator of G(A). Similarly, A ∩ B ⊆ NG(A \ B), since otherwise,
A ∩ NG(A \ B) would be a clique ab-separator of G(A) for any a in A \ B (which is non-
empty by definition of atoms) and any b in (A ∩ B) \ NG(A \ B).

Property 6. The sum of the sizes of the atoms of a graph is bounded by n + m.

Proof. It is sufficient to prove it in the case of a connected graph G. Let T be an atom tree
of G, and let us show by induction on |A| that, for each connected subset A of nodes of
T, ΣX∈A|X| ≤ nA + mA, where nA and mA are the numbers of vertices and edges of the
subgraph of G induced by VA = ∪X∈AX. It trivially holds if |A| = 1. We assume that
it holds if |A| = k. Let us show that it holds if |A| = k + 1. Let X1 be a leaf of T(A), let
X2 be the neighbor of X1 in T(A), let S = X1 ∩ X2, and let A2 = A \ {X1}. By induction,
hypothesis ΣX∈A2 |X| ≤ nA2 + mA2 . As T is an atom tree of G, VA is the disjoint union of
X1 \ S and VA2 , so nA = |X1 \ S|+ nA2 . By Property 5, S ⊆ NG(X1 \ S), so mA ≥ |S|+mA2 .
It follows that ΣX∈A|X| = |X1|+ ΣX∈A2 |X| ≤ (|X1 \ S|+ |S|) + (nA2 + mA2) = (|X1 \ S|+
nA2) + (|S|+ mA2) ≤ nA + mA.

Property 7. The sum of the sizes of the sets X ∩Y for each edge XY of an atom tree T of a connected
graph is bounded by n + m, and these sets can be computed from T in O(m) time.

Proof. Let T = (A(G), ET) be an atom tree of G. We consider a rooted directed tree
Tr = (A(G), U) obtained from T by choosing an arbitrary root. Thus, ΣXY∈ET |X ∩ Y| =
Σ(X,Y)∈U |X ∩Y| ≤ Σ(X,Y)∈U |Y| ≤ ΣY∈A(G)|Y| ≤ n + m by Property 6.
These sets can be computed by searching T and computing X ∩ Y in O(|Y|) time when
reaching Y from its neighbor X, and therefore in O(m) time.by Property 6.

α-acyclic hypergraphs. A simple hypergraph, or hypergraph for short, is a structure H =
(V, E), where V is its vertex set and E is a set of non-empty subsets of V, called the
hyperedges of H, whose union is equal to V. A hypergraph is a clutter if the elements of
E are pairwise non-inclusive. Its line graph, denoted by L(H), is the intersection graph of
E . Its 2-section graph, denoted by 2SEC(H), is the graph whose vertex set is V and whose
edges are the pairs of V that are contained in a hyperedge of H. H is connected if L(H)
is connected, or equivalently, if 2SEC(H) is connected. We denote by p the number of
hyperedges of a hypergraph. Let (v1, . . . , vn) be an ordering of V, and let (X1, . . . , Xp)
be an ordering of E . The incidence matrix of H w.r.t. these orderings is the n× p matrix
M = (mi,j), such that, for each i ∈ [1, n] and each j ∈ [1, p], mi,j = 1 if vi ∈ Xj and 0
otherwise.

A join tree of H is a tree T whose node set is E , such that, for each vertex x of H, the
set Ex of nodes of T containing x induces a subtree of T, or equivalently, such that, for each
pair {X, Y} of E , X ∩ Y is a subset of each node of PT(X, Y). H is α-acyclic if it has a join
tree.

A join tree of an α-acyclic hypergraph H can be computed in O(s) time, where s is the
sum of the sizes of the hyperedges of H [27].

Property 8. Let H = (V, E) be an α-acyclic hypergraph, and let G be the 2-section graph
2SEC(H). Then, G is chordal, and if, moreover, H is a clutter, then E = K(G) (i.e., the set
E of hyperedges of H is equal to the set K(G) of maximal cliques of G).
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It follows that the number of hyperedges of a clutter is bounded by the number of its
vertices, since a chordal graph has, at most, n maximal cliques. The number of hyperedges
of an α-acyclic hypergraph that is not a clutter may be exponential in the number of vertices.

A join tree of an α-acyclic hypergraph H = (V, E) can be defined from its weighted line
graph, where weights are defined as follows. The set associated with a pair {X, Y} of E is
X ∩Y, and its weight, denoted by w(XY), is |X ∩Y|. Let K be a graph whose node set is E .
The weight of K is the sum of the weights of its edges. When considered a weighted graph,
K is denoted by Kw. Thus, Lw(H) denotes the weighted line graph of H.

Characterization 4 ([28]). Let H = (V, E) be an α-acyclic (resp. connected α-acyclic) hypergraph.
Then, the join trees of H are the maximum weight spanning trees of the weighted complete graph on
E (resp. of Lw(H)).

In particular, the atom trees of a connected graph G are the maximum weight spanning
trees of the weighted intersection graph of the atoms of G, which is proved in the case of
chordal graph in [19] (and extends to any connected graph through the chordal graph G+

by Property 4).

3. Atom Graphs

Atom graphs were used in [15] and were formally introduced in [16].

Definition 3 ([16]). The atom graph of a graph G, denoted by AG(G), is the graph (A(G), E′),
where A(G) is the set of atoms and E′ the set of pairs {A, B} of A(G), such that A ∩ B is a clique
minimal (A \ B)(B \ A)-separator of G.

Example 2. Figure 2 shows the atom graph of the graph G from Figure 1.

A

B

C

D

E

F

{1, 2, 3} {1, 7}

{10, 11}

Figure 2: The atom graph of G (the edge labels that are equal to {1} are omitted).

Definition 3.1 [3] The atom graph of a graph G, denoted by AG(G), is the graph (A(G), E ′),
where A(G) is the set of atoms and E ′ the set of pairs {A,B} of A(G) such that A ∩ B is
a clique minimal (A \B)(B \ A)-separator of G.

Example 3.2 Figure 2 shows the atom graph of the graph G from Figure 1.

In the definition of the atom graph, the word ‘clique’ can be removed by Property 2.5
and the word ‘minimal’ can be removed by Property 2.12, which implies that for each pairs
{A,B} of A(G), each one of A \B and B \ A is a subset of a full component of A ∩B.

Characterization 3.3 Let A and B be distinct atoms of a graph G. Then AB is an edge of
AG(G) if and only if A∩B is an ab-separator of G for some a ∈ A\B and some b ∈ B \A.

