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A Nonlinear Model Predictive Control for the
Position Tracking of Cable-Driven Parallel Robots
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Abstract—The present paper proposes a Nonlinear Model
Predictive Control (NMPC) strategy for the position tracking of
Cable-Driven Parallel Robots (CDPRs). The NMPC formulation
handles explicitly the cable tensions and their limits. Accord-
ingly, the cable tension distribution is performed as an integral
part of the NMPC feedback control strategy, which notably
allows the CDPR to operate on the wrench-feasible workspace
boundaries without failure. In order to integrate the cable
tension minimization within the NMPC formulation, the concept
of Wrench Equivalent Optimality (WEO) is introduced. The
WEO is a non-negative measure able to evaluate if the wrench
generated by a given cable tension vector can be generated by an
alternative tension vector with smaller 2-norm. The redundancy
resolution performed by means of the minimization of the WEO
enables the stability of the closed-loop system to be proved.
More precisely, sufficient conditions for the uniform asymptotic
stability are deduced using results from the analysis of NMPC
schemes without terminal constraints and costs. Furthermore,
the proposed NMPC strategy is validated experimentally on a
fully-constrained 6 degree-of-freedom CDPR.

Index Terms—Cable-Driven Parallel Robots, Model Predictive
Control

NOMENCLATURE LIST

Sns Infinite sequences of vectors with length ns

Sns1
ns2 Sequences of ns2 vectors with length ns1

U Set of vectors of feasible cables tensions
Unu Sequences of nu vectors of feasible

cable tensions
X Set of admissible poses
Y Set of admissible states
y State vector

Jhp : N×Y×Uhp → R, cost functional
` : N×Y×U→ R, stage cost
`∗ : N×Y→ R, minimal time varying stage cost

φφφ y : Y×U→ R2n transition mapping
τττ f b : N×Y→ U, NMPC control policy
τττwo : X×U→ U, Wrench Equivalent optimal

(WE-optimal) cable tensions
yτττ(·)(·,ya) : N→ R2n, trajectory for initial state ya and

sequence of cable tensions τττ(·)
‖v‖K, weighted norm of a vector v given by

√
vT Kv
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Fig. 1. HRPCable prototype, a 6-DoF fully-constrained CDPR.

I. INTRODUCTION

POSITION tracking control of Cable-Driven Parallel
Robots (CDPRs) addresses the problem of generating a

mobile platform trajectory as close as possible to a desired
one. The majority of previous works dealing with this problem
implemented model-based strategies including a feedforward
input based on the system dynamics [1]–[18]. Acceptable
results can notably be obtained with a PID feedback correction
combined to computed torque control [1]–[5] or with a similar
approach with position-controlled winches [6]. Nevertheless,
advanced control techniques may lead to improved results.
Sliding Mode Control (SMC) [19] received particular attention
in this context [9]–[14]. SMC is well-known to present easy
implementation, good robustness against modeling uncertain-
ties and, generally, finite time convergence. Babaghasabha
et al. [9] applied this control strategy to a planar CDPR.
Terminal sliding mode [10] and super twisting controller [11]
are improved versions of SMC that were used to control
CDPRs. Some other examples of advanced control techniques
used with the same goal are H∞ [15], [16], Lyapunov-based
controllers [17], [18] , and learning-based tracking controllers
[20].

Although minimum and maximum cable tension limits play
a crucial role in the operation of a CDPR, the control strategies
proposed in [1]–[18] are not able to handle these constraints
as an integral part of the feedback motion controller. These
constraints are typically handled in a cable tension distribu-
tion algorithm, e.g. [21]–[26], which takes place once the
desired wrench is already computed by the controller. As
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a consequence, an unfeasible desired wrench taken as the
input to a tension distribution algorithm generally leads to
a control breakdown. This kind of feasibility issue typically
arises close to the boundaries of the CDPR wrench-feasible
workspace (WFW) [27] or in presence of significant modeling
uncertainties or disturbances.

To overcome this problem, a Model Predictive Control
(MPC) strategy was introduced in our preliminary work [28].
As highlighted in [29], MPC is one of the few control
strategies able to handle system constraints explicitly. Thus,
the Linear MPC (LMPC) introduced in [28] integrates the
cable tension distribution calculation within its formulation.
Experimental results showed that this MPC is not prone to
the aforementioned feasibility issues since it can operate on
the WFW boundary without failure.

In spite of the significant improvements obtained in [28],
the stability analysis of the corresponding closed-loop system
is hindered by the linear approximation of the actual CDPR
nonlinear dynamics. Furthermore, the obtained tracking error
leaves room for improvement. In this context, the Nonlinear
Model Predictive Control (NMPC) strategy introduced in the
present paper seeks to ally superior tracking precision and a
closed-loop stability proof, in addition to the aforementioned
ability to work on the WFW boundary without failure.

Apart from [28], studies addressing MPC schemes for
CDPRs are very few [30], [31]. Katliar et al. proposed
in [30] an NMPC to generate a desired set of accelerations
and velocities for a motion simulator. Its performance was
investigated through numerical simulations while the closed-
loop system stability and the ability to work close to the
WFW boundaries were not addressed. Moreover, the present
paper deals with trajectory tracking and prioritizes positioning
accuracy. Numerical simulations and experimental results are
presented in [31]. However, the proposed LMPC is meant for
vibration attenuation of a 2-DoF planar CDPR where only
some of the cables are controlled in tension and the closed-
loop system stability is not addressed. The NMPC proposed
in the present paper is compatible with any CDPR actuated
by at least as many cables as number of DoFs. Experimental
validation is done on a 6-DoF CDPR whose eight cable
tensions are controlled by the NMPC scheme in real time.
Additionally, the focus of the present work is position tracking
control, instead of vibration attenuation.

Regarding the stability of systems controlled with MPC
schemes, [32] advocates that terminal costs and constraints
(shortly referred to as terminal conditions) represent a power-
ful tool since the stability of the closed-loop system is deduced
as a direct consequence of Lyapunov stability theory [33,
Section 2.4]. Accordingly, numerous applications of MPC in
robotics used terminal conditions [34]–[39]. Nevertheless, the
use of terminal conditions in an MPC scheme may lead to
important drawbacks such as terminal constraint construction
issues, increased computational burden, and operating range
limitations [40]. More specifically, terminal constraints may
render an MPC scheme more prone to unfeasible optimiza-
tion problems in particular when operating close to system
constraints, which goes against the ability to work close to the
WFW boundary without failure such as demonstrated in [28].

Advantages and drawbacks of terminal conditions are further
discussed in [41], [42] and [43, Section 7.4].

Alternatively, MPC schemes without terminal conditions
can be used. The formulation and real-time solution of the
corresponding optimization problems without additional con-
straints are simplified. However, more advanced techniques are
necessary in order to guarantee the stability of the closed-loop
system since it cannot be deduced as a direct consequence
of Lyapunov stability theory. Hence, several studies used
MPC schemes without terminal conditions in robotics [31],
[44]–[49], but very few performed a stability analysis, e.g.,
Worthmann et al. [50] use a non-quadratic stage cost for the
NMPC without terminal conditions of non-holonomic mobile
robots and attain a stable closed-loop system. Position tracking
control of CDPRs presents paramount differences with the
steering of non-holonomic mobile robots so that the results
obtained in [50] are not applicable in the present paper.
Nevertheless, similarly to [50], the proposed NMPC scheme
stability analysis will be based on [43, Chapter 6].

In order to apply the theory of Grüne and Pannek [43],
the NMPC scheme proposed in this paper applies an original
formulation of the cost functional. Many MPC applications
in robotics use the penalization of (i) the tracking errors, (ii)
the amplitude of the control inputs and/or (iii) the variation of
the control inputs. Typically, the corresponding cost function
consists of one of these three variables or of a weighted sum
of two of them [37], [44], [45], [47]–[49]. Indeed, this was the
case for the above mentioned MPC schemes used to control
CDPRs [28], [30], [31], in which the cable tensions were
taken as the control inputs. However, for the position tracking
control of CDPRs, this formulation is not consistent with the
methodology used for the stability analysis of NMPC schemes
presented in [43, Chapter 6] and may lead to deteriorated
tracking errors. Indeed, an NMPC scheme considering (ii)
and/or (iii) is generally not able to track a feasible desired
trajectory with null tracking errors since the optimization of
a cost functional consisting of a weighted sum of (i)-(iii)
leads to a compromise between these three aspects, which
generally have different individual minima. In other words, the
minimization of a weighted sum of (i)-(iii) seeks to minimize
(ii) and/or (iii) to the detriment of (i), the tracking error. The
control scheme proposed in this work provides a solution to
this issue.

The main contribution of the present paper is the formula-
tion of an NMPC scheme for the position tracking control of
CDPRs using the concept of Wrench Equivalent Optimality
(WEO). For a given platform pose and a set of cable tensions,
the WEO is a non-negative measure that evaluates whether the
wrench generated by these cable tensions can be generated by
an alternative cable tension vector with smaller 2-norm. The
penalization of the WEO is consistent with the minimization
of the tracking errors in the sense that both tracking errors and
WEO can be null. By means of this original formulation, the
cable tension distribution is implicitly performed in real time
and the stability of the closed-loop system is analyzed using
methods for the analysis of NMPC schemes without terminal
conditions. In addition, since the cable tensions are explicitly
handled in the NMPC controller, the proposed strategy allows



IEEE TRANSACTIONS ON ROBOTICS, VOL.XX, NO. XX, 2021 3

4
3

0

2

1

2 1

x (m)

x
y

x

z
2

z (
m

)

01

3

-1

y (m)

0 -2
-1 -3

-4-2

r

platform

drawing
points

cables

Fig. 2. CAD view of the HRPCable prototype.

the CDPR to operate on the boundary of the WFW without
failure. Finally, compared to the state-of-the-art LMPC scheme
[28], the proposed strategy leads to improved tracking errors.

The tracking error improvement is validated experimentally
on a 6-DoF CDPR whose mobile platform follows a typical
pick-and-place trajectory. In these experiments, in order to
show that the proposed scheme can operate on the WFW
boundary without failing, the same pick-and-place path is per-
formed with maximum allowed tensions drastically reduced.
The desired trajectory escapes from the WFW defined with
these new cable tension limits. The proposed NMPC is able to
track a trajectory as close as possible to the desired one without
violating the cable tension limits, some tensions attaining their
maximum limit. In order to highlight the relevance of this fea-
ture, the same trajectory is performed with the control scheme
proposed in [5]. In this case, as soon as the desired trajectory
reaches an unfeasible pose, the CDPR operation is terminated
because the controller requires the tension distribution module
to generate an unfeasible wrench. Note that this infeasibility
issue would also be obtained with advanced control schemes
such as robust [2], [3] and adaptive [9]–[11] strategies.

This paper is organized as follows. Section II presents
the CDPR continuous and discrete-time dynamic models.
Section III introduces the proposed NMPC scheme. In Sec-
tion IV, the stability of the corresponding closed-loop system
is analyzed. In Section V, the proposed NMPC scheme is
compared to an LMPC in numerical simulations. Experimental
results are presented in Section VI and conclusions are drawn
in Section VII. Appendices A, B and C discuss some details on
the dynamic model and on the stability analysis. Appendix D
briefly describes the used numerical optimization methods.

