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Energy-Performance Assessment of Oscillatory
Neural Networks based on VO2 Devices

for Future Edge AI Computing
Corentin Delacour, Stefania Carapezzi, Madeleine Abernot, Aida Todri-Sanial

Abstract—Oscillatory Neural Network (ONN) is an emerging
neuromorphic architecture composed of oscillators that imple-
ment neurons and coupled by synapses. ONNs exhibit rich
dynamics and associative properties, which can be used to solve
problems in the analog domain according to the paradigm
let physics compute. For example, compact oscillators made
of VO2 material are good candidates for building low-power
ONN architectures dedicated to AI applications at the edge like
pattern recognition. However, little is known about the ONN
scalability and its performances when implemented in hardware.
Before deploying ONN, it is necessary to assess its computation
time, energy consumption, performance and accuracy for a
given application. Here, we consider a VO2-oscillator as an
ONN building block and we perform circuit-level simulations to
evaluate the ONN performances at the architecture level. Notably,
we investigate how ONN computation time, energy and memory
capacity scale with the number of oscillators. We show that ONN
energy grows linearly when scaling up the network, making it
suitable for large-scale integration at the edge. Furthermore, we
investigate the design knobs for minimizing the ONN energy.
Assisted by TCAD simulations, we report on scaling of VO2
devices in crossbar geometry to decrease the oscillator voltage and
energy. We benchmark ONN versus state-of-the-art architectures
and observe that the ONN paradigm is a competitive energy
efficient solution for scaled VO2 devices. Finally, we present how
ONN can efficiently detect edges in images captured on low-power
edge devices.

Index Terms—Oscillatory Neural Network, Vanadium Dioxide
(VO2), Edge AI, Hopfield Neural Network, Image Edge Detection

I. Introduction

THE number of mobile devices connected to the inter-
net has considerably increased the past few years and

is estimated to reach 75 billion by 2025 [1]. The Internet
of Things (IoT) paradigm is driven by continuous machine
learning and AI progress, allowing mobile devices to predict
and decide in interaction with their environment. IoT devices
are connected and regularly exchange data on the internet, but
depending on the workload, such connectivity may suffer from
latency issues, bandwidth problems, and even confidentiality
issues for some applications such as sending sensitive data as
in healthcare devices. For these reasons, IoT devices require
some local processing capability instead of transferring data
over cloud or data centers [2].
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However, with the sophistication of AI algorithms, com-
putation at the edge becomes challenging for devices with
limited resources [1]. Current algorithms depend on large
neural networks with thousands of synapses and data propagate
through several layers of neurons, via successive matrix multi-
plications between data and synaptic weights. Such algorithms
implemented on a Von Neumann architecture (such as edge
CPUs) suffer from large power consumption and data transfer
bottleneck between memory and processing unit, also known
as the Von Neumann bottleneck [3].
To overcome the limitations of the Von Neumann bottleneck,

alternative brain-inspired computing paradigms are explored.
Inspired by the biological neural networks, in-memory com-
puting aims to merge memory and processing functions, where
device physical properties can store the network’s weights
while efficiently performing matrix products [4]. For instance,
Ohm’s and Kirchhoff’s laws naturally describe multiplication
and summation in the analog domain, allowing fast and
efficient computations. Such as in crossbar architectures that
have been shown to perform energy-efficient inference [4].
Based on the in-memory computing paradigm and inspired

by the olfactory system in biological neural networks, Oscil-
latory Neural Networks (ONNs) compute by harnessing the
rich dynamics of coupled oscillators for parallel processing.
In ONNs, neurons are oscillators that are physically connected
by electrical components (synapses). By exploiting nonlinear
oscillator, dynamics allows to compute in phase [5] or fre-
quency [6]. In ONNs, the memory is locally stored in synaptic
elements, and it is distributed among oscillators that act as
processing units interacting in parallel, in contrast with Von
Neumann’s architecture. Mathematicians have studied ONN
for decades and have proved the collective computational
capability in ONNs [5].
In hardware, ONNs have been implemented with var-

ious technologies such as CMOS ASICs [7], [8], field-
programmable gate arrays [9], spintronic oscillators [10],
micro-electromechanical systems [11] for solving tasks varying
from image processing [12], [13], [14], [15] to combinatorial
optimization problems [16], [17], [18], [19], [20] and to
implement reservoir computers [10], [21], [22], [23]. Insulator-
to-metal phase transition (IMT) devices such as vanadium
dioxide (VO2) are promising candidates to design compact
nano-oscillators as they only require an additional load to
produce oscillations at room temperature and are CMOS-
compatible [14], [24]. It is believed that scaled VO2 devices
would provide fast and energy-efficient oscillations and has
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Fig. 1. ONN inputs and outputs are phase differences among oscillators and
the reference oscillator (first one). As ∆Φi ϵ [0◦, 180◦], we represent phases
by black and white pixels where a pixel corresponds to a single oscillator.