The following property immediately follows from Properties 2.4 and 2.7.

Property 3.4 The atom graph of a graph G is the atom graph of the chordal graph G+

(G+ is defined in Notation 2.6).

Characterizations 3.5 and 3.6 below give relationships between the atom graph and the atom
trees. They are both proved for chordal graphs in [17] and also apply to any connected graph
through the chordal graph G+ by Properties 2.4, 2.10 and 3.4.

Characterization 3.5 The atom graph of a connected graph G is the union of all the atom
trees of G.

Characterization 3.6 The atom trees of a connected graph G are the maximum weight
spanning trees of the weighted atom graph of G.

To compute the edges of the atom graph from an atom tree, we will use the following
characterization from [19] for chordal graphs, which also applies to any connected graph
through the chordal graph G+ by Properties 2.4, 2.10 and 3.4.

Characterization 3.7 Let G be a connected graph, let A and B be distinct atoms of G and
let T be an atom tree of G. Then AB is an edge of AG(G) if and only if there is an edge
A′B′ on the path PT (A,B) between A and B in the tree T such that A ∩B = A′ ∩B′.

8

Figure 2. The atom graph of G. (the edge labels that are equal to 1 are omitted).

In the definition of the atom graph, the word ‘clique’ can be removed by Property 2,
and the word ‘minimal’ can be removed by Property 5, which implies that, for each pairs
{A, B} of A(G), each one of A \ B and B \ A is a subset of a full component of A ∩ B.

Characterization 5. Let A and B be distinct atoms of a graph G. Then, AB is an edge of AG(G)
if and only if A ∩ B is an ab-separator of G for some a ∈ A \ B and some b ∈ B \ A.

The following property immediately follows from Properties 1 and 3.
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Property 9. The atom graph of a graph G is the atom graph of the chordal graph G+ (G+ is defined
in Notation 1).

Characterizations 6 and 7 below give relationships between the atom graph and the atom
trees. They are both proved for chordal graphs in [21] and also apply to any connected
graph through the chordal graph G+ by Properties 1, 4, and 9.

Characterization 6. The atom graph of a connected graph G is the union of all the atom trees of G.

Characterization 7. The atom trees of a connected graph G are the maximum weight spanning
trees of the weighted atom graph of G.

To compute the edges of the atom graph from an atom tree, we will use the following
characterization from [22] for chordal graphs, which also applies to any connected graph
through the chordal graph G+ by Properties 1, 4, and 9.

Characterization 8. Let G be a connected graph, let A and B be distinct atoms of G, and let T be
an atom tree of G. Then, AB is an edge of AG(G) if and only if there is an edge A′B′ on the path
PT(A, B) between A and B in the tree T, such that A ∩ B = A′ ∩ B′.

4. Computing the Atom Graph

We know that, given a connected graph G, an atom tree of G (and therefore the atoms
of G) can be computed in linear time if G is chordal and in O(min(nω log n, nm, n(n + m)))
time otherwise. To compute the set of edges of the atom graph of G, a naive algorithm
consists of computing for each pair {A, B} of atoms of G the connected components of
G(V \ (A ∩ B)) and determining whether A \ B and B \ A are in different components,
which can be performed in O(m) time for each pair {A, B} and therefore in O(n2m) time
globally.

We will improve upon this to obtain a time that is no worse than that of computing an
atom tree.

Our first algorithm starts with an atom tree and the inclusion relation between the
separators represented by the edges, and adds all the extra edges required to construct
the atom graph. Our second algorithm starts with the weighted intersection graph of the
atoms and repeatedly determines the edges of weight k, which belong to the atom graph
in decreasing order of k. Both algorithms run in O(n2) time given these inputs. When
only the graph is given as input, we obtain a complexity of O(min(nω log n, nm, n(n + m)))
time, as will be detailed in this section.

We introduce the following parameters, which will be used in this section and in
Section 6: p denotes the number of atoms of G, s the sum of their sizes, and for each
atom tree T of G, s4(T) denotes the sum of the sizes of the symmetrical differences
X4Y = (X \Y) ∪ (Y \ X) for each edge XY of T.

Notation 2. For each connected graph G, p = |A(G)|, s = ΣX∈A(G)|X|, and for each atom tree,
T = (A(G), ET) of G s4(T) = ΣXY∈ET |X4Y|.

Note that p ≤ n since G has at most n atoms, and that s ≤ n + m since the sum of the
sizes of the atoms of G is bounded by n + m by Property 6. The parameters p, s, and s4(T)
are introduced for two reasons. First, they will be used to extend the complexity results of
this section to the context of α-acyclic hypergraphs in Section 6 with appropriate extensions
of the definitions of these parameters. Second, it can lead to a better complexity for graph
classes for which these parameters have specific bounds.

As will be detailed in Section 4.1, we will also need the inclusion relation sub on the
minimal separators represented by the edges of an atom tree.
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Definition 4. Let T be an atom tree of a connected graph. We call subset relation of T the relation
sub in the set ET of edges of T defined by : ∀XY, X′Y′ ∈ ET sub(XY, X′Y′)⇔ X ∩Y ⊆ X′ ∩Y′.

We will show in Sections 4.1 and 4.2 the following complexity result:

Theorem 1. The atom graph of a connected graph G can be computed :
(a) in O(n2) time from either an atom tree of G and its subset relation or the weighted intersection
graph of the atoms of G,
(b) in O(min(nω, nm, n(n + m+))) time from an atom tree of G,
(c) in O(min(nω, nm)) time from the set of atoms of G,
(d) in O(min(nω log n, nm, n(n + m))) time from G,
where m+ denotes the number of edges of G+ (G+ is defined in Notation 1).

For a chordal graph H, the atom graph can thus be computed in O(min(nω , nm, n(n +
m))) time, since, in that case, G+ = G, and an atom tree (clique tree) of G can be computed
in linear time.

Other approaches are possible but with no improvement of the time complexity. For
instance, as the atom trees of a graph G are obtained from the atom trees of a minimal
triangulation H of G by merging the maximal cliques of H into the atoms of G [4], the atom
graph of G is obtained from the atom graph of H by merging the same maximal cliques
of H.

The different items of Theorem 1 are detailed in the following results: item (a) follows
from Theorem 2 and Corollary 1, item (b) follows from item (c) and Theorem 3, item (c)
follows from item (a) and Proposition 2, and item (d) follows from item (b) and from the
fact that an atom tree of G can be computed in O(min(nω log n, nm, n(n + m))) time.