II. PRELIMINARIES AND DYNAMIC MODELS

This section presents the continuous dynamic model of a
CDPR consisting of an n-DoF mobile platform driven by m
cables, where n 6 m. An example of a 6-DoF CDPR driven
by 8 cables is depicted in Figure 2. As for most of the typical
applications of MPC in robotics, the control scheme proposed

in Section III is based on a discrete-time system. Accordingly,
a discrete-time CDPR dynamic model based on its continuous
counterpart is also presented.

The platform pose is given by the vector-valued function

xxx : R→Rn, so that xxx(t) =
[

ppp(t)T ψψψ(t)T
]T

is the pose vector
containing both the platform position ppp(t) and orientation ψψψ(t)
at instant t. These vectors are written with respect to the
fixed reference frame Or, as depicted Figure 2. Typically, ψψψ(t)
consists of Euler angles. The dependence on time is dropped
leading to the shorthand notation xxx whenever there is no risk
of confusion. The same shorthand notation is used for other
vector-valued and matrix-valued functions in the remainder of
this paper. The common dot notation is used to refer to the
time derivatives, so that dxxx/dt = ẋxx and d2xxx/dt2 = ẍxx.

The vector-valued function τττc : R → Rm represents
the vector of cable tensions in function of time
τττc(t) =

[
τ1(t) . . . τm(t)

]T
. Each cable force is applied on

the corresponding attachment point of the mobile platform
(see Figure 1). The mobile platform equations of motion
can be obtained with the Newton-Euler formalism, which,
neglecting cable distributed mass, leads to the following
dynamic model

M(xxx) ẍxx+C(xxx, ẋxx) ẋxx = g(xxx)+W(xxx)τττc, (1)

where M(xxx) is the mass matrix, C(xxx, ẋxx) is the vector of
Coriolis and centripetal forces, g(xxx) is the vector of gravi-
tational forces and W(xxx) is the wrench matrix. Details on the
continuous dynamic model (1) are discussed in Appendix A.

Based on the nonlinear continuous-time system (1), it is
necessary to define the discrete-time dynamic model that will
be used in Section III. This discrete-time model is written
in terms of sequences of vectors, which are denoted with
bold (non-italic) lowercase letters followed by (·) (such as, for
instance, s(·)). The set of sequences of vectors with dimension
ns and infinite number of elements is denoted as Sns . More
precisely,

Sns = {s(·) : N0→ Rns}, (2)

with N0 =N∪{0} the set of non-negative integers and N the
set of strictly positive integers. Accordingly, the kth vector of
a sequence s(·) ∈ Sns is denoted as s(k) = sk ∈ Rns .

Consider the sequences of vectors x(·), ẋ(·), ẍ(·) ∈ Sn and
y(·) ∈ S2n defined as

x(k) = xk = xxx(t0 + k ∆t)

ẋ(k) = ẋk = ẋxx(t0 + k ∆t)

ẍ(k) = ẍk = ẍxx(t0 + k ∆t)

y(k) = yk =
[
xT

k ẋT
k

]T

(3)

for all k ∈ N0, an initial time t0 and a sampling period ∆t.
Without loss of generality, since the continuous system (1)
is time-invariant (according to the definition in [51, Chapter
1]) the initial time is considered to be t0 = 0. The subsequent
time instants are denoted as t1 = ∆t, t2 = 2∆t, . . . , tk = k ∆t,
for k ∈ N0.

Similarly, considering a digital control approach, the
continuous-time representation τττc of the actual cable tensions
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is considered piece-wise constant and given by its discrete
counterpart τττ(·) ∈ Sm, i.e.:

τττ(k) = τττk = τττc(t), for k ∆t < t 6 (k+1)∆t and k ∈ N0. (4)

Typically, every cable tension vector τττk, ∀k ∈ N0 should
satisfy τττmin 6 τττk 6 τττmax, for constant τττmin, τττmax ∈ Rm

+ and
Rm
+ = {v ∈ Rm|v > 0}. The set of admissible cable tensions

U⊂ Rm
+ is thus defined as

U= {τττ ∈ Rm | 0 < τττmin 6 τττ 6 τττmax}. (5)

Consider a sequence of feasible cable tensions τττ(·) ∈ Sm

represented by an infinite number of vectors {τττ0, τττ1, . . .}. For
a given time instant k∈N0, special attention will be devoted to
the finite sequence of cable tensions {τττk, τττk+1, . . . ,τττk+hp−1},
with a positive integer hp. Accordingly, the following set of
truncated sequences with a finite number of feasible cable
tension vectors is introduced:

Uhp
k =

{
τττ(·) : Nk,k+hp−1→ U

}
, (6)

where, Nn1,n2 = {i ∈ N0|n1 6 i 6 n2}, for given n1,n2 ∈ N0.
In order to define a discrete-time dynamic model based on

(1), variables xk+1 and ẋk+1 should be computed based on
known xk, ẋk and τττk. The following discrete-time dynamic
system is considered:

yk+1 =

A︷ ︸︸ ︷[
I ∆t I
0 I

]
yk +

B(yk)︷ ︸︸ ︷[
0

∆t M(xk)
−1 W(xk)

]
τττk+[

0
∆t M(xyk)

−1
(
g(xk)−C(xk, ẋk)ẋk

)]︸ ︷︷ ︸
v(yk)

(7)

or, using a more compact notation,

yk+1 = φφφ y(yk,τττk) = Ayk +B(yk)τττk +v(yk) (8)

with φφφ y(yk,τττk) denoting the transition mapping that represents
the discrete-time dynamic model. Details on the deduction of
this model are given in Appendix A.

The transition mapping in (8) can be used in the prediction
step of an NMPC scheme. For a state yk ∈R2n, the sequence of
hp ∈N future states is predicted for a known sequence of future
cable tensions τττ(·) ∈ Uhp

k by using the transition mapping φφφ y
recursively. More precisely,

yτττ(·) (0,yk) = yk

yk+1 = yτττ(·) (1,yk) = φφφ y(yk,τττk)

yk+2 = yτττ(·) (2,yk) = φφφ y (yk+1,τττk+1)

...

yk+hp = yτττ(·) (hp,yk) = φφφ y
(
yk+hp−1,τττk+hp−1

)
(9)

where the state yτττ(·) ( j,yk) represents the jth term of the
sequence of predicted future states yτττ(·)(·,yk) resulting from
the application of the cable tensions τττ(·)∈Uhp

k taking as initial
state yk. The strictly positive integer hp is called prediction
horizon.

d d

CDPR
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Fig. 3. Block diagram of a position tracking control scheme integrating the
proposed NMPC.

Although the domain of φφφ y may be defined as R2n×Rm,
a proper CDPR operation should be constrained to a limited
set of cable tensions. For this reason, the set of feasible cable
tensions U is used instead of Rm. Similarly, a constrained set
of platform poses and velocities should be defined. The set
Y ⊂ R2n is thus defined as the set of all admissible states
y ∈ R2n within which the controller is able to operate. The
definition of Y should use tools related to the computation
of the workspace of CDPRs, e.g. [52]–[56]. More details on
this matter are discussed in Section VI-A2. The set X⊂Rn is
defined as the projection of the set Y on the space of platform

poses, i.e. X = {x ∈ Rn | ∃ ẋ ∈ Rn :
[
xT ẋT

]T
∈ Y}. In

summary, the domain of φφφ y is defined as Y×U.

III. NMPC FOR CDPR POSITION TRACKING

The block diagram in Figure 3 outlines an overall posi-
tion tracking control scheme integrating the NMPC strategy
proposed in this paper. Based on the desired and estimated
platform motions (xd(·), ẋd(·) ∈ Sn and x(·), ẋ(·) ∈ Sn,
respectively), the NMPC scheme (block (a)) defines a set of
desired cable tensions τττd(·)∈ Sm. The cable tension control in
block (d) is responsible for generating these cable tensions by
means of desired motor velocities q̇d . As described in [28] and
[57], q̇d is computed applying a feedforward term q̇ f f related
to the platform velocity in addition to a PI feedback correction
based on the error between the actual cable tensions and the
desired ones. In addition, the authors showed in [57] that
this simple non model-based control scheme leads to small
tension tracking errors even in the presence of friction. The
actual platform pose and velocity are estimated based on the
measured motor positions and velocities. Blocks (b) and (c)
correspond to the kinematic modeling of the CDPR and can
be implemented using well-known methods, e.g. [58]–[60].
Note that the NMPC in block (a) is independent of blocks
(b), (c) and (d) and thus independent of cable properties (e.g.
elasticity) and friction at the winches and routing pulleys.

The predicted platform velocity ẋ f f is obtained within the
NMPC block applying (8) with τττd(k).

The NMPC scheme introduced in this section is consistent
with the standard formulation of NMPC schemes without
terminal conditions [43]. In accordance with the definition
of receding horizon MPC schemes [32], the proposed NMPC



IEEE TRANSACTIONS ON ROBOTICS, VOL.XX, NO. XX, 2021 5

strategy solves an Optimal Control Problem (OCP) at each
controller cycle such that a cost functional is minimized while
satisfying system constraints. Since no terminal condition is
used, the cost functional, denoted by Jhp : N0×Y×Uhp

k → R
for a given k ∈ N0, consists of a sum of individual costs
associated to each sampling time within the prediction horizon
hp ∈ N. The function that computes these individual costs
is called stage cost and is denoted by ` : N0×Y×U→ R.
Therefore, for an instant k ∈ N0, actual state yk ∈ Y and
sequence of cable tensions τττ(·) ∈ Uhp

k , the cost functional is
given by

Jhp(k,yk,τττ(·)) =
hp−1

∑
j=0

`
(
k+ j,yτττ(·)( j,yk),τττk+ j

)
. (10)

Algorithm 1 summarizes the common implementation of
NMPC schemes without terminal conditions applying the no-
tations used in this paper. Algorithm 1-(b) defines the control
policy τττ f b :N0×Y→U, which computes the vector of desired
cable tensions τττ f b(k,yk) at instant k ∈N0 and for state yk ∈Y.
This vector is computed based on the minimization of the cost
functional Jhp . The computation of Jhp applies the discrete-
time system (8) in order to predict the hp future states, as in
(9). The cost functional Jhp is computed considering a given
stage cost ` (which will be defined later in this section). The
control policy τττ f b is used in Algorithm 1-(a) such that the
minimization of Jhp is solved at each controller cycle with
updated estimations of the states. As main output, the NMPC
scheme defines a set of desired cable tensions τττd(k) to be
applied in the time interval t ∈ [k ∆t, (k+1)∆t). These outputs
are used as setpoints for the cable tension control in block (d)
shown in Figure 3. The numerical procedure used for the
minimization of Jhp is discussed in Appendix D.

The definition of a pertinent stage cost is a crucial step in
the design of a stable and effective NMPC scheme. In order
to meet the theoretical requirements necessary to guarantee
stability and obtain appropriate performances, one should seek
some particular properties of the stage cost. Postponing the
formal developments on this matter to Section IV, some key
properties are sketched in the next paragraphs to explain the
rationale used in the design of the proposed OCP.