been validated experimentally up to eight coupled oscillators
[18]. But, little is known about ONN energy when scaling up
the network size, whereas energy and power are among the
most important specification for edge devices. Likewise, it is
still unknown how the computation time evolves for a large
ONN when used as an associative memory.
Prior experimental work using VO2 oscillators have reported

on ONN performances for less than ten oscillators, but infor-
mation on 1) VO2 device scaling and 2) ONN architecture scal-
ing are yet to be explored. For example, for image processing
application, Shukla et al. reported the power consumption for
six-coupled VO2-oscillators [25], [24] but do not mention the
energy and delay for larger networks. Though, at the device
level, a power projection motivates the scaling down of the
VO2 channel length in planar geometry. For spoken vowel
detection, Dutta et al. [6] propose to use four coupled planar
VO2 oscillators that consume 6 µW each, but scalability and
computation time are not discussed. Corti et al. [14] describe
how four and nine coupled VO2 oscillators can be used as
input filters in convolutional neural networks and make a
projection of the ONN energy-delay for scaled VO2 devices in
crossbar geometry. However, the estimation remains empirical
as VO2 device physics and coupling elements parameters are
not considered.
In this work, we investigate VO2-ONN scaling at device,

circuit, and architecture levels. We model coupling elements
by resistances to study ONN architecture and performance.
The contributions of this work are as:
• we show that the memory capacity of a fully-coupled
ONN scales linearly with the number of oscillators,
similarly to Hopfield Neural Networks (HNN).

• we analytically derive and express the trade-off between
the ONN size, the oscillating frequency and the Signal to
Noise Ratio (SNR).

• we determine the ONN linear energy scaling and constant
computation time with the number of oscillators.

• assisted by Technology Computer-Aided Design (TCAD)
simulations, we demonstrate how to minimize the oscil-
lating energy for crossbar VO2 devices.

• we benchmark the VO2-based ONN energy and delay
with respect to state-of-the-art neural accelerators and
neuromorphic chips. We highlight that ONN can be

Pattern ‘1’ is retrieved:
Hopfield Energy local 

minimum

Fig. 2. ONN as an associative memory like an Hopfield Neural Network
(HNN), using 60 VO2-oscillators. A noisy input image initializes ONN. ONN
retrieves the training image after a settling time. The conceptual Hopfield
energy [26] decreases until it reaches a local minimum.

a competitive computing paradigm for high oscillating
frequencies.

• finally, we showcase a VO2-based ONN benchmark for
image edge detection and compare it with the state-of-
the-art CMOS ASICs.

II. ONN Description
A. ONN as an Associative Memory
In ONNs, the information is encoded in phase differences

among oscillators and a reference oscillator (the first one) [5],
[13]. ONN inputs are the phase initialization ∆Φin

i ϵ [0◦, 180◦],
and outputs are the phase differences measured once ONN
stabilizes. ONN output phases lock to binary values Φout

i = 0◦

and Φout
i = 180◦, which in the case of image processing can

be represented by white and black pixels, respectively. Hence,
we represent the ONN phase state by black and white images,
where every oscillator corresponds to a single pixel (Fig.1).
In this work, we investigate ONN for associative memory

applications like a Hopfield Neural Network (HNN) [26].
HNNs have been used for various applications such as solving
optimization problems [27], [28] and image processing and
encryption [29]. To study the ONN memory capacity, we
perform pattern recognition like HNN where the network
is fully connected, meaning every oscillator is connected
to all the others. We train the network using the Hebbian
learning rule [26] and we map the synaptic weights to coupling
resistances [30] to store training images in the ONN. When
ONN settles to a stable phase state (corresponding to a training
image), its dynamics can be interpreted as the minimization
of an energy function defined in [26]. An example of ONN
computation with 60 VO2-oscillators is shown in Fig.2, where
ONN retrieves the noiseless digit ’1’ after a few oscillation
cycles. Next, we present how the dynamics of coupled VO2-
oscillators lead to associative properties, similarly to HNN.

B. VO2 Oscillator
VO2 is an IMT material that can switch in two different

resistive states depending on its voltage V [13]. It transitions
from an insulating state to a metallic state when V is above a
threshold VH , and reciprocally when V reaches the threshold
VL. Hence, VO2 presents a hysteresis in its I−V plan (Fig.3b).
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Fig. 3. a) VO2-oscillator with RS as biasing load. b) VO2 I − V curve and
load line IL. CP charges when VO2 is in metallic state, and discharges in
insulating state.

We use this property to design a relaxation oscillator. We bias
the VO2 device with a load resistance RS in series and we
connect a capacitor CP in parallel with the output node Vout

to adjust the oscillation frequency (Fig.3a). The oscillator’s
dynamics are described as CP

dV
dt = I − IL, where I is the

VO2 current capturing its hysteresis behavior. To produce
oscillations, the line IL must intercept I in the VO2 negative
differential resistance region (NDR) (Fig.3b). To emulate VO2
behavior in circuit simulations, we use the compact model
from Maffezzoni et al. [31] with circuit parameters listed in
Table I.

TABLE I
List of parameters used for simulations in this work.

Parameter Value
VDD 2.5 V
RS 20 kΩ
CP 500 pF
Rins 100.2 kΩ
Rmet 0.99 kΩ
VL 1 V
VH 1.99 V
α 200
τ0 10 ns