4.1. Algorithm Forest Join

Our first algorithm, Forest Join (Algorithm 1), is based on Characterization 9. Given
an atom tree T, a minimal separator S is represented by one or several edges of T. If we
remove these edges, we obtain a forest. Let us now further shrink this forest by removing
the nodes that do not contain S. Any edge between two nodes of different trees of the
resulting forest will correspond to an edge of the atom graph, which also represents S, and
all the S representatives are thus encountered.

To implement this remarkable property, our algorithm processes the edges of the atom
tree one by one and computes the relevent nodes and edges with the help of relation sub.

Characterization 9. Let G be a connected graph, let T be an atom tree of G, and let S be a minimal
separator of G. Then, the edges of AG(G) associated with S are the pairs of nodes of T whose
endpoints are in different connected components of T(AS)− ES, where AS is the set of nodes of T
containing S, and ES is the set of edges of T associated with S.

Proof. Let {X, Y} be a pair of nodes of T. Let us show that XY is an edge of AG(G)
associated with S if and only if X and Y are in different connected components of T(AS)−
ES, i.e., by Characterization 8, and the fact that T(AS) is connected, that there is an edge
X′Y′ of PT(X, Y), such that S = X ∩Y = X′ ∩Y′ if and only if PT(X, Y) is a path in T(AS)
having an edge X′Y′ in ES.
⇒: as S = X ∩Y PT(X, Y) is a path in T(AS), and as S = X′ ∩Y′, X′Y′ is in ES.
⇐: as X and Y are in AS, S ⊆ X ∩ Y. Hence, S ⊆ X ∩ Y ⊆ X′ ∩ Y′ = S, and therefore
S = X ∩Y = X′ ∩Y′.

The algorithm Forest Join computes the edges of the atom graph of G according to
Characterization 9. Given an atom tree T of G and its subset relation sub, it scans the edges
of T, and for each edge AB, it computes the set of edges of the atom graph associated with
the minimal separator S associated with AB if it has not been computed yet, i.e., if AB does
not belong to the set of edges computed so far.
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It calls the algorithm Components (Algorithm 2), which computes the connected
components of the forest T(AS)− ES defined in Characterization 9. The relation sub enables
us to compute these components at no extra cost than a simple tree search: T(AS) is the
subtree of T whose edges XY are associated with supersets of S, i.e., satisfy sub(AB, XY),
and ES is the set of edges XY of T associated with S, i.e., such that sub(AB, XY) and
sub(XY, AB).

In the algorithm Components, k is the current number of connected components,
C1, . . . , Ck are the current components, Queue contains the nodes of T that are reached
but not processed yet, and for each reached node X, numComp(X) is the index i of the
component Ci containing X, and pred(X) is the node of T from which it has been reached
(and which should not be processed again).

Algorithm 1: Forest Join.
input :An atom tree T = (A, ET) of a connected graph G and its subset relation

sub.
output :The atom graph of G.

E′ ← ∅;
foreach AB ∈ ET do

if AB /∈ E′ then
// the edges associated with A ∩ B are not in E′ yet
CompSet← Components(T, AB, sub);
foreach {C, C′} ⊆ CompSet do

foreach X ∈ C do
foreach Y ∈ C′ do

Add XY to E′;
end

end
end

end
end
return (A, E′);

Example 3. Figure 3 shows an atom tree T of the graph G from Figure 1 and an execution of the
algorithm Forest Join on T and its subset relation. It shows the forest T(AS)− ES) for S = {1},
where the edges of the atom graph associated with S are represented by dotted lines. For each clique
minimal separator S different from {1}, as AS is of size 2, AG(G) has a unique edge associated
with S, which is also an edge of T. So, AG(G) is obtained from T by adding the edges associated
with {1} that are not already present in T.

Algorithm Components
input : An atom tree T of an connected graph, an edge AB of T and the subset

relation sub of T .
output: The set of connected component of T (AS)− ES, where S = A ∩B, AS is

the set of nodes of T containing S and ES is the set of edges of T
associated with S.

k ← 1; C1 ← {A}; numComp(A)← 1; Queue← {A};
while Queue 6= ∅ do

Remove a node X from Queue;
foreach Y ∈ NT (X) do

if (Y 6= pred(X)) ∧ sub(AB,XY ) then
if sub(XY,AB) then

// XY associated with S, begin a new component
k ← k + 1; Ck ← ∅; i← k;

else
i← numComp(X);

Add Y to Ci; numComp(Y )← i;
pred(Y )← X; Add Y to Queue;

return {C1, . . . , Ck};

Proof: The correctness follows from Characterization 4.4. Let us prove the time complex-
ity. As Algorithm Components runs in O(p) time and is called less than p times, it globally
costs O(p2) time. As an edge XY is added to E ′ at most once (when processing the first
edge of T associated with X ∩ Y ), the number of edge additions to E ′ is bounded by p2.
Hence Algorithm Forest Join runs in O(p2) time, and therefore in O(n2) time since G has
at most n atoms (p ≤ n). 2

To evaluate the time complexity of computing the atom graph of G from an atom tree
T of G using Algorithm Forest Join, we need the time complexity of computing the subset
relation of T .
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Figure 3: An execution of Algorithm Forest Join.
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Figure 3. An execution of the algorithm Forest Join.

Theorem 2. Given an atom tree of a connected graph G and its subset relation, the algorithm
Forest Join computes the atom graph of G in O(p2) time, and therefore in O(n2) time.



Algorithms 2021, 14, 347 10 of 20

Algorithm 2: Components.
input :An atom tree T of an connected graph, an edge AB of T, and the subset

relation sub of T.
output :The set of connected component of T(AS)− ES, where S = A ∩ B, AS is

the set of nodes of T containing S, and ES is the set of edges of T
associated with S.

k← 1; C1 ← {A}; numComp(A)← 1; Queue← {A};
while Queue 6= ∅ do

Remove a node X from Queue;
foreach Y ∈ NT(X) do

if (Y 6= pred(X)) ∧ sub(AB, XY) then
if sub(XY, AB) then

// XY associated with S, begin a new component
k← k + 1; Ck ← ∅; i← k;

end
else

i← numComp(X);
end
Add Y to Ci; numComp(Y)← i;
pred(Y)← X; Add Y to Queue;

end
end

end
return {C1, . . . , Ck};

Proof. The correctness follows from Characterization 9. Let us prove the time complexity.
As the algorithm Components runs in O(p) time and is called less than p times, it globally
costs O(p2) time. As an edge XY is added to E′ at most once (when processing the first
edge of T associated with X ∩ Y), the number of edge additions to E′ is bounded by p2.
Hence, the algorithm Forest Join runs in O(p2) time, and therefore in O(n2) time since G
has at most n atoms (p ≤ n).

