
HAL Id: lirmm-03639381
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03639381

Submitted on 12 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Elastic scalable transaction processing in LeanXcale
Ricardo Jimenez-Peris, Diego Burgos-Sancho, Francisco Ballesteros, Marta

Patiño-Martinez, Patrick Valduriez

To cite this version:
Ricardo Jimenez-Peris, Diego Burgos-Sancho, Francisco Ballesteros, Marta Patiño-Martinez, Patrick
Valduriez. Elastic scalable transaction processing in LeanXcale. Information Systems, 2022, 108,
pp.102043. �10.1016/j.is.2022.102043�. �lirmm-03639381�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03639381
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Information Systems 108 (2022) 102043

R

h
s
e
F
i
m
a
c
o
f
e
D
h
m
o

d
(
(

h
0
n

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Elastic scalable transaction processing in LeanXcale✩

icardo Jimenez-Peris a, Diego Burgos-Sancho a,b,∗, Francisco Ballesteros c,
Marta Patiño-Martinez b, Patrick Valduriez d

a LeanXcale, Spain
b Universidad Politécnica de Madrid, Spain
c Laboratorio de Sistemas, URJC, Spain
d Inria, University of Montpellier, CNRS, LIRMM, France

a r t i c l e i n f o

Article history:
Received 24 June 2021
Received in revised form 26 March 2022
Accepted 28 March 2022
Available online 31 March 2022
Recommended by Dennis Shasha

Keywords:
Transaction processing
Transaction management
NewSQL database system
Scalability
Elasticity
Cloud
TPC-C

a b s t r a c t

Scaling ACID transactions in a cloud database is hard, and providing elastic scalability even harder.
In this paper, we present our solution for elastic scalable transaction processing in LeanXcale, an
industrial-strength NewSQL database system. Unlike previous solutions, it does not require any
hardware assistance. Yet, it does scales linearly to 100s of servers. LeanXcale supports non-intrusive
elasticity and can move data partitions without hurting the quality of service of transaction manage-
ment. We show the correctness of LeanXcale transaction management. Finally, we provide a thorough
performance evaluation of our solution on Amazon Web Services (AWS) shared cloud instances. The
results show linear scalability, e.g., 5 million TPC-C NewOrder TPM with 200 nodes, which is greater
than the TPC-C throughput obtained by the 9th highest result in all history using dedicated hardware
used exclusively (not shared like in our evaluation) for the benchmark. Furthermore, the efficiency in
terms of TPM per core is double that of the two top TPC-C results (also the only results in a cloud).

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent data-intensive applications in the cloud require very
igh-throughput transactions over big data at unprecedented
cale. Examples of such applications can be found in
-advertising, IT monitoring, IoT, smart grid, and industry 4.0.
or instance, the AdWords business in e-advertising [2] is update
ntensive and can have millions of suppliers monitoring their
aximum cost-per-click (CPC) bid for their offer and updating
petabyte database, while millions of other users and potential
ustomers would perform search queries. IT monitoring on the
ther hand is insert intensive, with concurrent queries to recover
ull time series of monitored items (equipments, applications,
tc.) or the last measures from millions of monitored items.
epending on the IT business, the data ingestion rates can be
uge, ranging between 100 thousand rows per second to 100
illion rows per second in databases that can reach petabytes
f data.

✩ Part of the system and method described in this paper is protected by a
patent application of Jimenez-Peris and Ballesteros (2022) [1].
∗ Corresponding author at: Universidad Politécnica de Madrid, Spain.