V+ = VDD − VL 1.5 V
V− = VDD − VH 0.501 V

Tosc 21.6 µs
Simulation time step 1 ns

C. Two-Coupled Oscillators
ONN initialization assigns oscillators initial phases that

correspond to the input image. Here, we initialize input
phases by delaying oscillators’ starting time with respect to
the reference oscillator, as ∆Φin

i = ∆ti
Tosc

2π, with Tosc the
natural oscillation period [30]. Oscillators’ dynamics evolve by
exchanging current through the coupling resistor RC2 . Fig.4a
shows the simplest configuration with two VO2-oscillators.
Coupling switches allow precise ONN initialization [30] and
are closed once all oscillators are turned on. Analogous to a
synaptic weight in HNN, RC2 determines the coupling strength
between two oscillators, and hence the final phase state. Fig.5a
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Fig. 4. a) Two VO2 oscillators coupled by a resistor RC2 . Coupling switches
are opened during initialization, and are closed once all oscillators are turned
on. b) Delay on VDD2 with respect to VDD1 set the input phase.
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Fig. 5. a) Output phase as a function of RC2 and input phase. A large RC2
emulates a negative synaptic weight as the output phase is 180◦. A small
RC2 implements a positive synaptic weight. b) and c) For RC2 ≈ R0

C2
, the

two oscillators retrieve the two phase states 0◦ and 180◦ for ∆Φin=80◦ and
∆Φin=100◦, respectively

shows the relationship between 1) the input phase, 2) the
coupling resistance RC2 , and 3) the output phase once the
oscillators settle. When RC2 << R0

C2
, oscillators are in-phase

and RC2 implements a positive synaptic weight. Whereas for
RC2 >> R0

C2
, oscillators are out-of-phase and RC2 emulates a
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Fig. 6. ONN recognition accuracy for 36 oscillators. M is the number of
stored patterns.

negative weight [30]. ∆Φin allows the retrieval of one of the
two states. Fig.5b and c show examples with RC2 = R0

C2
where

the two oscillators settle to in-phase and out-of-phase states,
respectively. This two-coupled oscillator case represents the
smallest ONN used as an associative memory. In the next sec-
tion, we investigate large size ONNs with N oscillators coupled
by resistances RCN , and we report on their performances.

III. ONN Scaling

A. Simulation set-up
We have developed an ONN circuit simulation platform in

Matlab that includes VO2 device parameters (compact model
[31]) and coupling parameters to allow transient simulation of
different size ONNs. We consider each oscillator as a pixel
of an image. To avoid biased results due to specific training
sets, we generate random training sets composed of M random
black and white patterns ξµ, µ ϵ {1, 2, ..,M} with ξµi = −1 if
pixel i is black, or ξµi = +1 if white. We impose the same
proportion of black and white pixels in the training patterns
to avoid any effect emerging from unbalanced patterns. Next,
we apply the Hebbian learning rule [5] to the training set and
we obtain a matrix of synaptic coefficients H. We compute
the corresponding coupling resistances RCN using the mapping
function described in [30].
To generate test sets, we use the training patterns in which

we apply a random uniform noise taking values between -1 and
+1 (noisy pixels are gray), as in the example of Fig.1a. We
vary the number of noisy pixels up to 50%. For inference,
we initialize the ONN with a test image by delaying the
starting time of oscillators. Then, we solve ONN dynamics
using circuit equations along with the VO2 model [31]. As
VO2’s state equation is nonlinear, we solve it numerically at
each time step using Newton-Raphson’s algorithm.

B. ONN Recognition Accuracy
We study how the ONN recognition accuracy varies with

M and the number of noisy pixels in the test images. We
set N=36 and we consider that the ONN recognition fails

Fig. 7. ONN recognition accuracy with respect to the number of stored
patterns M. Test images have 10% of noise. Each data point is the recognition
average computed over 20 different trials.

if at least one pixel differs from the corresponding training
image. Fig.6 shows the simulation results. When M = 2, the
ONN recognition accuracy is larger than 70% for test images
having up to 30% of noise. However, the accuracy dramatically
drops for more stored patterns. Such as, for M = 4, the ONN
recognition accuracy is around 30% for the same level of input
noise. To predict the ONN memory capacity for N oscillators,
we perform multiple simulations in the following subsection.
To the best of our knowledge, this is the first systematic study
to derive the ONN memory capacity versus ONN size and
accuracy.

C. ONN Memory Capacity

We report on ONN memory capacity when trained using
the Hebbian learning rule. For different ONN sizes from
N=8 up to N=100, we vary the size M of the training set.
Fig.7 shows the ONN recognition accuracy for test images
having 10% of noise. As expected, larger networks can store
more patterns. ONN with N=100 stores M=16 patterns with a
recognition accuracy larger than 50%. Whereas 16 oscillators
are limited to M=6 patterns for a similar accuracy. This trend is
in accordance with Hopfield’s results [26]. Based on Fig.7, we
extract the ONN memory capacity when recognition accuracy
reaches 50%. Results are shown in Fig.8. We derive that the
ONN memory capacity grows linearly with a fitted slope of
0.146, in accordance with the scaling factor of 0.15 derived
by Hopfield [26].
To increase the ONN memory capacity, one could think

of having large networks but the number of synapses scales
quadratically as N(N − 1)/2 and would make the physical
implementation of large designs very challenging. Moreover,
it is worthwhile to mention that noise would also limit the
ONN scaling as the thermal noise increases with the number of
synaptic resistors RCN . Next, we derive a first-order estimation
of the maximum fully-connected ONN size when the synaptic
thermal noise is the predominant noise source.