To evaluate the time complexity of computing the atom graph of G from an atom tree
T of G using the algorithm Forest Join, we need the time complexity of computing the
subset relation of T.

Proposition 1. Given an atom tree of a connected graph, its subset relation can be computed in
O(min(nω, ps)) time, and therefore in O(min(nω, nm)) time.

Proof. It follows from the proof of Property 7 that the sets X ∩Y for each edge of T can be
computed in O(s) time. and that the sum of their sizes is bounded by s. As the inclusion of
X ∩ Y in X′ ∩ Y′ or not can be determined in O(|X ∩ Y|) time, the subset relation can be
computed in O(s + ps) time, i.e., in O(ps) time.
Alternatively, as sub(XY, X′Y′) is equivalent to |X ∩ Y| = |(X ∩ Y) ∩ (X′ ∩ Y′)|, it can be
evaluated in O(1) time, and therefore in O(p2) time globally, provided that the values of
|X∩Y| and |(X∩Y)∩ (X′ ∩Y′)| have been pre-computed. The values of X∩Y and |X∩Y|
for each edge XY of T can be computed in O(s) time, and the values of |(X∩Y)∩ (X′ ∩Y′)|
in O((n + p)ω) time, since they are the elements of the product of the transposition of M by
M, where M is the n× (p− 1) incidence matrix of the (possibly non-simple) hypergraph
whose vertex set is V and whose hyperedges are the sets X ∩ Y for each edge XY of T.
Hence, this alternative complexity is in O(p2 + s + (n + p)ω) time, i.e., in O((n + p)ω)
time, since p2 ≤ (n + p)2, s ≤ np ≤ (n + p)2 and 2 ≤ ω.
We obtain a complexity in O(min((n + p)ω, ps)) time, i.e., in O(min(nω, ps)) time, since
p ≤ n and therefore in O(min(nω, nm)) time, since s ≤ n + m by Property 6.
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It follows that the atom graph can be computed from an atom tree in O(min(nω , nm))
time.

We will now discuss using the 2-pairs of the graph G+ defined in Notation 1 to obtain
an alternative complexity in O(n(n + m+)) time, where m+ is the number of edges of the
complement of G+, through the following lemma.

Lemma 1. Let T be atom tree of a connected graph. Then, s4(T) ≤ n + t, where t is the number
of 2-pairs of G+.

Proof. We consider a rooted directed tree Tr = (A(G), U) obtained from T by choosing
an arbitrary root. Thus, ΣXY∈ET |X4Y| = Σ(X,Y)∈U |X4Y|. Σ(X,Y)∈U |Y \ X| ≤ n, since each
vertex x of G belongs to Y \ X for at most one edge of Tr, namely the edge (X, Y), such that
Y is the root of the subtree of Tr induced by the nodes containing x. Hence, it is sufficient
to show that Σ(X,Y)∈U |X \ Y| ≤ t. It is shown in [4] that, if G is chordal, then this sum is
bounded by the number of 2-pairs of G. So, it is bounded by t since G+ is chordal and by
Property 4 T is also an atom tree of G+.

Theorem 3. The atom graph of a connected graph G can be computed from an atom tree T of G in
O(p(n + s4(T))) time, and therefore in O(n(n + m+)) time, where m+ is the number of edges of
the complement of G+.

Proof. We consider the variant of the algorithm Forest Join, where the subset relation
sub is not given as an input, and ”sub(AB, XY)” and ”sub(XY, AB)” in the algorithm
Components are replaced as follows. Condition sub(XY, AB) can be replaced by |A ∩ B| =
|X ∩Y|, since, in the algorithm, XY satisfies sub(AB, XY). The values of |X ∩Y| for each
edge XY of T can be pre-computed in O(np) time. Let S = A ∩ B. As S is a subset of
X in the algorithm, and condition sub(AB, XY) is equivalent to (X \ Y) ∩ S = ∅, which
can be evaluated in O(|X \ Y|) time, provided that the sets X ∩ Y, X \ Y and Y \ X for
each edge XY of T have been pre-computed, which can be done in O(np) time. Thus,
we add to the time complexity of Algorithm Forest Join in O(p2) a pre-computation time
in O(np) and O(s4(T)) time per call to components. We obtain a time complexity in
O(p2 + np + p ∗ s4(T)), and therefore in O(p(n + s4(T))), since p− 1 ≤ s4(T) (because
the nodes of T are pairwise distinct). We conclude with Lemma 1

The 2-pairs of a chordal graph are closely related to its atom graph.

Characterization 10. Let G be a connected chordal graph, and let {x, y} be a pair of vertices of
G. Then, xy is a 2-pair of G if and only if there is an edge KL of AG(G), such that x ∈ K \ L and
y ∈ L \ K.

Proof. ⇒: let S = N(x) ∩ N(y). As S is a minimal separator of G and G is chordal,
S is a clique. Let K (resp. L) be a maximal clique containing {x} ∪ S (resp. {y} ∪ S).
S ⊆ K ∩ L ⊆ (N(x) ∪ {x}) ∩ (N(y) ∪ {y}) = N(x) ∩ N(y) = S. Hence S = K ∩ L, and
therefore, KL is an edge of AG(G) with x ∈ K \ L and y ∈ L \ K.
⇐: let S = K ∩ L. As KL is an edge of AG(G), S is a minimal xy-separator. As G is chordal
K and L are cliques, so S ⊆ N(x) ∩ N(y), and as S is an xy-separator N(x) ∩ N(y) ⊆ S.
Hence, S = N(x) ∩ N(y), and therefore xy is a 2-pair of G.

It follows that the number of 2-pairs of a connected chordal graph G is bounded by
the sum of the products |K \ L| ∗ |L \ K| for each edge KL of its atom graph. In particular,
in a graph class (of non-necessarily chordal graphs) in which the values of |A \ B| (and
|B \ A|) for each edge AB of the atom graph are bounded by a given constant, for instance,
if the sizes of the atoms are bounded by a constant, the atom graph can be computed
from an atom tree in O(n(n + m′)) time, where m′ is the number of edges of the computed
atom graph. The number of 2-pairs is not equal, in general, to the sum of the products
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|K \ L| ∗ |L \ K| for each edge KL of its atom graph, since a 2-pair may be associated with
several edges of the atom graph. Considering the same relation between the 2-pairs and
the edges of an atom tree T of G, a pair {x, y} associated with an edge KL of T is a 2-pair,
since KL is an edge of the atom graph, but the converse does not hold. Contrary to the
atom graph, {x, y} can be associated with at most one edge of T, namely the unique edge
connecting the subtrees of T induced by the sets of nodes containing x and y, respectively,
which are necessarily disjoint and at distance 1 from each other in T.