Typically, NMPC schemes penalize states and control inputs
with respect to the desired behavior of the system. The fol-
lowing definition rigorously formulates such desired behavior.

Definition 1. Consider the sequences xd(·), ẋd(·) ∈ Sn of
desired poses and velocities, respectively, and yd(·) ∈ S2n,

with yd(k) =
[
xd(k)T ẋd(k)T

]T
, the desired trajectory. The

sequence yd(·) is called feasible if there exists a sequence
of nominal desired cable tensions τττnd(·) ∈ Sm such that, for
y0 = yd(0),

yτττnd(·)(k,y0) = yd(k) ∈ Y and τττnd(k) ∈ U (11)

for all k ∈N. Moreover, each vector of τττnd(·) is considered to
have minimal 2-norm such that, for every k ∈ N,

@ τττ ∈ U | W(xd(k))τττnd(k) = W(xd(k))τττ

and ‖τττ‖< ‖τττnd(k)‖.
(12)

Algorithm 1 NMPC Algorithm

(a) Overall NMPC Implementation

1: Set k← 0;
2: loop
3: Estimate the actual states yk using a

forward kinematic model;
4: Set desired cable tensions τττd(k)← τττ f b(k,yk)

valid for t ∈ [k ∆t, (k+1)∆t);
5: Set k← k+1;
6: end loop

(b) Control policy - computation of the desired cable
tensions

Inputs:
[
xT

k ẋT
k

]T
= yk ∈ Y and k ∈ N0;

Output: τττ f b ∈ U;

1: function τττ f b(k,yk)
2: Find τττ∗(·) ∈ Uhp

k that minimizes Jhp

(
k,yk,τττ(·)

)
3: and satisfies constraints (16b);
4: Set τττ f b← τττ∗k = τττ∗(k);
5: return τττ f b.
6: end function

A desired trajectory yd(·) ∈ S2n that does not satisfy the
aforementioned conditions is called unfeasible.

As indicated in (12) each vector of τττnd(·) presents minimal
2-norm. Indeed, the minimization of the 2-norm of the vector
of cable tensions is widely used in the state-of-the-art control
schemes, e.g. [22]–[24]. This choice leads to continuous cable
tension while minimizing the energy consumption [23].

The cost functional of a typical NMPC scheme should be
null for state and cable tensions equal to the desired trajectory
and nominal desired cable tensions, respectively, and strictly
positive if the state is not equal to the desired one. More
precisely, the stage cost function should satisfy (see [43,
Section 3.3]){

`(k,y,τττ) = 0 if y = yd(k) and τττ = τττnd(k),
`(k,y,τττ)> 0 if y 6= yd(k).

(13)

Aiming at a stage cost satisfying (13), `(k,y,τττ) could
be defined as a sum of weighted norms such as
‖y−yd(k)‖Ky +‖τττ− τττnd(k)‖Kτττ

, with ‖v‖K =
√

vT Kv, for
any vector v and positive definite matrix K. Nevertheless, in
order to obtain τττnd(·), one would need to solve the tension
distribution problem along the whole trajectory beforehand,
using a tension distribution algorithm. The nominal wrenches
to be applied on the platform should then be computed based
on the nominal inverse dynamics. Therefore, these wrenches
could not be updated in the controller real-time operation. Due
to the incidence of disturbances and modeling uncertainties,
the wrench computed with the nominal inverse dynamics can
be inefficient for the tracking control. Furthermore, the desired
trajectory should be feasible in the sense that there exists a
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sequence of cable tension distributions in U able to generate
this trajectory.

Conversely, the proposed NMPC scheme is able to define in
real time the optimal cable tension distribution without fixing
a desired wrench. For this purpose, the following stage cost is
proposed:

`(k,y,τττ) = ‖y−yd(k)‖2
Ky +‖τττ− τττwo(xy,τττ)‖2

Kτττ
, (14)

where Ky = diag(ky) and Kτττ = diag(kτττ), with constant
weighting vectors ky ∈ R2n

+ and kτττ ∈ Rm
+. The term

‖τττ− τττwo(xy,τττ)‖2
Kτττ

represents the Wrench Equivalent Opti-
mality (WEO) with respect to xy and τττ . The WEO is a non-
negative measure that evaluates whether the wrench generated
by τττ can be generated by an alternative set of cable tensions
with smaller 2-norm at the pose xy. More precisely, for given
x ∈X and τττ ∈U, the vector-valued function τττwo : X×U→U
denotes the wrench equivalent optimal (WE-optimal) cable
tensions, defined as

τττwo(x,τττ) = argmin
τττ ′
‖τττ ′‖2 (15a)

s. t. W(x)τττ = W(x)τττ
′ (15b)

τττmin 6 τττ
′ 6 τττmax (15c)

In words, τττwo(x,τττ) is the vector of cable tensions with
minimal 2-norm that is able to generate the same wrench
as τττ at the pose x. Therefore, for given k ∈ N, y ∈ Y and
τττ ∈ U, the term ‖τττ − τττwo(xy,τττ)‖2

Kτττ
= 0 iff τττ has minimal

2-norm (τττ = τττwo(xy,τττ)). Otherwise, ‖τττ − τττwo(xy,τττ)‖2
Kτττ

> 0,
indicating that there exists a τττwo(xy,τττ) ∈ U generating the
same wrench (thanks to (15b)) with ‖τττwo(xy,τττ)‖< ‖τττ‖.

Accordingly, for given time instant k ∈N0 and state yk ∈ Y,
the OCP solved in Algorithm 1-(b), which corresponds to the
minimization of Jhp(k,yk,τττ(·)) with respect to τττ(·), can be
written as

min
τττ(·)∈Uhp

k

hp−1

∑
j=0

`
(
k+ j,yτττ(·) ( j,yk) ,τττk+ j

)
(16a)

s. t. yτττ(·)
(

j,yk
)
∈ Y ∀ j ∈ N1,hp (16b)

with the stage cost ` defined in (14). Note that N1,hp is
considered in (16b) while the summation in (16a) is taken from
j = 0 to hp−1 since (9) is used in order to predict future states
up to yk+hp = yτττ(·) (hp,yk) = φφφ y

(
yk+hp−1,τττk+hp−1

)
and (16b)

ensures that all these predicted future states are feasible.
According to the definition of the proposed stage cost

in (14), it is worth highlighting that (15) is an optimization
problem nested within the main problem (16). More precisely,
the proposed OCP can be classified as a bilevel optimization
problem (see [61], [62]), in which the lower level minimization
(15) is embedded within the upper level (16). In practice, the
solution of the upper level problem (16) cannot be decoupled
from the solution of the lower level (15) and each iteration on
the numerical solution of (16) should consider updated values
of the WE-optimal cable tensions computed according to (15).
For further details on the numerical solution of (16), refer to
Appendix D.

Note also that, as a consequence of (12) and (15),

‖τττwo(xd(k),τττnd(k))−τττnd(k)‖Kτττ
+‖yd(k)−yd(k)‖Ky =

`
(
k,yd(k),τττnd(k)

)
= 0 ∀ k ∈ N

(17)

and conditions (13) are satisfied with the stage cost (14).
Thereby, the minimal 2-norm tension distribution is performed
when solving the OCP (16) , i.e., the cable tension distribution
is implicitly performed in real time within the OCP.

In order to exemplify the advantage of this approach,
consider k ∈ N, yk ∈ Y and a sequence of cable tensions
τ̂ττ(·) ∈ Uhp

k that generates an optimal trajectory y∗
τ̂ττ(·)(·,yk) =

{y∗k+1, . . . , y∗k+hp
} in the sense that the tracking error

hp

∑
j=1
‖y∗k+ j−yd(k+ j)‖Ky (18)

is minimal. A sequence of WE-optimal cable tensions τττ∗(·)
defined such that

τττ
∗
k+ j = τττwo(xy∗k+ j

, τ̂ττk+ j), ∀ j ∈ N0,hp−1 (19)

presents minimal 2-norm and generates the very same op-
timal trajectory y∗

τ̂ττ(·)(·,yk). In accordance with Definition 1,
if yk = yd(k) and yd(·) is feasible, τττ∗k+ j = τττnd(k+ j) for all
j ∈N0,hp−1, J(k,yk,τττ

∗(·)) = 0 and the resulting tracking error
is null. The use of the WEO in the stage cost (14) is thus
consistent with the minimization of the tracking errors in the
sense that WE-optimal cable tensions are able to generate the
desired trajectory with null tracking errors. Furthermore, in
case of disturbances, modeling uncertainties and unfeasible
yd(·), the proposed OCP formulation is still able to find an
optimal trajectory y∗

τττ∗(·)(·,yk) with minimal tracking error and
WE-optimal cable tensions τττ∗(·).

IV. STABILITY ANALYSIS

This section analyzes the stability of the closed-loop system

yk+1 = φφφ y
(
yk,τττ f b(k,yk)

)
(20)

obtained with the discrete-time system (8) and the NMPC
control policy τττ f b introduced in Algorithm 1-(b) and (16).

To this end, some comparison functions are used. In accor-
dance with commonly used notations [43], [51], the following
classes of functions are considered

K := {α : R+
0 → R+

0 |α continuous,
strictly increasing and α(0) = 0};

L := {δ : R+
0 → R+

0 | δ continuous,
strictly decreasing and lim

t→∞
δ (t) = 0};

K L := {β : R+
0 ×R+

0 → R+
0 |

β (r, ·) ∈L and β (·, t) ∈K }
K∞ := {α ∈K | α unbounded},

where R+
0 = {r ∈ R |r > 0}.

Furthermore, for a given sequence s0(·) ∈ Sns and instant
k ∈ N0, special attention will be devoted to a truncated
sequence sk(·) = {s0(k), s0(k+1), . . .}. Accordingly, for given
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ns ∈ N and ni ∈ N0, the following set of sequences of vectors
is introduced:

Sns
ni
= {s(·) : Nni,∞→ Rns}. (21)

The stability analysis presented in this section deduces
sufficient conditions under which the closed-loop system (20)
is uniformly asymptotically stable according to the following
definition.

Definition 2. Consider the NMPC Algorithm 1 with prediction
horizon hp ∈ N and a feasible sequence of desired states
yd(·) ∈ S2n. The resulting closed-loop system

y j+1 = φφφ y
(
y j,τττ f b( j,y j)

)
, ∀ j ∈ N (22)

is called uniformly asymptotically stable to yd(·) on Y if, for
each yk ∈Y and k ∈N, there exists a function β ∈K L such
that y f b(·) ∈ S2n

k defined according to

y f b
k = yk

y f b
i+1 = φφφ y

(
y f b

i ,τττ f b(i,y
f b
i )
)
, ∀ i ∈ Nk,∞

(23)

satisfies the following relation

‖y f b
k+ j−yd(k+ j)‖6 β (‖yk−yd(k)‖, j), ∀ j ∈ N. (24)

In words, (23) constructs the sequence of states y f b(·)
generated by the closed-loop (22) “departing” from yk at
sampling time k. The closed-loop (22) takes as feedback
control policy τττ f b defined in Algorithm 1. The definition of
uniform asymptotic stability presented in Definition 2 is based
on an upper bound of the error ‖y f b

k+ j−yd(k+ j)‖. Note that
Definition 2 implicitly assumes τττk = τττd(k), ∀k ∈ N, i.e. the
cable tension control loop (d) in Figure 3 is able to keep a
null error.