5

0.146

Fig. 8. ONN capacity extracted for a 50 % recognition accuracy. ONN
capacity scales linearly. The slope is close to the 0.15 value theoretically
obtained with HNN using the Hebbian rule [26]

D. ONN Size and Noise Limitation
In a fully-connected ONN of size N, each oscillator sees

N − 1 noisy synaptic resistors RCN (no self coupling) and its
equivalent noise source expressed in [V2/Hz] is:

v2
n = (N − 1)

4kBTRCN fosc

2
(1)

where kB is the Boltzmann’s constant, T the temperature,
and fosc = 1/Tosc is the oscillation frequency. We assume
that the intrinsic oscillator noise is negligible with respect to
the synaptic thermal noise when N is large. As a first-order
approximation, we only consider thermal noise (1) because
we are interested in scaling up fosc for high frequency ONN
operation.
In a previous work [32], Csaba and Porod highlighted the

ONN robustness to electronic noise and have shown that
ONN can tolerate a smaller SNR compared to amplitude-
based computing systems achieving the same functionality.
We express the oscillator SNR as the ratio between the peak-
to-peak voltage amplitude over the thermal noise standard
deviation:

S NR =
∆Vmax√

v2
n

(2)

When increasing N, we scale RCN as RCN = (N − 1)RC2 ,
where RC2 is the coupling resistance for an ONN composed
of two oscillators only [30]. We then express the maximum
fully-connected ONN size Nmax combining (1) and (2):

Nmax = 1 +
∆Vmax√

4kBTRC fosc

√
2

S NR
(3)

Fig.9 shows the maximum fully-connected ONN size Nmax

with respect to the oscillation frequency for various ampli-
tudes. We consider SNR=3.5 as minimum achievable SNR
that has been reported [32] in the case of two coupled-ring
oscillators. With ∆Vmax=21 mV, we observe that the synaptic
thermal noise limits the number of oscillators to Nmax=300
for fosc=10 MHz. For applications that need large ONNs, the

ΔVmax (mV)

Fig. 9. Maximum number of fully-connected oscillators with respect to the
oscillator frequency with RC2=5kΩ, T=300K and S NRmin=3.5. The various
oscillating amplitudes are obtained via TCAD simulations described in section
IV.D. With very small amplitude ∆Vmax=21mV thermal noise limits Nmax=300
for f=10MHz. As low ONN energy requires high frequency and low voltage
(15), there is a trade-off between energy consumption and maximum ONN
size.

oscillation frequency has to be reduced and the amplitude
should increase. It is worthwhile to note that the minimum
SNR might also depend on the ONN size, as Csaba and Porod
[32] reported correct functionality for 100 coupled oscillators
even for SNR<1. In literature, coupling oscillators has been
shown efficient to reduce the phase noise [33], but yet little is
known on the impact of noise on the oscillator synchronization
and scaling of phase-based computing systems.

IV. ONN Energy Scaling
Here, we study the ONN energy scaling using a bottom-

up approach, i.e., starting from device and circuit level before
scaling up to the architecture level. We show analytically and
by circuit simulations that the ONN energy scales linearly with
the number of oscillators.

A. Single Oscillator Energy Footprint
From circuit equations and Fig.3a, we derive the instanta-

neous power consumption of a single oscillator as:

P(t) = VDD(
Vout

RS
+CP

dVout

dt
) (4)

As Vout is a Tosc-periodic signal, the oscillator energy loss for
one oscillation is given by

Eosc =
VDD

RS

∫ Tosc

0
Vout dt (5)

Then, we introduce the output mean voltage Vout =

1/Tosc
∫ Tosc

0 Vout dt to reformulate the last expression as:

Eosc =
VDD

RS
VoutTosc (6)

As Tosc ∝ RS CP [30], we obtain a similar expression to the
dynamic energy loss due to the charge and discharge of load
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Fig. 10. (a) ONN neuron model (top) and analog implementation using
coupling resistors and a VO2-oscillator. In this work, synaptic operations occur
via current flow through coupling resistors and the input summation naturally
happens in current mode. (b) When two coupled oscillators are out-of-phase,
a synaptic current flows through the coupling resistor and energy is lost by the
Joule effect. The case where the two oscillators are out-of-phase during tsettle
corresponds to the maximum SOP energy loss. (c) The other extreme case
occurs when two coupled oscillators are in phase during tsettle; the current
flow is null and ES OP = 0.

capacitors in digital circuits Edyn = CPV2
DD. However, in our

case, the oscillator energy loss (6) is modulated by the DC
output voltage operating point Vout. Note that closed-form
expressions for Vout and Tosc are established in [30] but are
not listed here for clarity. We observe that the two key knobs
to obtain low energy ONN are low operating voltages and low
parasitics. Next, we derive the oscillator energy when coupled
to N − 1 other oscillators.

B. ONN Synaptic Operations
We first define the intrinsic synaptic operation between

coupled oscillators. For oscillator i, we conceptually express
its synaptic input weighted sum hi(t) as:

hi(t) =
N−1∑
j=1

Wi j ∆ϕ j(t) (7)

whereWi j are the synaptic weights and ∆ϕ j(t) are the phases
of other oscillators (Fig.10a). Then, the role of the oscillating
neuron is to produce an output phase by applying a non-linear
activation function a to its input:

∆ϕi(t) = a(hi(t)) (8)

We define a synaptic operation (SOP) in ONN as the evalua-
tion of the quantity Wi j∆ϕ j(t). Note that up to now, we have
not considered any hardware, and SOP could be implemented
in various manners such as with digital circuits [9] or using
the analog Ohm’s law. Using these definitions, we express the
neuron energy as the sum of two contributions:

Eneuron = Einput + Eactivation (9)

Einput is the loss related to the evaluation of the input
weighted sum, whereas Eactivation is the energy needed to pro-
duce an output, i.e., determine the phase difference. Again, (9)
is general enough so it can capture any type of implementation