Thus, the atom graph of G can be computed from an atom tree of G in O(min(nω , nm,
n(n + m))). This time complexity considers the worst case, where the algorithm Compo-
nents searches the whole tree T, whereas it only searches the set AS and its neighborhood,
which may be very small w.r.t. the set of nodes of T. It may be more efficient in practice
to execute the algorithm Forest Join without pre-computing the subset relation sub and
directly evaluate sub(AB, XY) and sub(XY, AB) when needed.

4.2. Algorithm AG-Max-Weight

Our second algorithm, AG-max-weight (Algorithm 3), takes as input the weighted
intersection graph of the atoms (which, in the case of a chordal graph, is the clique graph)
and repeatedly adds the edges of weight k in decreasing order of k.

By Characterization 4, the atom trees of a connected graph G are the maximum weight
spanning trees of the weighted intersection graph of the atoms of G. We will present a
general algorithm computing the union of the maximum weight spanning trees of Gw for
each weighted connected graph Gw with natural integer weights on the edges. This general
algorithm, called Union-max-weight (Algorithm 4), is inspired by the following algorithm
from Kruskal, which computes a minimum weight spanning tree of Gw : initialize graph T′

as edgeless and for each edge xy of Gw in increasing order of weight, add xy to T′ if and
only if x and y are in different connected components of T′. As we want to compute a
maximum weight spanning tree, we will process the edges in decreasing order of weight;
the algorithm computes each maximum weight spanning tree of Gw. Thus, an edge xy of
weight k may be added to T′ by this last algorithm if and only if x and y are in different
connected components of T′ just after processing the edges of weight at least k + 1. These
components are independent of the graph T′ computed so far by item a) of Lemma 2 below.

Lemma 2. Let Gw = (V, E, w) be a weighted connected graph with natural integer weights on
the edges, let T be a maximum weight spanning tree of G, let UM be the union of the maximum
weight spanning trees of G and for a natural integer k, and let Gk (resp. Tk, UMk) be the graph
whose vertex set is V and whose edges are the edges of G (resp. T, UM) of weight at least k. Then,
(a) Gk, Tk and UMk have the same connected components;
(b) the edges of UM of weight k are the edges of G of weight k whose endpoints are in different
connected components of UMk+1.

Proof. (a) As each connected component of Tk is a subset of a connected component of
UMk, which is itself a subset of a connected component of Gk, it is sufficient to show that
each connected component of Gk is a subset of a connected component of Tk, or equivalently,
that, for each edge xy of Gk, PT(x, y) is a path in Tk. Let xy be an edge of Gk. For each edge
x′y′ of PT(x, y), w(xy) ≤ w(x′y′) (otherwise, (T − {x′y′}) + {xy} would be a spanning
tree of G of strictly greater weight than T), so PT(x, y) is a path in Tk.
(b) Let xy be an edge of G of weight k. Let us show that xy is an edge of UM if and only if
x and y are in different connected components of UMk+1. We assume that xy is an edge of
UM. Let T be a maximum weight spanning tree of G, such that xy is an edge of T. x and y
are in different connected components of Tk+1, and therefore of UMk+1 by a). Conversely,
we assume that x and y are in different connected components of UMk+1. Let T be a
maximum weight spanning tree of G. As x and y are in different connected components of
Tk+1, there is an edge x′y′ of PT(x, y) of weight at most k. Then, (T − {x′y′}) + {xy} is a
maximum weight spanning tree of G, and therefore xy is an edge of UM.
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Item (b) of Lemma 2 provides an inductive definition of the edges of weight k of the
union of the maximum weight spanning trees, and therefore a simple iterative algorithm to
compute them. Thus, algorithm Union-max-weight computes the union of the maximum
weight spanning trees of G by initializing a set F with the empty set and adding to F, for
each weight value k in decreasing order, the edges xy of G of weight k such that x and y
are in different connected components of the graph (V, F) in its state just after adding the
edges of weight strictly greater than k.

In the algorithm Union-max-weight, k is the current value of weight, the sets Ci are
the connected components of the graph (V, F) in its state at the beginning of iteration k and
for each vertex x, and numComp(x) is the index i of the component Ci containing x. The
algorithm is similar to the “maximum weight” variant of Kruskal’s algorithm, the difference
being that Kruskal’s algorithm considers the connected components of the graph (tree)
(V, F) being computed in its current state instead of in its state at the beginning of iteration
k, and therefore would update the variables Ci and numCom just after each addition of
an edge to F. It follows that the algorithms and complexity results already published
on Kruskal’s algorithm hold for the computation of the union of the maximum weight
spanning trees. In particular, the complexity can be improved by using a sophisticated
UNION-FIND data structure. However, the simple algorithm presented here is sufficient
to compute the atom graph in O(n2) time.

Algorithm 3: AG-max-weight.
input : The weighted intersection graph IGw of the atoms of a connected graph G.
output :The atom graph of G.

return Union-max-weight(IGw);

Algorithm 4: Union-max-weight.
input :A weighted-connected graph Gw = (V, E, w), with natural integer

weights on the edges
output :The union of the maximum weight spanning trees of Gw.

Compute the maximum weight wmax of an edge of Gw and for each k in [0, wmax]
the set Ek of edges of Gw of weight k;

i← 0;
foreach x ∈ V do

i← i + 1; Ci ← {x}; numComp(x)← i;
end
F ← ∅;
foreach k = wmax downto 0 do

foreach xy ∈ Ek do
if numComp(x) 6= numComp(y) then

Add xy to F;
end

end
foreach xy ∈ Ek do

if numComp(x) 6= numComp(y) then
i← numComp(x); j← numComp(y); Ci ← Ci ∪ Cj;
foreach z ∈ Cj do

numComp(z)← i;
end

end
end

end
return (V, F);
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Example 4. Figure 4 shows the weighted intersection graph of the atoms of the graph G from
Figure 1 and an execution of the algorithm AG-max-weight, i.e., the algorithm Union-max-weight,
on this weighted graph. It shows the state of the computed graph before and after adding the edges of
weight 1.
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Figure 4: An execution of Algorithm AG-max-weight (the edge labels that are equal to 1
are omitted).