The upper bound used to limit the tracking error is es-
tablished in terms of the function β ∈K L . An illustrative
example of a function belonging to this class is presented
in Figure 4. In accordance with (IV), for a positive real
constant r0, the illustrative function βex(r0, t) = r3

0/t tends to
zero for t → ∞ and is strictly decreasing. Since the second
argument of β in (24) represents the time, the tracking error
asymptotically converges to zero. In contrast, β is strictly
increasing with respect to the first argument. Therefore, for
increased initial errors ‖yk − yd(k)‖, the function of time
β (‖yk−yd(k)‖, ·) ∈L is increased as well.

Definition 2 is used in [43, Definition 2.16] for the analysis
of NMPC schemes and is closely related to [51, Definition
4.2], which is more often used in general nonlinear control. As
a matter of fact, the analysis presented in this section is based
on [43] and the notations used are similar to those proposed
in this reference.

Since the OCP (16) does not use stabilizing terminal con-
ditions, tools designed to analyze NMPC schemes without
terminal conditions should be used in the stability analysis
of the closed-loop (20). The minimal time-varying stage cost
denoted by `∗ :N×Y→R is fundamental in this context. This
function is defined as

`∗(k,y) = min
τττ∈U

`(k,y,τττ). (25)
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Fig. 4. An illustrative example of a function βex ∈ K L given by
βex(r, t) = r3/t.

Summarizing some of the results presented in [43, Chapter
6], the following theorem addressing the stability of NMPC
schemes without terminal conditions can be stated.

Theorem 1. Consider the NMPC Algorithm 1 with prediction
horizon hp ∈N and minimal time-varying stage cost satisfying

α1(‖y−yd(k)‖)6 `∗(k,y)6α2(‖y−yd(k)‖)
∀ k ∈ N and y ∈ Y,

(26)

for suitable α1, α2 ∈K∞. Suppose that, for all yk ∈ Y, there
exist a feasible τττe(·)∈Um

k , real C <∞ and σ ∈ (0,1) satisfying

`
(

k+ j,yτττe(·)( j,yk),τττ
e
k+ j

)
6C σ

j `∗ (k,yk) , (27)

for all k, j ∈ N. Then, the nominal closed-loop (20) is uni-
formly asymptotically stable on Y provided that hp is suffi-
ciently large.

A draft of the proof of Theorem 1 is presented in Ap-
pendix B. This theorem describes sufficient conditions to
obtain a stable closed-loop system with the proposed NMPC
for hp sufficiently large.

Conditions (26) will be quite straightforwardly deduced at
the end of this section based on (13). Nevertheless, inequality
(27) represents an important restriction to the properties of
the stage cost. This inequality imposes, for each discrete
instant k ∈ N and state yk ∈ Y, the existence of a feasible se-
quence τττe(·) that leads to a stage cost `

(
k+ j,yτττe(·)( j,yk),τττ

e
j

)
converging exponentially to zero in time. The exponential
convergence is a result of the term C σ j with σ ∈ (0, 1). Note
that the upper bound function C σ j `∗ (k,yk) is proportional to
the initial minimal stage cost `∗ (k,yk).

It is important to highlight that Theorem 1 is based on the
existence of any feasible sequence τττe(·) that satisfies (27).
The control policy τττ f b is not considered explicitly in this
theorem. In contrast to many control architectures, constrained
MPC schemes generally do not have an analytical expression
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of the control policy. For this reason, the closed-loop system
stability cannot be studied explicitly, but, instead, by means
of suitable properties of the stage cost. In this section, these
suitable property are given by (26)-(27).

Since one of the terms in the stage cost (14) is the error
‖y− yd‖2

Ky
, this error needs to be bounded. To this end, the

following assumption establishes important properties of the
controlled system in order to attain (27).

Assumption 1. Consider the error ey : N×Y→ R given by

ey(k,y) = ‖y−yd(k)‖2
Ky . (28)

For each yk ∈ Y and k ∈ N, there exist τττ(·) ∈ Sm
k , real

C1 < ∞ and σ1 ∈ (0,1) such that

ey
(
k+ j,yτττ(·)( j,yk)

)
6C1 σ

j
1 ey(k,yk) (29a)

τττk+ j ∈ U (29b)

for all j ∈ N0.

If Assumption 1 is true, then, for each state yk ∈ Y
and instant k ∈ N, there exists a feasible sequence of cable
tensions τττ(·) that generates a trajectory in which the error
‖yτττ(·)( j,yk)−yd(k+ j)‖Ky exponentially converges to zero.
Moreover, the upper bound function in (29a) is proportional
to the initial errors ey(k,yk). Note that, for given k and yk, the
error ey(k,yk) is constant with respect to the discrete time j. It
is easy to show that this assumption is satisfied with a typical
control scheme, as detailed in Appendix C. It is interesting
to reiterate that the present stability analysis relies on the
existence of any control sequence satisfying some particular
properties. The existence of a control policy satisfying (29a)
will be used in order to deduce sufficient conditions to satisfy
(27), which plays an important role in the stability analysis
of (20).

As important as (29a) imposing the exponential convergence
of error ey(k, ·), (29b) requires that the sequence τττ(·) is feasi-
ble. Considering for instance one of the strategies proposed in
[1]–[18], this means that the wrench defined in the feedback
motion control policy is feasible for any pose and velocity
within the state constraint set Y. Clearly, the definition of
the robot workspace and the set Y ⊂ R2n play crucial roles
in Assumption 1. The study of the feasibility of a given
wrench considering different poses and velocities is addressed
in several works (e.g. [52]–[56]) and is out of the scope of
this paper. Let us also point out that Assumption (29b) is
often implicitly taken. Studies such as [4], [6], [10], [63], [64]
analyze the corresponding closed-loop systems considering
that the feedback loop does not lead to unfeasible cable
tensions and, therefore, satisfies (29b).

Since the term ey(k,y) = ‖y− yd(k)‖2
Ky

in the expression
(14) of the stage cost `(k,y,τττ) is independent of τττ , the minimal
time-varying stage cost is given by

`∗(k,y) = ey(k,y)+min
τττ∈U

(‖τττ− τττwo(xy,τττ)‖2
Kτττ

). (30)

Lemma 2 will show that the minimum
minτττ∈U(‖τττ− τττwo(xy,τττ)‖Kτττ

) is known and (30) can thus
be simplified. Before stating and proving Lemma 2, a
preparatory lemma is necessary.

Lemma 1. Consider τττa, τττb ∈ U and x ∈ X. If
W(x)τττa = W(x)τττb, then

τττwo(x,τττa) = τττwo(x,τττb). (31)

Proof. First, the existence of a τττwo(x,τττ) for all x ∈Rn, τττ ∈U
should be proved. The objective function ‖τττ ′‖2 in (15a) is
quadratic and strictly convex. The substitution of τττ ′= τττ ∈U in
the constraints (15b)-(15c) shows that τττ itself is an element of
the set defined by these constraints. Hence, this set is convex
and non-empty. Therefore, (15) is a feasible strictly convex
inequality constrained Quadratic Programming (QP) problem
that possesses a global minimum.

Denoting f′ ∈ Rn the wrench such that f′ = W(x)τττa, Def-
inition (15) indicates that both τττwo(x,τττa) and τττwo(x,τττb) are
obtained with

τττwo(x,τττa) = τττwo(x,τττb) = argmin
τττ ′
‖τττ ′‖2

2 (32a)

s. t. W(x)τττ
′ = f′ (32b)

τττmin 6 τττ
′ 6 τττmax (32c)

and, therefore, (31) is true.

Lemma 1 shows that if two vectors of cable tensions
generate the same wrench in a given pose, they lead to the
same WE-optimal tension distribution. The following corollary
is based on this result.

Corollary 1. For every τττa, τττb ∈ U and x ∈ X, if

τττ
b = τττwo(x,τττa), (33)

then
τττ

b = τττwo(x,τττb). (34)

Proof. Taking τττa, τττb and x from the corollary statement such
that τττb = τττwo(x,τττa), constraints (15b)-(15c) in the definition
of τττwo implies that W(x)τττa =W(x)τττb and τττb ∈U. Therefore,
applying Lemma 1, τττwo(x,τττa) = τττwo(x,τττb), and thanks to
(33), this leads to τττb = τττwo(x,τττb).

Lemma 2. For every y ∈ Y, τττ ∈ U and k ∈ N,

min
τττ∈U

(‖τττ− τττwo(xy,τττ)‖2
Kτττ

) = 0, (35)

and the minimal time-varying stage cost is given by

`∗(k,y) = ‖y−yd(k)‖2
Ky = ey(k,y). (36)

Proof. For every y ∈ Y and τττ ∈ U, one may set
τττout = τττwo(xy,τττ), and thanks to the constraints (15c), τττout ∈U.
Moreover, we have ‖τττout − τττwo(xy,τττ)‖2

Kτττ
= 0. Since the ex-

pression ‖τττ− τττwo(x,τττ)‖2
Kτττ

= 0 is non-negative, this proves
(35). Substituting (35) in (30), equation (36) is obtained.

As discussed in Section III, τττwo(x,τττ) is the vector of cable
tensions with minimal 2-norm that generates the same wrench
as τττ in pose x. Loosely speaking, the influence of τττwo(x,τττ)
and τττ on the system dynamics should be equivalent. This
equivalence is described in a more precise manner in the
following assumption.
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Assumption 2. Consider y, y+ ∈ Y and τττa, τττb ∈ U. If these
vectors satisfy

y+ = φφφ y(y,τττ
a) and (37a)

W(xy)τττ
b = W(xy)τττ

a (37b)

then, the following relation also holds:

y+ = φφφ y(y,τττ
b) = φφφ y(y,τττ

a). (38)

It is easy to demonstrate that Assumption 2 is satisfied with
the transition mapping (7). It can be noted that this assumption
is implicitly taken if the stability of a digital control system is
analyzed considering the robot controller as a continuous-time
system, as in [4], [6], [10], [63], [64].

Based on Assumption 2, for a given initial state vector, two
sequences of cable tensions that generate identical wrenches
at the corresponding poses result in identical trajectories.
Therefore, any trajectory performed with an arbitrary sequence
of feasible cable tensions can also be generated with an alter-
native sequence consisting of WE-optimal tensions generating
the same wrenches along the trajectory. With the latter cable
tension sequence, the stage cost at each instant along the
trajectory is equal to the minimal time-varying cost `∗. This
assertion is rigorously formulated in Lemma 3.