Fig. 11. ONN settling time and energy for different values of N. Settling
time remains approximately constant when scaling up N. Oscillators truly act
as parallel processing units. Energy to settle scales linearly with N. Medians,
first and third quartiles of simulation results are represented.

and computing (sequential or parallel). In the interesting case
where neurons process information in parallel, we can then
express the neuron energy as:

Eneuron =
(
(N − 1) ES OP + Eosc

)
Ncycles (10)

where Ncycles is the number of oscillating cycles before
settling to a stable output phase state, and Eosc is the energy
of a single oscillation. One interesting aspect of analog ONN
is that sometimes SOP can be energy-free. For instance, when
two coupled oscillators are in-phase the synaptic current is
null and ES OP=0 (see Fig.10c). The worst-case SOP energy
occurs when two oscillators are out-of-phase: the maximum
amplitude across the synaptic resistor reaches ∆Vmax = VH−VL

and induces Joule’s loss (see Fig.10b). As SOP analytical
expression depends on the oscillating waveform, we evaluate
here the worst-case for simplicity and we consider that a DC
voltage ∆Vmax is applied to every coupling resistor RCN during
the entire oscillating period:

ES OP =
∆V2

max

RCN

Tosc (11)

To assess how the ONN energy scales with N, we must first
evaluate the ONN computation time, Ncycles. Next, we perform
circuit simulations of various ONN sizes dedicated to pattern
recognition to estimate Ncycles.

C. ONN Settling Time and Energy Scaling
We define the ONN settling time as the time tsettle required

for ONN signals to be periodically stable:

tsettle = NcyclesTosc (12)

For t ≥ tsettle, ONN phases can be measured as they are
stable. For example in Fig.2, ONN stabilizes to a stable pattern
after Ncycles = 1.75 cycles. To derive the ONN settling time, we
perform simulations for different ONN sizes by varying 1) the
number M of stored patterns and 2) the number of noisy pixels
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in test images from 10% to 50%. Fig.11 shows the simulation
results. Interestingly, the ONN settling time is approximately
constant and is smaller than 5 cycles in most cases. Hence,
ONN parallel computation can allow to compute in constant
time even for large networks. This result corroborates what
has been observed with oscillator-based Ising machines [16],
i.e., coupled oscillators converge to a solution (not necessarily
the optimal one) in constant time.
Moreover, we derive that the ONN energy scales linearly

(see Fig.11) when ONN satisfies the two following properties:
1) Parallelism: the computation time tsettle remains quasi-
constant.

2) Downscaling of synaptic energy: we scale the coupling
resistors RCN as:

RCN = (N − 1)RC2 (13)

where RC2 is the coupling resistance between two cou-
pled oscillators [30]. The synaptic loss ES OP becomes:

ES OP =
∆V2

max

(N − 1)RC2

Tosc (14)

Therefore, even though the number of synapses grow
quadratically, the ONN energy grows only linearly with the
number of oscillators. This can be verified using our previous
definitions (6, 10, 14):

Eanalog
ONN = N Eneuron

= N
(
(N − 1) ES OP + Eosc

)
Ncycles

= N(
∆V2

max

RC2

+
VDD

RS
Vout)NcyclesTosc

(15)

Note that we have not yet considered any peripheral circuits
that could change the ONN energy scaling law when imple-
mented in real hardware. For instance, even though the energy
of the analog ONN computing core grows linearly (15), we
would still have a quadratic number of synapses that would
need to be programmed. But in terms of computing, the analog
ONN is promising when compared to digital architectures. In
the latter case, the energy of a synaptic operation (such as
multiply and accumulate (MAC)) remains constant and cannot
be scaled down. If we consider a fully-digital ONN computing
with MACs rather than analog currents, we would then have
a total energy that grows quadratically:

Edigital
ONN = N

(
(N − 1) EMAC + Eosc

)
Ncycles (16)

In our simulations, we considered ONNs with a large
supply voltage VDD = 2.5V leading to an important energy
consumption of 2 nJ/oscillator/cycle. Whereas, Jackson et al.
in [8], have designed an ONN consuming 1.21 pJ/oscillator
using a hybrid design (analog synapses and digital neurons)
in 28 nm CMOS technology. Next, we study how to scale VO2
devices to achieve competitive performances with respect to
state-of-the-art solutions.

D. Oscillator Energy Minimization using Scaled VO2 Devices
Here, we study how to minimize the energy for a VO2-

based oscillator using the formulation (6) and assisted by

(a)

(b)

CBCB size

Contact 
width

Fig. 12. (a) Structure of the VO2 crossbar (CB) device. Top and bottom
electrodes are in cross-like configuration. They have the same contact width of
250 nm. The VO2 layer of 80 nm thickness is sandwiched between them. The
color map overlapped to the geometrical structure accounts for the temperature
distribution across the device at the highest simulated voltage. (b) Device
I − V obtained through electrothermal TCAD simulation of CB=4-µm (red
solid line) and CB=2-µm (blue solid line) devices. The simulations have been
performed in voltage-controlled mode, by applying the voltage to a circuit
composed of the VO2 device connected in series to an external resistor of RS
= 1 kΩ. The dashed dotted lines represent the associated load lines.