Proof: As |X ∩ Y | can be computed in O(|Y |) time, computing |X ∩ Y | for each pair
{X, Y } of atoms of G is in O(ps) time. Alternatively these values can be computed in
O((n + p)ω) time since they are the elements of the product of the transpose of M by M ,
where M is the n × p incidence matrix of the hypergraph (V,A(G)) (which will be called
the atom hypergraph of G in Section 5), i.e. in O(nω) time since p ≤ n. We obtain a
time complexity in O(min(nω, ps)), and therefore in O(min(nω, nm)) since s ≤ n + m by
Property 2.13. 2

It follows that the atom graph can be computed from the set of atoms in O(min(nω, nm))
time.

5 Atom hypergraph

In this section, we define the atom hypergraph of a graph and relate it to the more general
notion of α-acyclic hypergraph.

Definition 5.1 Let G = (V,E) be a graph. The atom hypergraph of G is the hypergraph
HA(G) = (V,A(G)).

Thus the atom trees of a connected graph are the join trees of its atom hypergraph. We
recall that for each hypergraph H, 2SEC(H) is the graph whose vertex set is the vertex set
of H and whose edges are the pairs of vertices that are contained in a hyperedge of H

Characterization 5.2 An hypergraph is the atom hypergraph of a connected graph if and
only if it is a connected α-acyclic clutter, and in that case it is the atom hypergraph of the
graph 2SEC(H) which is a connected chordal graph.

Proof: The atom hypergraph of a connected graph G is connected (since G is and each edge
of G is contained in an atom of G), α-acyclic (since G has an atom tree) and a clutter (by
definition of atoms). Conversely, if H is a connected α-acyclic clutter then by Property 2.15
it is the atom hypergraph of the graph 2SEC(H) which is chordal, and which is connected
since H is. 2

18

Figure 4. An execution of the algorithm AG-max-weight (the edge labels that are equal to 1 are
omitted).

Theorem 4. Given a weighted connected graph Gw = (V, E, w) with natural integer weights on
the edges, the algorithm Union-max-weight computes the union of the maximum weight spanning
trees of Gw in O(wmax + n2) time, where wmax is the maximum weight of an edge of Gw.

Proof. It follows from Lemma 2 that the property P defined below is an invariant of the
main foreach loop, using the notation UMk of this lemma,
P : UMk = (V, F) and ∀x ∈ V (CnumComp(x) is the connected component of UMk containing
x ∧ ∀y ∈ CnumComp(x) numComp(x) = numComp(y)),
which proves the correctness of the algorithm.
Let us prove its time complexity. wmax and the sets Ek can be computed and scanned in
the internal for each loop in O(wmax + m) time by storing the elements of Ek at index k of
an array. The first internal for each loop runs in O(m) time globally, and the second one
in O(n2) time globally, since merging two connected components is in O(n) time and is
performed n− 1 times. Hence, the algorithm runs in O(wmax + n2) time.

Corollary 1. Given the weighted intersection graph of the atoms of a connected graph G, the
algorithm AG-max-weight computes the atom graph of G in O(n + p2) time and therefore in O(n2)
time.

To evaluate the time complexity of computing the atom graph of G from the set of
atoms of G using the algorithm AG-max-weight, we need the time complexity of computing
the the weighted intersection graph of the atoms of G.

Proposition 2. Given the set of atoms of a connected graph G, the weighted intersection graph of
the atoms of G can be computed in O(min(nω, ps)) time and therefore in O(min(nω, nm)) time.

Proof. As |X ∩Y| can be computed in O(|Y|) time, computing |X ∩Y| for each pair {X, Y}
of atoms of G is in O(ps) time. Alternatively, these values can be computed in O((n + p)ω)
time, since they are the elements of the product of the transposition of M by M, where M
is the n× p incidence matrix of the hypergraph (V,A(G)) (which will be called the atom
hypergraph of G in Section 5), i.e., in O(nω) time since p ≤ n. We obtain a time complexity
in O(min(nω, ps)) and therefore in O(min(nω, nm)), since s ≤ n + m by Property 6.

It follows that the atom graph can be computed from the set of atoms in O(min(nω , nm))
time.

5. Atom Hypergraph

In this section, we define the atom hypergraph of a graph and relate it to the more
general notion of α-acyclic hypergraph.
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Definition 5. Let G = (V, E) be a graph. The atom hypergraph of G is the hypergraph
HA(G) = (V,A(G)).

Thus, the atom trees of a connected graph are the join trees of its atom hypergraph.
We recall that, for each hypergraph H, 2SEC(H) is the graph whose vertex set is the vertex
set of H and whose edges are the pairs of vertices that are contained in a hyperedge of H

Characterization 11. An hypergraph is the atom hypergraph of a connected graph if and only if it
is a connected α-acyclic clutter, and in that case, it is the atom hypergraph of the graph 2SEC(H),
which is a connected chordal graph.

Proof. The atom hypergraph of a connected graph G is connected (since G is and each edge
of G is contained in an atom of G), α-acyclic (since G has an atom tree) and a clutter (by
definition of atoms). Conversely, if H is a connected α-acyclic clutter, then by Property 8, it
is the atom hypergraph of the graph 2SEC(H), which is chordal, and which is connected,
since H is.

Note that, if H is the atom hypergraph of G, then 2SEC(H) is the graph G+ defined in
Notation 1. Thus, we refind that G+ is chordal and has the same atoms as G (Property 3).

Definition 6. The union join graph of an α-acyclic hypergraph H, denoted by UJ(H), is the
union of its join trees.

As the atom graph of a connected graph G is the union of its atom trees by Characterizations
6, we have the following property.

Property 10. The atom graph of a connected graph is the union join graph of its atom hypergraph.

As a generalization of Characterizations 8, the union join graph of an α-acyclic hyper-
graph H can be computed from a join tree of H by the following operation tuj, where tuj
stands for “to union join”.

Definition 7. For each join tree T = (E , ET) of a hypergraph, tuj(T) is the graph whose node set
is E and whose edges are the pairs {X, Y} of E , such that there is an edge X′Y′ of PT(X, Y), such
that X ∩Y = X′ ∩Y′ (or equivalently X′ ∩Y′ ⊆ X ∩Y).

Characterization 12. For each α-acyclic hypergraph H and each join tree T of H, UJ(H) =
tuj(T).