E-mail addresses: rjimenez@leanxcale.com (R. Jimenez-Peris),
iego.burgos@leanxcale.com, diego.burgos.sancho@alumnos.upm.es
D. Burgos-Sancho), nemo@lsub.org (F. Ballesteros), mpatino@fi.upm.es
M. Patiño-Martinez), patrick.valduriez@inria.fr (P. Valduriez).
ttps://doi.org/10.1016/j.is.2022.102043
306-4379/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
To deal with such massive scales and adapt to the changing
needs of applications in terms of resources, a cloud database sys-
temmust provide scalability. This can be obtained through a com-
bination of vertical scaling, by making servers bigger (e.g., adding
processors, IO bandwidth, and memory) and horizontal scaling,
by adding more scale-out servers in a shared-nothing cluster.
Shared-nothing is cost-effective as servers can be off-the-shelf
components connected by a network and can be used in public
clouds. Thus, it can be fully exploited by a distributed database
system [3], with data partitioning onto multiple server nodes as
the basis for parallel data processing, and distributed transaction
processing to update data partitions.

In order to adapt to workload changes and be able to pro-
cess greater (or lower) transaction rates, scalability must also be
elastic, by dynamically provisioning (or decommissioning) servers
to the cluster and increasing (or decreasing) the global capacity.
Elasticity requires live data migration [4], e.g., moving or repli-
cating a data partition from an overloaded server to another,
while the system is running transactions. Furthermore, live data
migration must be efficient, with low impact on performance and
minimal service interruption.

Scaling ACID transactions is hard, and providing elastic scala-
bility even harder. Traditional techniques from distributed
database systems [3], such as multiversioning and snapshot isola-
tion, provide a good basis to increase concurrency between read
and write transactions, but do not scale. Furthermore, the 2PC
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.is.2022.102043
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2022.102043&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rjimenez@leanxcale.com
mailto:diego.burgos@leanxcale.com
mailto:diego.burgos.sancho@alumnos.upm.es
mailto:nemo@lsub.org
mailto:mpatino@fi.upm.es
mailto:patrick.valduriez@inria.fr
https://doi.org/10.1016/j.is.2022.102043
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

p
b
c

s
G
t
o
f
a
o

p
m
t
u
N
a
a
s
a
t
c
a
t
p
i
a
a
m
s
t
o
o
f

a
d
s
h
w
t
a
o
s
t
i
m
m

p
o
t
m
i
l
f
a
i
e
m
b
(

w
(
t
t

rotocol that is used to coordinate distributed transactions is
locking in case of failures, and also a bottleneck since it makes
ommitment longer due to the two phases.
Elasticity requires the ability to move data partitions across

ervers with full ACID consistency while they are being updated.
uaranteeing full transaction consistency without creating a bot-
leneck in a scalable solution is hard. Traditional solutions rely
n offline reconfiguration where the data partitions being recon-
igured are not allowed to be updated while they are transferred
cross servers. However, this approach results in low availability
f the data being moved.
One solution that is often used is relaxing some of the ACID

roperties, at the expense of more complex application program-
ing. For instance, to avoid 2PC, microservice frameworks resort

o sagas [5] which relax the atomicity property and require the
ser to provide compensating transactions. On the other hand,
oSQL systems, such as BigTable, Cassandra, and HBase, trade
tomicity and consistency for scalability, with limited atomicity
t the level of a single row. This makes it relatively easy to provide
caling without having to enforce ACID properties. Elasticity can
lso be handled in a simple way since row level atomicity is
rivial, while ACID properties become much harder since the
onsistency of all rows modified by a transaction, very likely
cross different servers, has to be maintained. In the applica-
ion examples above such as e-advertising, relaxing some ACID
roperties would simply make the application incorrect, e.g., for
nstance, missed CPC bids. Scaling ACID transactions has been
ddressed recently (see Section 2). Some solutions make strong
ssumptions regarding the database, e.g., which has to fit in main
emory, or the availability of some special purpose hardware,
uch as RDMA or specialized clocks. Another solution is within
he context of NewSQL, combining the scalability and availability
f NoSQL with the consistency and usability of SQL [6]. Elasticity
f OLTP is typically achieved outside the database system using a
ramework, for instance, E-store [7].