Lemma 3. For each yk ∈ Y, y(·) ∈ S2n
k and τττ(·) ∈ Sm

k such
that, for all j ∈ N0,

yk+ j = yτττ(·)( j,yk) ∈ Y (39a)

τττk+ j ∈ U, (39b)

if Assumption 2 holds, there exists a τττ∗(·) ∈ Sm
k that satisfies

yτττ(·)( j,yk) = yτττ∗(·)( j,yk) = yk+ j, (40a)

τττwo(xyk+ j ,τττ
∗
k+ j) = τττ

∗
k+ j ∈ U (40b)

`(k+ j,yk+ j,τττ
∗
k+ j) = ey(k+ j,yk+ j) = `∗(k+ j,yk+ j) (40c)

for all j ∈ N0.

Proof. For yk, y(·) and τττ(·) stated in the lemma, define
τττ∗(·) ∈ Sm

k and y∗(·) ∈ S2n
k as

τττ
∗
k+ j = τττwo(xyk+ j ,τττk+ j),

y∗k+ j = yτττ∗(·)( j,yk)
(41)

for all j ∈ N0. Due to the constraint (15b),

W(xyk)τττk = W(xyk)τττ
∗
k (42)

and, according to (38) and (9),

y∗k+1 = yτττ∗(·)(1,yk) = φφφ y(yk,τττ
∗
k) = yk+1. (43)

Moreover, (41)-(42) and Lemma 1 imply that

τττwo(xyk ,τττ
∗
k) = τττwo(xyk ,τττk) = τττ

∗
k . (44)

By induction, one can obtain

y∗k+2 = φφφ y(yk+1,τττ
∗
k+1) = yk+2

y∗k+3 = φφφ y(yk+2,τττ
∗
k+2) = yk+3

...

(45)

and
τττwo(xyk+1 ,τττ

∗
k+1) = τττwo(xyk+1 ,τττk+1) = τττ

∗
k+1

τττwo(xyk+2 ,τττ
∗
k+2) = τττwo(xyk+2 ,τττk+2) = τττ

∗
k+2

...

(46)

which are equivalent to (40a) and (40b).
Equation (40b) and Lemma 2 imply that

`(k+ j,yk+ j,τττ
∗
k+ j) =

ey(k+ j,yk+ j)+‖τττ∗k+ j− τττwo(xyk+ j ,τττ
∗
k+ j)‖Kτττ

=

ey(k+ j,yk+ j) = `∗(k+ j,yk+ j),

(47)

as in (40c).

Finally, the main results on the stability of the NMPC
scheme proposed in Section III are summarized in the fol-
lowing theorem.

Theorem 2. Consider the NMPC Algorithm 1 with prediction
horizon hp ∈ N and feasible desired trajectory yd(·) ∈ S2n.
Consider also that Assumptions 1 and 2 hold. Then, the
nominal closed-loop system (20) is uniformly asymptotically
stable on Y provided that hp is sufficiently large.

Proof. The proof consists in analyzing the conditions pre-
sented in Theorem 1. First, it is necessary to prove that there
exist α1, α2 ∈K∞ such that

α1(‖y−yd(k)‖)6 `∗(k,y)6α2(‖y−yd(k)‖)
∀ k ∈ N and y ∈ Y.

(48)

According to Lemma 2, `∗(k,y) = ‖y−yd(k)‖2
Ky

such that
the following inequalities hold for all k ∈ N:

Kmin
y ‖y−yd(k)‖2 6 `∗(k,y)

= ‖y−yd(k)‖2
Ky

6 Kmax
y ‖y−yd(k)‖2.

(49)

where Kmin
y and Kmax

y are the minimum and maximum singular
value of Ky, respectively.

Defining α1, α2 ∈ K∞ by α1(r) = Kmin
y r2 and

α2(r) = Kmax
y r2, (49) can be written as

α1(‖y−yd(k)‖)6 `∗(k,y)6 α2(‖y−yd(k)‖) ∀ k ∈ N, (50)

which proves (26).
In addition, (27) should be proved. If Assumption 1 holds,

then for each yk ∈ Y and k ∈ N, there exist τττ(·) ∈ Sm
k , real

C1 < ∞ and σ1 ∈ (0,1) such that

ey
(
k+ j,yτττ(·)( j,yk)

)
6C1 σ

j
1 ey(k,yk) (51a)

τττk+ j ∈ U (51b)

for all j ∈ N0. Applying Lemma 3 with τττ(·) = τττ(·), the ob-
tained sequence τττ∗(·) leads to the same trajectory (as implied
by (40a)) and, therefore, (51a) remains valid. In addition, (40c)
implies that

`
(
k+ j,yτττ∗(·)( j,yk),τττ

∗
k+ j
)
= ey(k+ j,yτττ∗(·)( j,yk)) (52a)

6C1 σ
j

1 ey(k,yk) (52b)

=C1 σ
j

1 `
∗(k,yk), (52c)
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Fig. 5. Visited poses for the pick-and-place trajectories performed in the
numerical simulations.

where (51a) and (36) were used in order to obtain (52b) and
(52c), respectively. Inequality (52) proves (27), finalizing the
stability analysis.

V. NUMERICAL SIMULATIONS

The performance of the proposed NMPC scheme is com-
pared through numerical simulations to the LMPC introduced
in [28]. Typical pick-and-place trajectories are used and the
dimensions of CDPR prototype HRPCable are considered (see
Figures 1 and 2). The technical characteristics of this CDPR
prototype are discussed more in detail in the next section.

Instead of the stage cost `(k,y,τττ) as in (14), the LMPC of
[28] is based on the cost function `LMPC : N0×Y×U×U→R
defined as

`LMPC(k,y,τττk,τττk−1) = ‖y−yd(k)‖2
K1

+ c2 ‖τττk‖2+

+ c3 ‖τττk− τττk−1‖2,
(53)

where c2, c3 are positive real constants, K1 = diag(k1) with
k1 ∈ R2n

+ and ‖τττk− τττk−1‖ represents the 2-norm of the vari-
ation of the cable tensions between sampling times k−1 and
k. More details on LMPC schemes for the position tracking
of CDPRs are presented in [28], [65].

Optimal controller gains for both the LMPC from [28] and
the NMPC proposed in Section III were obtained through
Particle Swarm Optimization (PSO). These optimizations were
based on the trajectories depicted in Figures 5 and 6. The plat-
form orientation is defined by three Euler angles ψ1, ψ2, ψ3.
More precisely, the rotation matrix used in (63) is given by

R(ψψψ) = Rz(ψ3)Ry(ψ2)Rx(ψ1), (54)

with Rx,Ry,Rz : R→ R3×3 the elementary rotation matrices
around x, y and z axes, respectively. The cable tension limits
are taken as τττmin = 100 N and τττmax = 400 N.

Considering the desired trajectory shown in Figure 5, the
simulation of the closed-loop system obtained with the LMPC
scheme using a given set of gains {k1, c2, c3} leads to transla-
tion errors TE(k) and orientation errors OE(k) for any instant k
within the time interval corresponding to the trajectory motion.
Accordingly, the optimal LMPC gains were obtained by means
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Fig. 6. Numerical results comparing LMPC and NMPC schemes with optimal
gains.

of the minimization of a weighted sum of the maximum
translation and orientation errors, i.e.:

{k∗1, c∗2, c∗3}= argmin
{k1,c2,c2}

(
wt max

k
TE(k)+wo max

k
OE(k)

)
,

for positive constant weights wt and wo. Optimal NMPC
gains {k∗y, k∗τττ} were obtained with an equivalent procedure
and using the same weights wt and wo. The sampling period
of both control schemes was considered as ∆t = 22 ms.
The NMPC prediction horizon was defined as hp = 4 while
the LMPC prediction horizon was taken as hp,LMPC = 8. A
NMPC prediction horizon smaller than the LMPC one was
chosen in order to compensate for the increased complexity
of the optimal control problem addressed within the NMPC
strategy. These parameter values are in accordance with the
experimental tests presented in Section VI.

Figure 6 compares the errors obtained with the LMPC and
NMPC schemes using the corresponding optimal control gains.
Relatively small errors are obtained with the LMPC scheme
since TE(k)< 8 mm and OE(k)< 0.15 degrees for all k in the
trajectory time interval. However, the NMPC control strategy
proposed in this paper performs much better as it is able to
maintain errors virtually equal to zero, namely, TE(k)< 0.03
mm and OE(k)< 2×10−4 degrees for all k in the trajectory
time interval. These results are consistent with the discussion
presented in Section III. Namely, while the LMPC minimizes
the cable tensions in detriment of the tracking errors, the
proposed NMPC scheme is able to compute an optimal cable
tension distribution without degrading the tracking errors.

In order to better illustrate the contrast between these two
control schemes, the values of the maximum translation and
orientation errors were evaluated for different controller gains.
More precisely, Figure 7 compares the errors obtained with
sets of random controller gain values uniformly distributed
within the intervals given by{

0.5×k∗y 6 ky 6 1.5×k∗y
0.5×k∗τττ 6 kτττ 6 1.5×k∗τττ

(55)
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for the NMPC, and
0.5×k∗1 6 k1 6 1.5×k∗1
0.5× c∗2 6 c2 6 1.5× c∗2
0.5× c∗3 6 c3 6 1.5× c∗3

(56)

for the LMPC. The logarithmic plot chart depicted in Fig-
ure 7 indicates that the sets of NMPC controller gains
{ky, kτττ} within the intervals (55) lead to TE(k)< 0.1 mm and
OE(k)< 10−3 degrees. In contrast, as shown in Figure 7, the
1300 different LMPC controller gains sampled in intervals (56)
yield maxk TE(k)> 7.0 mm and maxk OE(k)> 0.12 degrees.

VI. EXPERIMENTAL VALIDATION

The NMPC scheme proposed in Section III was imple-
mented on the HRPCable prototype (Figure 1) leading to
the experimental results detailed in the present section. HRP-
Cable is a 6-DoF CDPR fully-constrained by eight cables.
Its dimensions are shown in Figures 2 and 9. The robot is
essentially built with Beckhoff components typically used in
industry. Each winch is equipped with a servo drive AX5112,
a motor AM8061 and gear train AG2210. An industrial PC
C6920 equipped with an Intel 2.4GHz i7 core processor com-
municates with the servo drives through EtherCAT protocol.
Cable tensions are measured with load pins Sensy 5300 1T
SL positioned in the axes of the routing pulleys. The platform
is a cube with length equal to 1 m and total mass mp = 23 kg.

Apart from the mechanical components, the presented ex-
perimental results were obtained using the industrial software
TwinCAT [66]. This software is not compatible with libraries
commonly used for matrix manipulation. For this reason, the
proposed NMPC scheme was developed from scratch. The
environment in which the controller was implemented proves
the applicability of the proposed solutions in the industry.
Appendix D presents details on the numerical implementation
of the control algorithm introduced in Section III. The results
presented in this section also use the kinematic model and
cable tension control (blocks (b), (c) and (d) in Figure 3)
introduced in [60] and [57], respectively.

Similarly to the previous section, the performance of the
proposed NMPC scheme is compared to the LMPC introduced
in [28] using typical pick-and-place trajectories. These control
schemes are also compared with respect to their robustness
against payload uncertainties.