Proof. Let H = (V, E) and let {X, Y} ⊆ E . Let us show that XY is an edge of UJ(H) if and
only if XY is an edge of tuj(T).
⇒ : let T′ be a join tree of H, such that XY is an edge of T′, and let EX (resp. EY) be the
connected component of T′ − {XY} containing X (resp. Y). As X ∈ EX and Y ∈ EY, there
is an edge X′Y′ of PT(X, Y) such that X′ ∈ EX and Y′ ∈ EY. As T′ is a join tree and XY is
an edge of PT′(X′, Y′), X′ ∩Y′ ⊆ X ∩Y. Hence, XY is an edge of tuj(T).
⇐ : let X′Y′ be an edge of PT(X, Y), such that X ∩ Y = X′ ∩ Y′, and let T′ be the graph
(T − {X′Y′}) + {XY}. T′ is a tree with the same weight as T (since w(XY) = w(X′Y′)), so
by Characterization 4, T′ is also a join tree of H, and therefore, XY is an edge of UJ(H).

Thus, we refind Characterization 8 from Property 10 and Characterization 12. Con-
versely, Characterization 12 can be deduced from Characterization 8 and Property 11 below,
which shows that any α-acyclic hypergraph is an atom hypergraph up to isomorphism.

Notation 3. Let E and E ′ be two sets and let f be a one-to-one mapping from E to E ′. For each
graph K = (E , EK), f (K) denotes the graph obtained from K by isomorphism f , i.e., f (K) =
(E ′, { f (X) f (Y), XY ∈ EK}).
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Property 11. Let H = (V, E) be an α-acyclic hypergraph. Then there is a connected chordal graph
G = (V′, EG) and a one-to-one mapping f from E to A(G) such that :
(1) for each tree T = (E , ET), T is a join tree of H if and only if f (T) is an atom tree of G;
(2) AG(G) = f (UJ(H);
(3) If H is connected, then for each pair {X, Y} of E , f (X) ∩ f (Y) = X ∩Y; otherwise, there is an
element a of V′, such that, for each pair {X, Y} of E , f (X) ∩ f (Y) = (X ∩Y) + {a};
(4) for each join tree T of H, tuj( f (T)) = f (tuj(T)).

Proof. By Characterization 11, it is sufficient to find a connected α-acyclic clutter H′ =
(V′, E ′) and a one-to-one mapping f from E to E ′, such that: 1) for each tree T = (E , ET), T
is a join tree of H if and only if f (T) is a join tree of H′; 2) UJ(H′) = f (UJ(H), and items 3)
and 4). Let E ′ be defined from E by adding a new specific element aX to each element of E ,
which is not inclusion-maximal in E , and adding a new common element a to each element
of E if H is not connected. Let f map each element of E to the element of E ′ obtained from
it, let V′ = ∪X∈E ′X, and let H′ = (V′, E ′). By definition, H′ is a connected clutter satisfying
3). As for each added element aX (resp. a), the set of elements of E ′ containing it is reduced
to {X} (resp. equal to E ′), H′ is α-acyclic and satisfies 1); 2) follows from 1), and 4) follows
from 3).

Thus, we can deduce from properties of α-acyclic hypergraphs (proved from the
definition of α-acyclicity) properties of atom graphs, and conversely, we can deduce from
properties of atom graphs (proved from properties of the minimal separators of the under-
lying graph) properties of general α-acyclic hypergraphs. This double approach helps to
increase knowledge in both domains of atom graphs and α-acyclic hypergraphs, as some
properties are easier to see in one of these domains than in the other one.

Let us consider the case of a disconnected α-acyclic hypergraph H. A join tree of H
is obtained from the disjoint union of join trees of its connected components by adding
“empty edges”, i.e., edges associated with the empty set, to make it into a tree, and the union
join graph of H is obtained from the disjoint union of the union join graphs of its connected
components by adding all edges (which are empty edges) between these union join graphs.
Alternatively, if we omit the empty edges, a join tree becomes a forest called join forest
in [27], whose connected components are the join trees of its connected components, and
the union join graph becomes the union of its join forests, whose connected components
are the union join graphs of its connected components.
These two alternatives also exist in the graph and minimal separator approach, which
correspond to two different definitions of separators in a disconnected graph. According
to the definition of separators given in this paper, as the empty set is not a separator and
the edges of an atom tree represent the minimal separators, an atom tree naturally extends
to an atom forest of a (not necessarily connected) graph, which is the join forest of its atom
hypergraph, and its atom graph (Definition 3) is the union of these join forests. According
to an alternative definition of separators, which is given, for instance, in [2], a set S is an
ab-separator of G if a and b are in different connected components of G(V \ S), whether G
is connected or not. It follows that the empty set is the unique minimal ab-separator of G
if a and b are in different connected components of G. Thus, according to this alternative
definition, an atom tree of a (not necessarily connected) graph is a join tree of its atom
hypergraph and its atom graph (Definition 3 again) is the union join graph of its atom
hypergraph. In both alternatives, the results for a connected graph naturally extend to a
(non necessarily connected) graph using the appropriate definition of separators, as well as
to (not necessarily connected) α-acyclic hypergraphs, as will be seen in Section 6.

6. Computing the Union Join Graph

Algorithms and complexity results of Section 4 extend to the computation of the union
join graph of an α-acyclic hypergraph. They immediately extend to a connected α-acyclic
clutter H, since, in that case, H is the atom hypergraph of 2SEC(H) by Characterization 11.
The algorithms still hold for any α-acyclic hypergraph, since the proofs of their correctness
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do. It is also the case for the complexity bounds in function of parameters n, p, s, and
s4(T), whose definitions naturally extend to α-acyclic hypergraphs as follows.

Notation 4. For each α-acyclic hypergraph H = (V, E), n = |V|, m is the number of edges of
2SEC(H), m is the number of edges of its complement, p = |E |, s = ΣX∈E |X|, and for each join
tree T = (E , ET) of H s4(T) = ΣXY∈ET |X4Y|.

We recall that ω is a real number, such that O(nω) is the best known time complexity
of matrix multiplication. The subset relation of a join tree is defined as that of an atom tree
(see Definition 4).

Theorem 5. The union join graph of an α-acyclic hypergraph H can be computed
(a) in O(p2) time from a join tree of H and either its subset relation or the weighted line graph of H;
(b) in O(n + p2) time from the weighted line graph of H;
(c) in O(min((n + p)ω, ps, p(n + s4(T)))) time from H, where T is a join tree of H (which is
computed along with the union join graph of H).

Proof. Item a) follows from Theorem 6 and Theorem 7, item b) follows from Corollary 2,
item c) follows from item b) and Proposition 4 for the O(min((n + p)ω , ps)) bound, as well
as from the extension of Theorem 3 to α-acyclic hypergraphs and the fact that a join tree
can be computed in O(s) time [27] for the O(p(n + s4(T))) bound.