In this paper, we present our solution for elastic scalable trans-
ction processing in LeanXcale, an industrial-strength NewSQL
atabase system. Our solution does not make any specific as-
umptions regarding the database size nor does it require any
ardware assistance. Our approach is based on several principles,
hich we divide in three groups: scalable, efficient and elas-
ic transaction management. Scalable transaction management
voids the single-node bottleneck with a novel decomposition
f the ACID properties. Scalability is made efficient in a large-
cale cluster by reducing communication and CPU costs. Elastic
ransaction management deals with non-intrusive elasticity, that
s, without hurting the quality of service (QoS) of transaction
anagement. We show the correctness of LeanXcale transaction
anagement.
LeanXcale has a relational key–value store, KiVi, which sup-

orts non-intrusive elasticity and can move data partitions with-
ut affecting transaction processing. This is based on an algorithm
hat guarantees snapshot isolation across data partitions being
oved without actually affecting the processing over them. KiVi

s also crucial for the efficiency of the solution since it is a re-
ational key–value data store that has implemented all operators
rom relational algebra, but Join, and thus it enables to push down
ll operators below joins to the storage engine highly reduc-
ng the movement of tuples between storage engine and query
ngine. To validate our solution, we provide a thorough perfor-
ance evaluation using the LeanXcale DBMS product with several
enchmarks and micro-benchmarks on Amazon Web Services
AWS).

The paper is organized as follows. Section 2 discusses related
ork. Sections 3–5 describe each a group of principles: scalability
Section 3), efficiency (Section 4) and elasticity (Section 5). Sec-
ion 6 shows the correctness of our solution. Section 7 presents
he performance evaluation. Section 8 concludes.
2

2. Related work

There has been much work on providing scalability and elas-
ticity for single node database systems in the context of multi-
tenant deployments in the cloud [4]. In contrast, we focus on
scalability and elasticity for single large-scale OLTP applications
that are deployed onto multiple nodes in a distributed database
system.

Scaling ACID transactions in cloud distributed database sys-
tems has been addressed recently, with four main approaches:
main memory, cluster replication, hardware assistance, and
NewSQL. Main memory database systems, such as SAP HANA [8]
and VoltDB [9], keep all data in memory, which enables process-
ing transactions and queries at the speed of memory without
being limited by I/O bandwidth and latency. They can scale out in
a shared-nothing cluster, but with some issues such as weakening
isolation, losing the capability of queries and updates across
data partitions or introducing the overhead of 2PC. But the main
limitation is that the entire database and all intermediate results
must fit in memory, which makes it unpredictable when data,
transactions and queries evolve over time. Furthermore, the cost
of a main memory database is extremely high compared to one
that keeps data on persistent storage and a fraction of data in a
cache. For many applications, e.g., e-advertising or IT monitoring,
such cost is just prohibitive and not economically viable.

Cluster replication [10,11] is used in open-source SQL database
systems such as MySQL or MariaDB. Full replication, i.e., having
a full copy of the database on each node, is used to distribute
the read workload across nodes. The most successful approaches
are based on 1-copy snapshot isolation [12], the equivalent of 1-
copy serializability [13], but for snapshot isolation. This approach
yields logarithmic scale out [14], i.e., exponential cost to scale
out, which makes it useful for read-intensive workloads, but at
the expense of full replication. LeanXcale outperforms cluster
replication by relying on a distributed transaction processing
approach that scales out linearly to a large number of nodes.

Hardware assistance can be exploited to remove the inher-
ent bottleneck of transactions, which is caused by the serial
processing of commits combined with the latency and CPU over-
head of processing transaction messages. Recently, several re-
search prototypes have been proposed to scale transactions using
the next generation of RDMA-enabled networking technology,
e.g., FaRM [15] and FaRMv2 [16], FaSST [17] and NAM-DB [18].
Using RDMA, data can be moved from one server to another
directly, bypassing the CPU. FaRM [15] provides scalability, avail-
ability, and serializability for committed transactions but not for
aborted transactions. FaRMv2 [16] extends FaRM to provide snap-
shot isolation to all transactions with opacity (strict serializability
for both committed and aborted transactions). This is achieved
using a novel timestamp-ordering protocol that leverages the low
latency of RDMA to synchronize clocks. FaSST [17] also provides
scalability and serializability using an efficient RPC abstraction on
top of unreliable datagram message-passing. However, it does not
provide snapshot isolation, which provides better performance
for read-heavy workloads and is more common in practice than
serializability. NAM-DB [18] provides scalability and snapshot
isolation, not availability.