In addition, an unfeasible desired trajectory is used in order
to show that the proposed NMPC scheme can operate on
the boundaries of the robot WFW without failure. While
the proposed NMPC scheme is able to track a trajectory as
close as possible to an unfeasible desired trajectory, a state-
of-the-art control scheme leads to a sudden interruption of the
robot operation. The results obtained with the proposed NMPC
scheme were summarized in a video1 that has been attached
to the present paper.

Taking the optimal gains obtained in the previous section
as initial estimation, the NMPC control parameters used in
the experimental tests presented in this section were tuned by
trial and error. Defining kx, kẋ ∈Rn

+ as subvectors of ky such

that ky =
[
kT

x kT
ẋ

]T
, the used controller parameters can be

summarized as follows:

Ky = diag(
[
kT

x kT
ẋ

]T
) (57a)

kx =
[
56 68 48 52 52 36

]T
(57b)

kẋ =
[
11 13 9 10 10 7

]T
(57c)

Kτττ = 6×10−7 I and hp = 4. (57d)

As in the previous section, the cycle time of the cable
tension control (block (d) in Figure 3) is 2 ms while the one
used for the NMPC controller is ∆t = 22 ms. The sampling
period of the cable tension control is mainly limited by the
response time of the velocity control loop (which is managed
at the servo drives) while the cycle time ∆t = 22 ms of the
NMPC control loop is limited by the time required to solve
the OCP (16) in real time.

A. Pick-and-place trajectories

The desired trajectories representing typical pick-and-place
tasks are defined using fifth-degree polynomials based on
the CDPR mobile platform poses depicted in Figure 9.
Two scenarios of maximum cable tension are considered: (i)
τττmax = 400 N and (ii) τττmax = 250 N. These scenarios are
addressed respectively in Sections VI-A1 and VI-A2 and both
cases consider τττmin = 100 N.

1) Nominal cable tension limits: Figure 8 shows the ex-
perimental results obtained using the proposed NMPC scheme
taking cable tension limits τττmin = 100 N and τττmax = 400 N.
Tracking errors consist of the Translation Errors (TE) and
Orientation Errors (OE). Figure 8 also depicts the cable
tensions measured using the aforementioned load pins.

The same trajectory was performed with the LMPC pro-
posed in [28]. Figure 10 compares the corresponding results.
In accordance with the goals defined in the present paper, the
comparative results presented in Figure 10 indicate that the
proposed NMPC scheme leads to significantly better tracking
errors than the LMPC approach. Indeed, Table I shows that
substantial improvements were obtained considering both the
RMS of the tracking errors and the maximum errors. These
errors are based on the platform pose computed by the forward
kinematics (block (b) in Figure 3).

1HD video available in https://youtu.be/NIb_XYSVv84
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Fig. 8. Experimental results for τττmax = 400 N. In the charts presenting the
cable tensions, the dashed and solid lines represent the desired and measured
tensions, respectively.
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Fig. 11. Experiments with τττmax = 250 N. In the charts presenting the
platform position and orientation, the dashed and solid lines represent the
desired and actual trajectories, respectively.

TABLE I
SUMMARY OF COMPARATIVE ERRORS BETWEEN LMPC AND NMPC:

ROOT MEAN SQUARE (RMS), STANDARD DEVIATION (SD) AND
MAXIMUM ERRORS.

RMS (SD) Maximum error
TE OE TE OE

LMPC 4.28 (2.17) mm 0.15 (0.07) ◦ 7.47 mm 0.27◦

NMPC 1.52 (0.76) mm 0.08 (0.04) ◦ 2.34 mm 0.14◦

Improvement 64.5 (64.8) % 44.6 (42.1) % 68.6% 48.1%

2) Reduced maximum cable tension: The authors’ previ-
ous study [28] highlighted that the main contribution of the
corresponding LMPC scheme lies in its capability to handle
cable tension limits explicitly. Thanks to this characteristic,
this LMPC is not prone to the feasibility issues discussed
in Section I. In order to verify this property, an unfeasible
desired trajectory was used in [28]. The same behavior should
be validated for the NMPC scheme proposed in the present
paper.

Therefore, a second scenario is considered taking a max-
imum cable tension reduced to τττmax = 250 N. The same
path depicted in Figure 9 is also used in this case with
reduced maximum tension. The obtained results are shown
in Figure 11. Although the desired trajectory escapes from the
WFW defined by this reduced maximum tension, the proposed
control scheme is able to track a trajectory as close as possible
to the desired one without violating the cable tension limits.

Therefore, as demonstrated in this experiment, the main
advantage of the proposed NMPC scheme with respect to
state-of-the-art strategies such as [1]–[18] lies in its capability
to operate on the robot WFW boundaries without failure. The
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Fig. 12. Experimental results obtained with the control scheme proposed
in [5] with the reduced maximum cable tension τττmax = 250 N. The robot
operation is terminated at t ≈ 10.5 s, when the cable tensions become
unfeasible.

control strategies proposed in [1]–[18] combined with some
of the tension distribution algorithms in [21]–[26] would fail
to fulfill this objective. As an example, Figure 12 presents
the experimental results obtained using the control scheme
proposed in [5]. As soon as the desired trajectory reaches
unfeasible poses, the robot operation is terminated because the
controller requires the tension distribution module to compute
an unfeasible wrench.

It is worth noting that the results presented in this section
consider the state constraint set Y equal to R2n. Hence, only
the cable tension constraint set U, i.e., the WFW, limits the
operation range of the NMPC scheme. This exempts the
control designer from the potentially arduous task of defining
the set Y. Moreover, the solution of (16) is also facilitated by
the reduced number of constraints.

In addition, one may note that the velocities of the trajectory
depicted in Figure 11 are lower than those of the original
trajectory shown in Figure 8. Lower velocities were used
in order to reduce platform oscillations when the desired
trajectory escapes the WFW. Alternatively, results of [28] show
that the addition to the stage cost of a term ‖τττk−τττk−1‖ penal-
izing cable tension variations is an efficient method to reduce
these oscillations. Nevertheless, nontrivial modifications of the
stability analysis of Section IV would be necessary in this case.
Accordingly, for the sake of consistency, the results presented
in this section do not apply a penalization of ‖τττk− τττk−1‖.

B. Robustness against payload uncertainties

CDPRs are often used in order to handle relatively heavy
payloads. Typically, the weight of such payloads are not
precisely known. Therefore, the tracking accuracy under the
incidence of payload uncertainties is a crucial aspect to be
considered in the analysis of CDPR position tracking control.

Pick the 
payload

Release the 
payload

z

time

Fig. 13. Illustration of the robustness test.
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Fig. 14. Experimental results obtained with the NMPC scheme in the
experiment evaluating the robustness against payload uncertainties.
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Fig. 15. Tracking errors of the LMPC and NMPC schemes in the experiment
testing the robustness against payload uncertainties.

Accordingly, in addition to the presented pick-and-place
trajectories, the robustness against payload uncertainties of the
proposed NMPC scheme was evaluated using the experiment
illustrated in Figure 13. An additional payload of 15.1 kg was
used, representing 65.6% of the mobile platform mass.

The obtained results are depicted in Figure 14. The same
procedure was performed using the LMPC proposed in [28],
leading to the comparison of Figure 15. Table II shows that, as
for the results presented in Section VI-A1, substantially better
tracking errors were obtained with the NMPC scheme.
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TABLE II
SUMMARY OF COMPARATIVE ERRORS BETWEEN LMPC AND NMPC
REGARDING THE ROBUSTNESS AGAINST PAYLOAD UNCERTAINTIES.

RMS (SD) Maximum error
TE OE TE OE

LMPC 4.66 (3.46) mm 0.52 (0.40) ◦ 12.37 mm 1.05◦

NMPC 3.92 (2.82) mm 0.31 (0.23) ◦ 7.83 mm 0.63◦

Improvement 16.0 (18.3) % 40.7 (42.4) % 36.7% 40.0%
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Fig. 16. High-speed trajectory results.

C. High-speed trajectory

As discussed in Section III, the proposed NMPC scheme
considers that the cable tension control (block (d) in Figure 3)
is able to maintain null errors all along the robot motion. This
assumption combined to the long sampling period (22 ms)
of the NMPC control loop could deteriorate the performance
obtained for trajectories presenting high velocities and accel-
erations.

In order to evaluate whether the NMPC scheme is vulnera-
ble to this issue, the trajectory depicted in Figure 16 was per-
formed. The trajectory consists of two back and forth straight-
line motions along the x direction with extreme poses 1.66 m
away from each other. Maximum velocities and accelerations
were equal to 0.915 m/s and 1.18 m/s2, respectively. Regarding
the positioning errors, the NMPC scheme led to maximum TE
and OE equal to 2.06 mm and 0.138◦, respectively. In contrast,
the LMPC scheme results in maximum TE and OE of 7.32 mm
and 0.210◦. Hence, the NMPC scheme still performs better
than the LMPC one in this experiment with velocities and
accelerations larger than those in Sections VI-A1 and VI-A2.

Trajectories with higher velocities and accelerations might

be successfully tracked by means of the proposed NMPC, but
were not tested due to safety reasons since the HRPCable
prototype was designed to handle heavy payloads at relatively
limited velocities and accelerations. Nevertheless, the applica-
bility of the proposed NMPC scheme to prototypes designed
for high velocities and accelerations (such as [1], [67]) would
require further investigations. This issue is mainly related to
the computing time required to solve the OCP (16). On the one
hand, a typical NMPC implementation would use numerical
solvers implemented by experts (as discussed in [30]). This
would reduce the computation time in comparison to the
controller used in HRPCable, which was implemented from
scratch. On the other hand, higher velocities and accelerations
may lead to faster changes in the dynamic model (8). The
solution of the optimization problem (16) may then demand a
larger number of iterations of the numerical solver.

VII. CONCLUSIONS

This paper introduced an NMPC scheme for the position
tracking of CDPRs. The OCP considered in the NMPC for-
mulation handles explicitly the cable tensions and their limits.
Accordingly, a substantial advantage of the proposed control
scheme over typical state-of-the-art control strategies lies in
its ability to operate on WFW boundary without failing. The
proposed OCP formulation minimizes both the tracking error
and the Wrench Equivalent Optimality (WEO). The latter is
a non-negative measure able to evaluate whether the wrench
generated by a given set of cable tensions can be generated
by an alternative set with smaller 2-norm. The minimization
of both the tracking error and the WEO is shown to be
consistent, in the sense that a trajectory with minimal tracking
error can be generated by cable tensions with minimal WEO.
As a result, the stability of the closed-loop system can be
analyzed and sufficient conditions for uniform asymptotic
stability were deduced using tools for the analysis of NMPC
schemes without terminal constraints and costs. Moreover, the
proposed control scheme was validated experimentally on a
6-DoF CDPR driven by eight cables. In comparison to a
previously introduced LMPC scheme, the tracking accuracy
was substantially reduced.