The four results below extend Theorem 2, Proposition 1, Corollary 1 and Proposition 2,
respectively. The complexity bound nω is replaced by (n+ p)ω , which is the original bound
appearing in the proofs of the concerned results and has been simplified into nω since
p ≤ n in the case of the atom graph (a graph has at most n atoms).

Theorem 6. Given a join tree of an α-acyclic hypergraph H and its subset relation, the algorithm
Forest Join computes the union join graph of H in O(p2) time.

Proposition 3. Given a join tree of an α-acyclic hypergraph, its subset relation can be computed in
O(min((n + p)ω, ps)) time.

Corollary 2. (of Theorem 4) Given the weighted line graph of an α-acyclic hypergraph H, the
algorithm Union-max-weight computes the union join graph of H in O(n + p2) time.

Proposition 4. Given an α-acyclic hypergraph, its weighted line graph can be computed in
O(min((n + p)ω, ps)) time.

We present now the algorithm UJ-min-weight (Algorithm 5), which is an alternative to
the algorithm Union-max-weight, computing the union join graph in O(p2) time instead of
O(n + p2) time but requiring a join tree of H as input in addition to the weighted line graph
of H. This algorithm can obviously be used to compute the atom graph of a connected
graph G from an atom tree and the weighted intersection graph of the atoms of G in
O(p2) time and therefore in O(n2) time, which is already done by the algorithm AG-max-
weight with less input. The algorithm follows from Characterization 13 below, which is an
immediate consequence of the characterization of UJ(H) as tuj(T) (Characterization 12).
The algorithm computes for each pair {X, Y} of hyperedges of H the minimum weight of
an edge of the path in T between Xand Y and stores it in the variables minWeight(X, Y)
and minWeight(Y, X) to be used later in the execution.

Characterization 13. Let H = (V, E) be an α-acyclic hypergraph, let T be a join tree of H, and
let {X, Y} ⊆ E . Then, XY is an edge of UJ(H) if and only if its weight is the minimum weight of
an edge of PT(X, Y).
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Proof. Let wmin be the minimum weight of an edge of PT(X, Y). As X ∩ Y is a subset
of X′ ∩ Y′ for each edge X′Y′ of PT(X, Y), since T is a join tree, w(XY) ≤ wmin, and
w(XY) = wmin if and only there is an edge X′Y′ of PT(X, Y), such that X ∩ Y = X′ ∩ Y′,
i.e., if and only if XY is an edge of UJ(H) by Characterization 12.

Algorithm 5: UJ-min-weight.
input : A join tree T = (E , ET) and the weighted line graph Lw(H) of an α-acyclic

hypergraph H.
output :The union join graph of H.

// in the following, w(e) = 0 if e is a non-edge of Lw(H);
Choose a node X of T;
Reached← {X}; Queue← {X}; E′ ← ET ;
while Queue 6= ∅ do

Remove a node X from Queue;
foreach Y ∈ NT(X) do

if Y /∈ Reached then
minWeight(X, Y)← w(XY); minWeight(Y, X)← w(XY);
foreach Z ∈ Reached \ {X} do

mw← min(w(XY), minWeight(X, Z));
minWeight(Y, Z)← mw; minWeight(Z, Y)← mw;
if mw = w(YZ) then

Add YZ to E′;
end

end
Add Y to Reached and to Queue;

end
end

end
return (E , E′);

Theorem 7. Given a join tree and the weighted line graph of an α-acyclic hypergraph H, the
algorithm UJ-min-weight computes the union join tree of H in O(p2) time.

Proof. Correctness follows from the fact that by Characterization 13 the following proposi-
tion P is clearly an invariant of the main for each and while loops.

P: ∀{X, Y} ⊆ E , if {X, Y} ⊆ Reached, then (minWeight(X, Y) is the minimum weight
of an edge of PT(X, Y) ∧ (XY ∈ E′ ⇔ XY is an edge of UJ(H))); otherwise, (XY ∈ E′ ⇔
XY ∈ ET).

The algorithm runs in O(p2) time by numbering the elements of E from 1 to p and
storing the values of MinCard(X, Y) for each (X, Y) in E2, such that X 6= Y in an array
p× p.

By Characterization 11, the complexity bounds in function of n, m, and m+ presented
in Section 4 extend to each connected α-acyclic clutter H replacing m+ by m, as the graph
G = 2SEC(H) is equal to G+. In fact, they also hold for each α-acyclic clutter, replacing m
by n + m. This follows from the fact that the bounds of the parameters p, s, and s4(T) by
functions of n, m, and m+ extend to α-acyclic clutters.

Property 12. For each α-acyclic clutter H, p ≤ n, s ≤ n + m, and for each join tree T of H,
s4(T) ≤ n + m.

Proof. By Characterization 11, these inequalities hold if H is connected. It can be proved
that they also hold if H is disconnected by checking that the proofs of these inequalities
given in Section 4 still hold. It can also be directly checked as follows. Let H1, . . . , Hk the
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connected components of H, and for each i in [1, k] and each variable v, let vi be the value
of v in Hi. Then, p = Σk

i=1 pi ≤ Σk
i=1ni = n. Similarly, s ≤ n + m. For s4(T), we have

s4(T) = Σk
i=1s4(Ti) + nb1, where nb1 = ΣXY∈ET ,X∩Y=∅|X| ∗ |Y| and m = Σk

i=1mi + nb2,
where nb2 = Σ{i,j}⊆[1,k]|Vi| ∗ |Vj|. As nb1 ≤ nb2, it follows that s4(T) ≤ n + m.

Corollary 3. The complexity bounds in function of n, m and m+ presented in Section 4 hold for
each α-acyclic clutter H, replacing m by n + m and m+ by m.

If H is an α-acyclic hypergraph, which is not a clutter, the values of p, n, and s4(T)
may be exponential in n. It is the case of the hypergraph H = (V, P(V) \ {∅}), which is
α-acyclic, since V is a hyperedge of H (the tree whose edges are the pairs of hyperedges
containing V is a join tree of H).

7. Conclusions

In this paper, we provide two efficient algorithms to compute the atom graph of a
graph and extend them to compute the union join graph of an α-acyclic hypergraph.

Our algorithms, in the general case, compute the atom graph at no extra cost than
computing the atoms.

It would be interesting to explore the class of graphs which are isomorphic to atom
graphs and to provide a recognition algorithm for this class.
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