In contrast, LeanXcale does not require any hardware assis-
tance. However, it could well exploit RDMA-enabled networking
technology, to bypass the CPU in processing transaction mes-
sages. This would make our solution even better. RDMA-enabled
solutions are not yet widely available in the cloud due to limi-
tations of the number of servers that can be connected through
RDMA. However, when it becomes widely available in the cloud,
LeanXcale will be enriched to exploit it, which will make our
innovations even more efficient.

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

u
i
s
t
a
s
b
l
m
p
c
r
a
a
i
u
S
t
S
d

b
t
w
t
a
o
L
e
i
m

u
t
I
a
d
a
i
w
p

3

w
t
t
m
s
T
c
i
o
f
i

3

s
B
u
l
s
S
e
r
a
o
s
s
a
r

p
a
m
o
o
s
S
t
l

e
b
o

q
i
o
i

d
t
t
t
k

3

A
t

NewSQL systems typically use a NoSQL key–value store layer
nder a transaction management layer, in order to provide hor-
zontal scaling. Spanner [19] is an advanced NewSQL database
ystem with full SQL and scalable ACID transactions. It was ini-
ially developed by Google to support the e-advertising AdWords
pplication. It uses traditional locking and 2PC and provides
erializability as isolation level. To avoid the high contention
etween large queries and update transactions resulting from
ocking, Spanner also implements multiversioning, which re-
oves read/write conflicts. However, multiversioning does not
rovide scalability. In order to avoid the bottleneck of centralized
ertification, updated data items are assigned timestamps (using
eal time) upon commit. For this purpose, Spanner implements
n internal service called TrueTime that provides the current time
nd its current accuracy. To make TrueTime reliable and accurate,
t uses both atomic clocks and GPS since they have different fail-
res modes that can compensate each other. To avoid deadlocks,
panner uses a wound-and-wait approach, thereby eliminating
he bottleneck of deadlock detection. Storage management in
panner is made scalable by leveraging BigTable, a wide column
ata store.
LeanXcale also implements multiversioning and avoids the

ottleneck of centralized certification by assigning timestamps
o updated data items upon commit. However, unlike Spanner,
hich uses real-time timestamps, LeanXcale uses logical times-
amps, which is simpler and cheaper. LeanXcale’s architecture is
lso different than most other NewSQL database systems that rely
n a NoSQL key–value store, e.g., Spanner is built atop BigTable.
eanXcale has a relational key–value store, KiVi, that enables
fficient SQL processing since all algebraic operators below a join
n a query are pushed down to the data store, avoiding much data
ovement with the query engine.
Elasticity is typically achieved outside the database system

sing a framework. For instance, E-store [7] is an elastic par-
itioning framework designed for distributed database systems.
t automatically scales resources in response to changes in an
pplication’s workload and enables the database system to move
ata across nodes. E-store has been integrated with H-store [20],
distributed main-memory database system (which has evolved

nto VoltDB). In contrast, LeanXcale’s elasticity is fully integrated
ithin the database system, leveraging the ability to move data
artitions across servers without disrupting data processing.

. Scalable transaction management

In this section, we first introduce LeanXcale’s architecture
ith transaction management in mind. Then, we present our
hree principles for scalable transaction management, avoiding
he single-node bottleneck of traditional transaction manage-
ent. The first principle (decoupling the ACID properties) enables
caling out each property independently in a composable manner.
he second principle (decoupling update visibility and atomic
ommit) removes the bottleneck of sequential commit process-
ng, thus enabling the parallel processing of very high numbers
f commits. The third principle (waiting for updates to be visible
or session consistency) provides session consistency without
ntroducing a bottleneck.