While the experimental results showed that the proposed
control scheme does not fail even in the presence of an
unfeasible desired trajectory, the stability analysis presented in
this paper is valid only for feasible trajectories. Future works
may thus deal with the extension of the stability analysis of
the proposed NMPC scheme to the case of unfeasible desired
trajectories, aiming at obtaining the conditions under which
the NMPC scheme remains stable while following a feasible
trajectory as close as possible to the unfeasible desired one.
Furthermore, the studied dynamic model considers that the
inner control loop managing the cable tensions is able to
generate the set of desired cable tensions instantly. Future
works may consider, instead of (8), an augmented dynamical
model taking into account the characteristics of this inner
control loop. This approach may notably improve the vibration
attenuation capabilities of the proposed NMPC scheme. Be-
sides, a robustness analysis could evaluate the influence on the
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stability of the closed-loop system of numerical and modeling
errors involved in (8). Such an analysis may also consider the
presence of measurement errors and disturbances.

APPENDIX A
DETAILS ON THE DYNAMIC MODELS

Neglecting cable sagging, the net wrench f(xxx,τττc) applied
on the platform by all the cable forces is

f(xxx,τττc) = W(xxx)τττc, (58)

where the wrench matrix representing this linear mapping is
given by W(xxx) =−JT (xxx) with J(xxx) the Jacobian matrix (see
[68]). Additionally, it is well-known that the angular velocity
ωωω is not equal to the time derivative of the orientation vector
ψψψ . Hence, the following relations need to be introduced:[

ṗppT ωωωT
]T

= S(xxx) ẋxx[
p̈ppT ω̇ωω

T
]T

= S(xxx) ẍxx+ Ṡ(xxx, ẋxx) ẋxx,
(59)

with S(xxx) a square matrix mapping ẋxx =
[

ṗppT ψ̇ψψ
T
]T

into[
ẋxxT ωωωT

]T
, and Ṡ(xxx, ẋxx) is the component-wise time derivative

of S(xxx) (see for instance [69, Section 2.3] or [70, Section 3.6]).
The mobile platform equations of motion can be obtained

with the Newton-Euler formalism, leading to the following
dynamic model when the cable distributed mass is neglected:

M′(xxx)
(
Ṡ(ẋxx,xxx) ẋxx+S(xxx) ẍxx

)
+C′(ẋxx,xxx)S(xxx)ẋxx =

g(xxx)+W(xxx)τττc,
(60)

where matrices M′ and C′ are given by

M′(xxx) =

[
mp I −mp ĉ(xxx)

mp ĉ(xxx) H(xxx)

]
and (61)

C′(xxx, ẋxx) ẋxx =

[
mp ω̂ωω ω̂ωω c(xxx)
ω̂ωω H(xxx)ωωω

]
. (62)

The scalar mp is the platform mass and I is an identity
matrix with dimensions suitably chosen. For any pair of
vectors v1,v2 ∈R3, the matrix v̂1 ∈R3×3 represents the skew
symmetric matrix such that v̂1 v2 = v1 × v2, with × being
the cross product. Denoting as cp the position vector of the
platform center of mass written in the coordinate system Op
attached to the platform (with Op shown in Figure 2), the
corresponding vector in the global coordinate system Or is
computed from cp using the rotation matrix R(ψψψ) as follows:

c(xxx) = R(ψψψ)cp =
[
cx cy cz

]T
. (63)

The angular velocity ωωω is obtained from xxx and
ẋxx in accordance with (59). The matrix H is de-
fined as H(xxx) = R(ψψψ)IG R(ψψψ)T +mp ĉ(xxx) ĉ(xxx)T where IG
is the platform inertia matrix with respect to the coor-
dinate system Op. The vector of gravitational forces is

g(xxx) = mp g
[
0 0 −1 −cy cx 0

]T
, with g the gravita-

tional acceleration. The z-axis of the fixed reference frame is
assumed to be vertical directed upward. Additionally, denoting

M(xxx) = M′(xxx)S(xxx) and

C(xxx, ẋxx) = C′(xxx, ẋxx)S(xxx)+M′(xxx) Ṡ(xxx, ẋxx),
(64)

the dynamic system (60) can be rewritten as

M(xxx) ẍxx+C(xxx, ẋxx) ẋxx = g(xxx)+W(xxx)τττc. (65)

In order to define a discrete-time dynamic model based
on (1), variables xk+1 and ẋk+1 should be computed based on
known xk, ẋk and τττk. In accordance with (4), the cable tension
vector τττk is considered as constant during a controller cycle
period ∆t. Therefore, the solutions xxx : R→Rn and ẋxx : R→Rn

of the Initial Value Problem (IVP) given by

ẍxx = M(xxx)−1(g(xxx)+W(xxx)τττk−C(xxx, ẋxx) ẋxx
)
, (66a)

xxx(tk) = xk and ẋxx(tk) = ẋk, (66b)

lead to a transition mapping φφφ x : Rn×Rn×Rm → R2n such
that [

xxx(tk +∆t)
ẋxx(tk +∆t)

]
= φφφ x

(
xk, ẋk,τττk

)
. (67)

Using a more compact notation, the vector of the next state
(pose and velocity)

yk+1 =
[
xxx(tk +∆t)T ẋxx(tk +∆t)T

]T
(68)

obtained with initial conditions[
xxx(tk)T ẋxx(tk)T

]T
= yk =

[
xT

k ẋT
k

]T
, (69)

and application of constant cable tensions τττk ∈Rm is described
with the transition mapping φφφ y : R2n×Rm → R2n according
to

yk+1 = φφφ y(yk,τττk). (70)

In general, the exact closed-form solution of the nonlinear
IVP (66) cannot be determined. This IVP is solved with some
numerical method (e.g. Euler or Runge-Kutta methods). It is
also known that a numerical solution of (66) can be computed
with an arbitrarily small error (according to the convergence
theory of ordinary differential equations [71, Chapter 4]). In
the present work, the numerical solution of the IVP (66) using
the Euler method is considered. Accordingly, the discrete-
time form of the state-space representation of the dynamic
model (1) is approximated by (7). This rather simple solution
is discussed in the remainder of this appendix.

Consider an instant tk = k ∆t, pose xk ∈ Rn, velocity ẋk ∈Rn

and cable tensions τττk ∈ Rm. The platform acceleration at the
instant tk is given by

ẍxx(tk) = M(xk)
−1
(

W(xk)τττk +g(xk)−C(xk, ẋk) ẋk

)
= ẍk (71)

The Euler integration method [71, Chapter 4] assumes the
following approximation:

xxx(tk + k ∆t) = xxx(tk)+ ẋxx(tk)∆t

ẋxx(tk + k ∆t) = ẋxx(tk)+ ẍxx(tk)∆t
(72)
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or, using the discrete counterparts of xxx, ẋxx and ẍxx,

xk+1 = xk + ẋk ∆t

ẋk+1 = ẋk + ẍk ∆t.
(73)

The application of (71) in (73) leads to (7).

APPENDIX B
ON THE PROOF OF THEOREM 1

The results presented in [43, Chapter 6] are based on upper
bounds of the cost functional. More precisely, these upper
bounds are studied with respect to the optimal value function,
which is defined in the following. For a K ∈ N, the optimal
value function VK : N×Y→R is defined for an instant k and
state y as follows:

VK(k,y) = inf
τττ(·)∈UK

k

JK (k,y,τττ(·)) ,

s. t. yτττ(·)( j,y) ∈ Y ∀ j ∈ N1,K

(74)

with the cost functional JK defined in (10). The scalar VK(k,y)
is also known as the cost-to-go for given instant k and state
y in the context of dynamic programming [72]. Note that,
if the following optimal control problem possesses a global
minimum

τττ
∗(·) = argmin

τττ(·)∈UK
k

K

∑
j=0

`
(
k+ j,yτττ(·) ( j,y) ,τττk+ j

)
,

s. t. yτττ(·)
(

j,y
)
∈ Y ∀ j ∈ N1,K

(75)

then τττ∗(·) satisfies

JK (k,y,τττ∗(·)) =VK(k,y). (76)

In order to deduce Theorem 1, let us first consider a
simplified case with a constant desired state

yd(k) = yd ∀ k ∈ N (77)

with a constant vector yd ∈ Y. In this case, the closed-loop
system is time invariant, the proposed NMPC scheme obtained
with Algorithm 1 may be written as in [43, Algorithm 3.1]
and the [43, Theorem 6.24] can be directly applied as it is.
Moreover, the value function VK is constant with respect to
time and may be simplified to

V ′K(y) =VK(k,y) ∀ k ∈ N. (78)

Similarly, the stage cost and minimal stage cost can be
simplified according to

`c(y,τττ) = `(k,y,τττ)
`∗c(y) = `∗(k,y)

}
∀ k ∈ N. (79)

The conditions for uniform asymptotic stability stated in
[43, Theorem 6.24] addressing time-invariant systems are
summarized as follows.

(i) There exist α1, α2 ∈K∞ such that for every y ∈ Y the
following inequalities hold:

α1(‖y−yd‖)6 `∗c(y)6 α2(‖y−yd‖); (80a)

(ii) ([43, Assumption 6.3] with linear BK) For each y ∈ Y
and K ∈ N, there exists γK ∈ R with γK < ∞ so that the
optimal cost functional V ′K(y) satisfies

V ′K(y)6 γK `∗c(y). (80b)

Additionally, [43, Lemma 6.6] shows that, if, for each y∈Y
and N ∈ N, there exist τττ(·) ∈ UN

0 and real constants C > 1,
σ ∈ (0,1) such that

`c
(
yτττ(·)(n,y),τττn

)
6C σ

n `∗c(y) ∀ n ∈ N1,N−1, (81)

then condition (80b) is satisfied with

γK =C
1−σK

1−σ
(82)

and supK γK < ∞ ∀ K ∈ N.
Condition (81) is referred to as exponential controllability.

Under this condition, there exists τττ(·) that generates a trajec-
tory with stage cost exponentially converging to zero in time.

Therefore, the conditions (80) are equivalently given as
(80a) and (81). Considering (77) (and (79), consequently), the
conditions of Theorem 1 are simplified to:
(a) There exist α1, α2 ∈K L ∞ such that

α1(‖y−yd‖)6 `∗c(y)6 α2(‖y−yd‖) ∀ y ∈ Y. (83)

(b) For all y ∈ Y, there exist feasible τττe(·) ∈ Sm, real C < ∞

and σ ∈ (0,1) satisfying

`c
(
yτττe(·)( j,y),τττe

j
)
6C σ

j `∗c (y) , ∀ j ∈ N. (84)

These conditions are equivalent to (80a) and (81).
The time-varying case addressed in Theorem 1 is obtained

considering [43, Assumptions 6.29 and 6.30], indicating that
the results above can be straightforwardly extended to time-
varying systems.