TCAD simulations. The TCAD modeling and simulation flow
is further described in recent work [34], [35]. We consider
VO2 devices in crossbar (CB) geometry [14] as a potentially
scalable geometry to lower the oscillator energy consumption
(Fig.12a). By reducing the VO2 CB size, the overall VO2 ther-
mal dissipation decreases and the VO2 device can transition to
a metallic state with less power [35]. The applied voltage can
then be reduced for given insulator and metallic states that are
set by material properties and contact area (Fig.12b).
As our model predicts that the oscillator energy scales

quadratically with voltages (6), it is of interest to scale down
VO2 CB dimensions. Fig.13 shows results of TCAD simula-
tions for various CB (500nm, 1µm, 1.5µm, 2µm, 3µm and
4µm) and biasing parameters. We see from Fig.13a that VO2
threshold voltages VH and VL are approximately proportional
to CB and allow a linear VDD scaling. With reduced CB, the
oscillating voltage amplitude can be decreased (Fig.13b) for
low power operation (Fig.13c). As we kept the same material,
contact area, and load capacitor for all CB sizes, the oscillating
period does not vary significantly and the minimum energy is
obtained for CB=500nm (Fig.13d).
Fig.14 shows the comparison between our analytical model

(6) and mean power and energy computed with TCAD for
different CB sizes. We observe a good match for the mean
power but some deviation when evaluating the energy. We
believe this is mainly due to non-linearities induced by thermal
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(a) (b)

(c) (d)

Fig. 13. TCAD simulation results for the same crossbar (CB) geometry and
CP=5nF. (a) Oscillator parameters with respect to the VO2 CB. By scaling
down the VO2 CB, the thermal dissipation decreases and the device needs less
power to transition from one state to the other. Therefore, the VO2 thresholds
VH and VL decrease with CB. We scale down VDD approximately linearly with
VH and VL. The load resistor RS is adapted in each case to place the load line
in the NDR region and obtain oscillation. (b) Transient voltage across VO2
devices for different CB. (c) Instantaneous power for different CB. Scaling
down CB leads to low oscillation amplitude and low power. (d) Oscillator
energy vs period for various CB.

effects, which result in a larger oscillating period thus a
higher energy consumption [34]. This aspect is not captured
by our analytical formalism as it only considers electrical
variables (Fig.14b). Nevertheless, the scaling trend of our
model is in agreement with TCAD simulations and we use
it for benchmarking ONN with state-of-the-art chips.

V. ONN Benchmarking
A. Neuron Energy-Delay Benchmark
Benchmarking ONN with other architectures is not trivial

as ONN is a phase-based system and does not perform
conventional MAC operations. However, the concept of synap-
tic operation is shared among all sorts of neural inference
chips and can serve as common ground for benchmarking.
In Artificial Neural Networks (ANN), a SOP is defined by
the multiplication between the input and the synaptic weight.
Then, it can be naturally implemented in digital hardware by
a MAC operator and in this case, there is the equivalence
1 SOP≈1 MAC [36]. Here, we use real-chip SOP metrics
to benchmark the time and energy required for a neuron to
produce an output. Nikonov and Young [36] recently proposed
a chip-level benchmark between neuromorphic hardware and
digital neural accelerators based on the neuron energy and
delay.
Similarly, we benchmark neuron energy-delay metrics from

various chips defined as Eneuron = NS Pch/Tch where NS , Pch

and Tch are the number of synapses per neuron, the chip’s
power consumption and throughput (number of SOP/s), re-
spectively. In digital neural accelerators performing MACs, the
neuron delay is estimated as delayacc = NS N/Tch. For Spiking
Neural Networks (SNN) neuromorphic hardware, neurons do
not need to wait for all input SOPs to occur to produce an
output spike and this depends on the type of information

Thermal effect

Thermal 
effect

Thermal 
effect

(a) (b)

(c) (d)

CB=500nm
CB=4μm

Fig. 14. Comparison between TCAD and analytical model for (a) Oscillator
mean power (b) Oscillating period and (c) Oscillator energy with respect to
VDD. Our analytical model does not include thermal effects which slow down
oscillations and increase the energy. Nevertheless, our model (6) captures well
the quadratic VDD scaling law. (d) Both TCAD and our model predict a linear
energy scaling law with respect to the oscillator load capacitance. CB=1.5µm
is considered here.

encoding [38]. In average, we approximate the neuron delay
as delayneurom = N/Tch [36].
To benchmark ONN, we consider VO2 devices with

CB=500nm, ∆Vmax=21 mV, and various load capacitors.
TCAD simulations were initially carried out to fit experimental
oscillations where circuits employ nano-farad load capacitors
[13]. However, in literature, faster VO2 oscillations up to
9 MHz have been reported [39] and we believe crossbar
VO2 could reach a similar speed with lower load capacitors.
Thus, we project the oscillator energy and delay for lower
capacitances down to 500 fF using our analytical model (6)
and (12).
To obtain a more precise energy assessment, we include

the power consumed by peripheral circuits, i.e., the phase
initialization and measurement circuits. To set the oscillator
input phase, we would use in the worst case one digital-to-time
converter (DTC) per oscillator. As an example, we consider a
9-bits DTC consuming 31 µW at 40 MHz in 28nm CMOS
technology [40] suitable for low power edge applications. For
the phase measurement, we take the example of the circuit
described in [41] that consumes 20.5 µW in 28nm CMOS
technology. Overall, we consider Pperiph=60 µW of peripheral
circuits per oscillator clocked at 30 MHz, which gives 2 pJ per
cycle. As a first-order estimation, we consider that Pperiph is
proportional to the neuron oscillating frequency and we obtain
a constant peripheral energy loss Eperiph = Pperiph Tosc Ncycles.
We use Ncycles ≈ 5 derived in section IV.C and we obtain
Eperiph=10 pJ. Note that our estimation remains optimistic as
we use a bottom-up type of energy-delay assessment, whereas
state-of-the-art data correspond to real chip measurements.
Fig.15 shows the neuron energy-delay for various SNN