.1. LeanXcale Architecture

The LeanXcale distributed database system has three layers:

• KiVi storage engine. KiVi is a distributed relational key–
value store, combining the best of key–value stores (data
partitioning, horizontal scaling) and relational data stores
(relational schemas and algebraic operators such as predi-
cate filtering, aggregation, grouping, and sorting).
3

• Transaction manager. It is a distributed transaction man-
ager able to scale out linearly to a large number of nodes.
And the main focus of this paper.
• SQL Query engine. The query engine is also distributed and

can scale out both OLTP and OLAP workloads.

Using a key–value store as storage engine has been used in
everal NewSQL database systems such as Spanner (which uses
igTable), or Splice Machine [21] and EsgynDB [22] that both
se HBase [23]. This approach enables to scale out the storage
ayer to very large levels by using horizontal partitioning across
torage instances. However, it comes at the expense of inefficient
QL query processing, because the interaction between the query
ngine and storage engine becomes inherently distributed, thus
esulting in high communication overhead. For instance, consider
n aggregate operation over the column, e.g., sum, of a large table
f 1 billion rows. The execution of the aggregation would require
canning all the servers in parallel, and then sending the 1 billion
canned rows over the network to the query engine that will
ggregate them and produce the single row result. Such execution
esults in high communication.

KiVi enables to push down all algebraic operators in a query
lan below joins to multiple KiVi instances. The algebraic oper-
tors are executed locally at each KiVi instance, thus avoiding
oving all scanned rows to the query engine for processing, and
nly sending the relevant rows. In the previous example, instead
f moving 1 billion rows, a query execution would just move a
ingle value per server, the local sum, i.e., 100 values in total.
ince transactions may include queries to read data, KiVi’s ability
o perform algebraic operators yields major reduction of query
atency and thus better transaction response time.

In addition, KiVi uses a variant of LSM Tree [24] that is more
fficient in read operations than the SSTables (String Sorted Ta-
les) used by key–value stores, which have to read many (tens
f) files that contain an overlapping range of primary keys.
The query engine is distributed. It implements both inter-

uery parallelism and intra-query parallelism [3], in particular,
ntra-operator parallelism, and can have an arbitrary number
f instances. To scale out OLTP workloads, each query engine
nstance takes care of processing a subset of the queries.

The transaction manager is also distributed and has a set of
ifferent components (see Section 3.2). It is highly scalable, able
o process many millions of update transactions per second. The
ransaction manager is integrated within the client KiVi layer,
hus providing LeanXcale the capabilities of an ACID relational
ey–value store.

.2. Decoupling the ACID properties

In this section, we describe our approach for decoupling the
CID properties to scale out. Let us first recall the ACID proper-
ies [25]:

• Atomicity provides an all-or-nothing behavior for all the
updates of a transaction.
• Consistency requires correct code for the transactions that

guarantees that if the data is consistent at the start of the
transaction, it should remain consistent at the end of the
transaction, i.e., satisfies the database integrity constraints.
• Isolation provides synchronization atomicity, that is, guar-

anteeing that the execution of transactions in parallel pro-
vides certain consistency guarantees over the data (e.g.,
serializability or snapshot isolation).
• Durability guarantees that the updates of a transaction,

once committed, are not lost in the advent of failures.

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

(
t
r
n
A
u

S
a
w
a
t
t

W
2

LeanXcale leverages multiversion concurrency control
MVCC) [25] to avoid the contention introduced by locking be-
ween queries that read many rows and updates across these
ows. In multiversioning, data is not updated in place, but instead,
ew versions of the rows are created with the new updates (see
lgorithm 1, lines 5–7). In MVCC, a commit timestamp (CTS) is
sed to label each version.