APPENDIX C
EXAMPLE OF TRIVIAL CONTROL LAW SATISFYING

ASSUMPTION 1
Consider, for instance, a continuous-time control scheme

that applies the wrench

f = M(xxx)
(
ẍxxd +KP(xxxd− xxx)+KD(ẋxxd− xxx)

)
+

+C(xxx, ẋxx) ẋxx−g(xxx)
(85)

with diagonal gain matrices KP and KD. According to (1), the
nominal closed-loop system dynamics is given by

ẍxx = ẍxxd +KP(xxxd− xxx)+KD(ẋxxd− xxx) (86)

or, written in terms of the error eee(t) = xxxd(t)− xxx(t),

ëee =−KD ėee−KP eee. (87)

Choosing, for instance, KP = KD = I, the solution to the
differential equation (87) can be written as

eee(t) = e−t/2 (a1 sin(ω t)+a2 cos(ω t)) , (88)

with ω =
√

3/2 and constant vectors a1, a2 ∈ Rn given by

a1 = eee0

a2 =
1
ω

(
ėee0−

1
2

eee0

)
(89)
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where eee0 = eee(0), ėee0 = ėee(0). The expressions of the error eee and
its time derivative satisfy

‖eee(t)‖=
∥∥e−t/2(a1 sin(ω t)+a2 cos(ω t)

)∥∥6(
e−1/2

)t
(‖a1‖+‖a2‖)

(90)

and

‖ėee(t)‖=
∥∥∥e−t/2a3 (sin(ω t)+a4 cos(ω t))

∥∥∥6(
e−1/2

)t
(‖a3‖+‖a4‖),

(91)

with a3 = a1/2−ω a2 and a4 = a2/2+ω a1.
A tedious but straightforward computation using (89) leads

to the bound ‖eee(t)‖2 +‖ėee(t)‖2 6 cey e−t (‖eee0‖2 +‖ėee0‖2), with
cey = (16+2

√
3)/3.

Consider kx, kẋ ∈ Rn
+, subvectors of ky (as in Section VI),

and matrices Kx, Kẋ ∈ Rn×n diagonal matrices with Kx =
diag(kx), Kẋ = diag(kẋ). Denoting also

Kmax
y = max

i
(ky,i) and Kmin

y = min
i
(ky,i) , (92)

the following inequalities hold:

‖eee(t)‖2
Kx +‖ėee(t)‖

2
Kẋ 6 Kmax

y (‖eee(t)‖2 +‖ėee(t)‖2)

6
(
e−1)t

Kmax
y cey (‖eee0‖2 +‖ėee2

0‖)

6
(
e−1)t Kmax

y

Kmin
y

cey (‖eee0‖2
Kx +‖ėee0‖2

Kẋ)

which is the continuous counterpart of (29a) with
C1 = cey Kmax

y /Kmin
y < ∞ and σ1 = e−1 < 1.

APPENDIX D
NUMERICAL SOLUTION OF THE OCP (16)

As discussed in Section VI, the presented experimental
results were obtained with a control scheme implemented from
scratch. Whereas the implementation of the basic mathematical
operations are not noteworthy in this paper, the optimization
techniques used in the solution of the OCP (16) deserves
special attention. Since (16) is solved in real time, the imple-
mented methods should combine good numerical accuracy and
short computation time. The present section briefly discusses
the optimization techniques used.

Besides the optimization problem corresponding to (16)
itself, the solution of this OCP also includes the computation
of the WEO, in accordance with (15). More precisely, the OCP
obtained considering explicitly the upper (16) and lower (15)
level optimization problems can be expressed as the bilevel
minimization given by

min
τττ(·)∈Uhp

k

hp−1

∑
j=0
‖yk+ j−yd(k+ j)‖2

Ky +‖τττk+ j− τττwo,k+ j‖2
Kτττ

s. t. yk+ j =
[
xT

k+ j ẋT
k+ j

]T
= yτττ(·)

(
j,yk
)
∈ Y ∀ j ∈ N0,hp

τττwo,k+ j = argmin
τττ ′

{
‖τττ ′‖2 :

W(xk+ j)τττ
′
k+ j = W(xk+ j)τττk+ j,

τττ
′ ∈ U

}
∀ j ∈ N0,hp−1

The present appendix discusses the numerical solution
of both lower and upper level problems. Accordingly, Sec-
tion D-A addresses the solution of (15) and Section D-B briefly
describes the optimization strategy used in the solution of (16).

A. Computation of the WEO

The optimization problem (15) is a convex inequality
constrained QP problem with non-empty feasible region (as
discussed in the proof of Lemma 1). The results presented
in Section VI were obtained with a control scheme that
solves this optimization problem with an active-set method
for convex QPs [73, Section 16.5]. More in detail, this method
can determine the exact solution of the problem

min
τττ

τττ
T

τττ (93a)

s. t. Aeq τττ = beq (93b)
Aineq τττ > bineq (93c)

within a finite number of iterations. Matrices Aineq, Aeq and
vectors bineq, beq can be chosen so that constraints (93b)-(93c)
are equivalent to (15b)-(15c), respectively. One may notably
note that Aeq = W(x). Each iteration consists of the solution
of an equality constrained QP in which, besides (93b), some of
the inequalities (93c) are taken as equalities and the remaining
ones are neglected. More precisely, for an iteration j ∈N, the
equality constrained QP

min
τττ

τττ
T

τττ

s. t. A j τττ = b j
(94)

is considered, where matrix A j and vector b j are given by

A j =

[
Aeq

A′ineq, j

]
and b j =

[
beq

b′ineq, j

]
(95)

with A′ineq, j and b′ineq, j composed of some of the rows of Aineq
and bineq, respectively. The solution of (94) can be obtained
finding the vectors of cable tensions τττ and of Lagrange
multipliers µµµ that satisfy the first-order optimality conditions
(KKT conditions)

τττ +AT
j µµµ = 0

A j τττ = b j.
(96)

The system of equations (96) can be solved straightfor-
wardly applying the QR factorization [74, Section 5.2] of the
matrix AT

j . This method can be particularly efficient since the
QR factorization of AT

j+1 obtained in the iteration j+1 may
be based on the factorization of AT

j performed in the previous
iteration. As detailed in [73, Section 16.5], matrices A j+1 and
AT

j differ at most of one row, and this similarity can be used in
order to update the QR factorizations of successive iterations.
Furthermore, one may note that the QR factorization of AT

j is
closely related to the computation of the null space of W(x),
which is typically used in the existing state-of-the-art cable
tension distribution algorithms.



IEEE TRANSACTIONS ON ROBOTICS, VOL.XX, NO. XX, 2021 18

Update values 
of             cf. (96)

INPUTS

Apply BFGS
for constant         

NO

NO

YES

YES

Standard SQP
solution of (98)Overall 

algorithm

Standard QP 

Gradient 
projection
iteration

Conjugate 
gradient
iteration

Optimal

NO

Convergence 
condition (99)

satisfied?

SQP 
convergence
conditions 
satisfied?

QP 
convergence
conditions 
satisfied?

Fig. 17. Summary of the implemented numerical solution of the NPP corresponding to (16).

B. Overall solution of (16)

The implemented control scheme solves the OCP (16) ap-
plying recursive elimination (in accordance with [43, Section
12.1]). Therefore, the cost functional is computed with states
yτττ(·)(·,yk) obtained by applying the transition mapping (8)
recursively, as in (9). Alternative methods such as the full
discretization and multiple shooting may also be used at the
cost of increased dimension of the optimization problem.
Details on these different approaches are discussed in [43,
Section 12.1] and [33, Section 8.5].

The application of the recursive elimination leads to a Non-
linear Programming Problem (NPP) corresponding to the OCP
(16). Sequential Quadratic Programming (SQP) and interior-
point methods are often used to solve NPPs. The applicability
of such algorithms in the implementation of NMPC controllers
is studied in [43, Section 12.3] and [33, Section 8.7].

The use of an SQP algorithm is considered appropriate for
the solution of the obtained NPP since the proposed OCP
possesses a quadratic cost functional. Nocedal and Wright
discuss the details of SQP methods in [73, Chapter 18].
These are iterative algorithms in which, at each iteration, the
original nonlinear problem is approximated as a QP problem.
A standard QP strategy may thus be used in the solution of
each of these sub-problems.

In order to avoid the expensive computation of the second
derivatives of the nonlinear cost function, a quasi-Newton
BFGS approximation [73, Section 6.1] was used in the present
work. This method estimates the Hessian of the cost function
based on its first derivatives. While BFGS could be applied
directly to the NPP obtained from (16), it has been observed
that better performance is obtained with the optimization
strategy summarized in Figure 17. Let τττ ′(·)∈Uhp

k be an initial
guess for the optimal sequence of cable tensions at an instant
k ∈ N and state yk ∈ Y. The sequence τ̃ττd(·) is defined as the
WE-optimal tensions of τττ ′(·) given by

τ̃ττd(k+ j) = τττwo(xy′(k+ j),τττ
′
k+ j), ∀ j ∈ N0,hp−1 (97a)

with y′(·) the sequence of predicted states within the prediction
horizon, obtained according to

y′k = yk

y′k+ j+1 = φφφ y(y
′
k+ j,τττ

′
k+ j), ∀ j ∈ N0,hp−1 .

(97b)

The WE-optimal tensions τ̃ττd(·) in (97), which are computed
with the method presented in Section D-A, are taken as
reference to the cable tension optimization. Accordingly, one
may define a simplified stage cost `τ̃ττd(·) :N×Y×U→R given
by

`τ̃ττd(·)(k,y,τττ) = ‖y−yd(k)‖2
Ky +‖τττ− τ̃ττd(k)‖2

Kτττ
. (98)

The NPP corresponding to the stage cost `τ̃ττd(·) can be
written as

min
τττ(·)

hp−1

∑
j=0

`τ̃ττd(·)
(
k+ j,yk+ j,τττk+ j

)
s. t. yk+ j+1 = φφφ y(yk+ j,τττk+ j), ∀ j ∈ N0,hp−1

τττ(k+ j) ∈ U, ∀ j ∈ N0,hp−1

(99)

A standard SQP algorithm is used in order to solve this
NPP, resulting in an updated τττ ′(·) solution of (99) (as depicted
in Figure 17). This procedure is applied iteratively for NPPs
with updated τ̃ττd(·), obtained according to (97). The overall
algorithm is terminated once the difference between sequences
τ̃ττd(·) and τττ ′(·) is less than a given threshold. More precisely,
the optimal sequence of cable tensions τττ∗d(·) is taken as τττ ′(·)
when the following convergence condition is satisfied:

hp−1

∑
j=0
‖τ̃ττd(k+ j)− τττ

′(k+ j)‖6 ε, (100)

with a real positive ε , representing the desired convergence
threshold. The optimal τττ∗d(·) is used as initial guess τττ ′(·) in
the next sampling time k+1.

The implemented SQP algorithm applies the quasi-Newton
BFGS estimation of the Hessian of (99). This estimation
results in an inequality constrained QP problem. In accordance
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with the case addressed in Section VI, the state constraint
set is considered as Y = R2n. Therefore, the QP inequality
constraints consist uniquely of the cable tension limits, i.e.:

τττmin 6 τττk+ j 6 τττmax, ∀ j ∈ N0,hp−1. (101)

One may note that the constraints (101) lead to a box con-
strained (or bound-constrained) QP. The gradient projection
method [73, Section 16.7] is well known as an appropriate
method for such QP problems. As illustrated in Figure 17,
the proposed strategy couples the gradient projection with the
conjugate-gradient method [73, Chapter 5] in order to obtain
faster convergence. The implemented SQP algorithm can be
classified as a nonlinear gradient projection method, briefly
described in [73, Section 18.6].
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