neuromorphic chips (blue circled dots), digital neural accel-
erators (red squared points) considered in previous work [36],
[37] and VO2 oscillators with different load capacitances.
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Fig. 15. Neuron energy and delay to produce an output for various chips. We used data from [37], [17], [7]. Red squared markers are digital neural accelerators
optimized for efficient matrix-vector product (MAC operations). Blue circled points are neuromorphic chips that implement SNNs. Green diamond markers
are VO2 oscillators with CB=500nm and various load capacitances including peripheral circuits. Orange star markers are ONN neurons standalone without
any peripheral circuits. Purple triangular points are ONNs designed with CMOS technology.

When the oscillator load capacitance increases, the oscillator
slows down and its energy to produce a stable output phase
increases. Similarly, neuromorphic SNN chips lie on the right-
hand side of the plot as they generally produce spikes at
lower frequency than digital neural accelerators [36]. From
the neuron energy point of view, it appears that VO2-based
ONN can compete with state-of-the-art SNN neuromorphic
chips for a similar neuron delay. With real chip measurements
which would include all peripheral energies, we expect the
ONN region to shift up and to lie in the SNN neuromorphic
region in the worst case.
The VO2 oscillator could compete with neural accelerators

at energy level but would be orders of magnitude slower with
load capacitances larger than 500fF. For instance, a neuron
from PuDianNao [42] accelerator produces an output after 242
ps whereas it would take 16 ns to phase lock for a scaled VO2
oscillator with CP=500fF. We notice that peripheral circuits set
the minimum achievable neuron energy for load capacitances
smaller than 50 pF (green diamond points), whereas the energy
of the ONN neuron standalone can be below the picojoule
range (orange star points). From our first-order estimation, we
conclude that the energy-delay of a VO2-ONN can be very
competitive under the two following conditions:

1) the oscillating frequency is in the GHz range, i.e., the
load capacitance CP<50 fF and assuming that the VO2
thermal time constant remains negligible [35].

2) careful design of peripheral circuits to fully take advan-
tage of ONN phase computing paradigm.

As an alternative of VO2 oscillators, CMOS ONNs (pur-
ple triangular points) are currently very competitive as they
use scaled transistors from a mature CMOS technology. For
instance, the first phase-based ONN chip ever reported for
pattern recognition is the digital ONN designed by Jackson
et al. [8] with 100 neurons and 10,000 synapses using a
28nm CMOS technology. Their results are promising as they
measured a 1.21 pJ neuron energy and 4 ns delay. For fast
convolution inference, Nikonov et al. recently reported on
an ONN chip fabricated in 22nm FinFet CMOS process that
computes in less than 10 ns and consumes 2 pJ/oscillator. In
the field of oscillator-based Ising machines (OIM) [16], Ahmed
et al. [17] revealed an OIM composed of 560 ring oscillators in
65nm CMOS technology that consume 1.74 pJ/oscillator for
Ncycles=5 and fosc=118 MHz. These recent examples further
highlight the ONN potential to perform various tasks at high
speed and low energy.
Finally, we would like to stress that benchmarking different

architectures at the neuron level only gives a limited vision
of chips’ potential as they are ultimately used to solve prac-
tical problems. For example, Nikonov’s ONN and the neural
accelerator DianNao [43] have almost the same energy-delay
when used to compute convolutions [7]. Next, we choose to
benchmark a VO2-ONN in the case of image edge detection
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Training images: edge detection

Additional state: 
Background 
detection

(a)

(b) (c)

EDGE=1

EDGE=0

Fig. 16. a) 10 fully-connected oscillators trained to detect vertical, horizontal
and diagonal edges in images. b) Mapping of Hebbian coefficients to coupling
resistors. c) ONN state that detects the image background.

which is a widely used task in image processing.

B. Edge Detection Benchmark with ONN
Here, we aim to benchmark VO2-ONNs with other works

on a specific image edge detection application. Similar to
edge detection algorithms that employ 3x3 or 5x5 convolution
kernels [44], we scan an input image with 3x3 ONN to extract
edges. Analogous phase-based edge detection algorithms have
already been proposed in literature [45], [46] but we rather
focus on the analog hardware implementation to assess how
a VO2-ONN benchmarks with state-of-the-art edge detection
hardware.
We consider a fully-coupled ONN composed of 10 oscil-

lators and 45 coupling resistors where 9 oscillators scan the
input image with a padding of 1, and the 10th oscillator makes
the final decision (Fig.16a). Using the Hebbian learning rule
[5], we train the ONN to detect edges in the vertical, horizontal
and diagonal direction and we map the Hebbian coefficients
to coupling resistors using the mapping function defined in
[30] (Fig.16b). To detect the background, we bias the VO2
oscillators such that the 0◦ phase state is more likely to occur
(we set RS=6kΩ instead of 20kΩ), further explained in [30].
As shown in Fig.16c and Fig.17b, oscillators converge in-phase
when initialized with similar input phases and the ONN detects
the background. Fig.17a shows an example where the ONN
detects a vertical edge. Note that the 10th output oscillator is
always initialized with an input phase of 90◦ to not favor any
particular output state. As already highlighted in section IV.C,
the ONN makes the decision after few oscillation cycles only
(between 3 and 5).
We compare our ONN image detection with the state-of-

the-art Sobel and Canny edge detection methods [44], [47]
that we test in Matlab using built-in functions. The results
from Fig.18 show that Sobel, Canny, and ONN edge detections
are qualitatively similar for a binary input image. A more
interesting case consists in detecting edges in a gray-scale
image as shown in Fig.19 with the 8-bits 64x64 gray-scale
example. We observe that ONN detects more edges than Sobel
and therefore evaluates well the image gradient. However, our
ONN edge detection seems more sensible to noise than Canny

INPUT

OUTPUT:
EDGE=0

INPUT

OUTPUT:
EDGE=1

(a)

(b)

Reference

Reference

Fig. 17. From left to right: 3x3 portion of an input image, oscillators’
waveforms, output ONN state in the case of a) vertical edge and b) uniform
background.

(a) (b)

(c) (d)

Input image Sobel

Canny ONN

Fig. 18. a) Cameraman binary 512x512 image. b) , c) and d) are the output
images using Sobel, Canny and ONN edge detection methods, respectively.

that initially smooths the input image with a 5x5 gaussian
kernel. We believe that larger ONN kernels such as 5x5 or
7x7 could produce similar denoising property but is beyond
the scope of this paper.
Table II shows the performances of edge detection ASICs

implemented in 65 nm [48] and 45 nm [49] CMOS tech-
nologies. Both accelerators are optimized to run the Canny
algorithm and are suitable for edge applications thanks to
their low power consumption. We consider a VO2-ONN with
a crossbar size of 500 nm to achieve low power operations and
we vary the load capacitance to set the oscillating frequency.
A single ONN running at 31 MHz would process a 512x512
image in 42 ms and would be x100 slower than Soares’s
ASIC [49]. By reducing the capacitance load to 500 fF and
parallelizing at least 10 ONNs, ONN could compete with state-
of-the-art to achieve 0.42 ms/image.
Again, the peripheral circuits’ energy could become domi-
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TABLE II
Edge detection benchmark

Hardware Frequency Mean Power Image size Time /image Energy/pixel
Lee 2018 [48] ASIC (65 nm) 500 MHz 5.48 mW 1280x720 2.2 ms 13.2 pJ

Soares 2020 [49] ASIC (45 nm) 350 MHz 6.7 mW 512x512 0.42 ms 10.7 pJ

ONN1 10 VO2-oscillators
C=5 pF 31 MHz 13 µW

+ 330 µW (periph.) 512x512 42 ms 2.1 pJ
+ 53 pJ (periph.)

ONN2 10 VO2-oscillators
C=500 fF 310 MHz 13 µW

+ 3.3 mW (periph.) 512x512 4.2 ms 0.21 pJ
+ 53 pJ (periph.)

(a) (b)

(c) (d)

Input image Sobel

Canny ONN

Fig. 19. a) 64x64 8-bits gray scale image []. b), c) and d) are the output
images using Sobel, Canny and ONN edge detection methods, respectively.

nant for scaled VO2-oscillators and would be x253 larger than
the oscillator energy in this first-order estimation. This points
out that a VO2-ONN requires specific and optimized peripheral
circuits to fully take advantage of the ONN paradigm. We
also believe there is room for improvement in terms of power
management as ONN only needs initialization and phase
measurements circuits during the first and last oscillating
cycle, respectively.

VI. Discussion
ONN is an alternative paradigm and it computes in a

parallel, fast, and energy-efficient manner. Despite the recent
surge of interest in ONNs, we believe some theoretical and
practical points still remain unexplored. Such as, how can
one take advantage of ONN associative properties in modern
neural networks? Recent works have suggested using ONNs in
image processing tasks [15], [50] or as filters in CNNs [14].
But a more general use of ONNs in deep neural networks
has not yet been demonstrated. Also, how can we efficiently
implement peripheral circuits and programmable synapses
for ONNs? These challenges need to be addressed to have
competitive phase-based ONNs in edge devices.
Finally, scaled VO2 devices are promising to implement

energy-efficient oscillators with low supply voltage and small

load capacitances. However, our TCAD simulations reveal that
the VO2 thermal behavior has an impact on the oscillator
energy and delay as it can slow down oscillations. As shown
in this work, ONN becomes really competitive for high fre-
quencies beyond hundreds of MHz. Hence, we believe that
more VO2 electrothermal studies are required to ensure that
the VO2 thermal time constant would not limit the frequency
scaling.

VII. Conclusion
In this work, we derived the performance scaling laws of

VO2-ONNs at device, circuit, and architecture levels. We first
studied ONNs used as associative memories and we derived
that the ONN memory capacity scales as 0.15N when trained
with the Hebbian learning rule, similarly to Hopfield Neural
Networks. Next, we presented the trade off between the ONN
size, SNR and frequency due to the thermal noise produced
by the coupling resistors. We also showed that the constant
ONN settling time leads to a favorable linear energy scaling
when increasing the coupling resistance values. Assisted by
TCAD simulations, we then proposed some design guidelines
at device and circuit levels to build competitive VO2-ONNs
with respect to state-of-the-art chips. Finally, we applied our
methods to an image edge detection application using a scaled
VO2-ONN that is suitable for low-power edge devices.
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