Algorithm 1 KiVi Storage Engine
1: BD← 0
2: function Read(table, PK, STS)→ Tuple
3: tuple ← t ∈ BD|(table = t.table ∧ PK = t.pk ∧ t.cts ≤

STS) ∧ ∄t2 ∈ BD|(table = t2.table ∧ PK = t2.pk ∧ t2.cts ≤
STS ∧ t2.cts > t.cts)

4: Return tuple
5: procedure Write(Tuples, CTS)
6: for t = (table, PK , Cols) ∈ Tuples) do
7: BD← BD + (table, PK , Cols, CTS)

LeanXcale provides snapshot isolation as its isolation level.
napshot isolation provides a slightly lower isolation than seri-
lizability. In particular, it is possible to have an anomaly called
rite skew. It involves a constraint across two rows (or more)
nd writing different rows involved in the constraint by the two
ransactions. Let us illustrate with an example. Consider a bank
hat allows a person having two bank accounts, say b1 and b2,
to have a negative balance in any of the two accounts as far as
the global balance remains positive. Two concurrent withdrawals,
each from a different account, can lead to a negative global
imbalance. A withdrawal operation W of w units from b1 would
do: 1a) bb1 = R(b1), 2a) bb2 = R(b2) 3a) if bb1 + bb2 - w ≥ 0 then

(b1, bb1 - w) while the withdrawal operation from b2 would do:
a) bb1 = R(b1), 2a) bb2 = R(b2) 3a) if bb1 + bb2 - w ≥ 0 then W(b2,

bb2 - w). If the original balances are bb1=10, bb2=15 and the two
withdrawals are w1=20 and w2=25, an interleaving 1a, 2a, 1b, 2b,
3a, 3b would produce bb1=-10, bb2=-10, thus a negative balance
of −20 units.

Snapshot isolation is the highest isolation offered by some
leading database vendors. There are a number of techniques in
the literature to attain serializability on top of snapshot isolation,
e.g., [26,27] . In order to avoid write skew, LeanXcale provides se-
lect for update, which could be used too by the standard snapshot
isolation.

Atomicity is attained in MVCC by making private the new
versions of the data generated by the updates of the transac-
tion, i.e., invisible to concurrent transactions. Thus, atomicity is
taken care of by the component that orchestrates the transaction
life cycle. In LeanXcale, this component is the local transaction
manager (LTM) that is deployed on each node with transactional
capabilities. LTMs are also in charge of orchestrating the commits
of the transactions.

Consistency does not require specific techniques as it is the
responsibility of the application developer (to provide correct
code), with the support of traditional integrity control.

Isolation is also enforced through MVCC, with snapshot isola-
tion provided as isolation level. We further decompose isolation
into isolation of writes and isolation of reads. In snapshot iso-
lation, reads never conflict. Thanks to multiversioning, they just
read the version corresponding to the snapshot associated to the
transaction (see Algorithm 1, lines 2–4), i.e., the oldest version
of the row with a CTS lower or equal than the start timestamp
of the transaction also called snapshot of the transaction. Thus,
the only task to be performed is to detect write–write conflicts,
which is the role of conflict managers. However, reads need be
performed on a consistent snapshot of the data that guarantees
4

snapshot isolation. This is achieved by two components, commit
sequencer and snapshot server, which are described in detail in
the next section.

MVCC traditionally requires certification at the beginning of
the commit processing. In LeanXcale, certification is performed
at the time a row is updated and if there is a conflict, one of the
transactions is aborted using a first updater wins approach. Thus,
only transactions that do not have conflicts (i.e., have already
passed the certification) enter the commit stage. Furthermore,
a transaction enters the commit stage with an assigned CTS
that sets its serialization order. With this approach, certification
is fully distributed and does not require a centralized certifier,
which is one of the main scalability bottlenecks of MVCC-based
solutions.

Durability requires a mechanism to persist changes of a trans-
action independently of the changes performed in the data.
LeanXcale adopts the no undo/redo approach [25]. The compo-
nent that takes cares of durability is the logger. Writesets are kept
in memory to implement this policy. However, if the writeset size
becomes too large, it is persisted on disk.

3.3. Decoupling update visibility and atomic commit

In this section, we describe our principle of decoupling up-
date visibility and atomic commit to enable scaling out. Process-
ing commits sequentially is the main bottleneck of traditional
database systems [13]. The reason that the traditional solution
performs commit processing tasks sequentially is to ensure that
newly started transactions observe a correct snapshot.

We adopt a radically different approach, by untangling commit
processing and leveraging multiversioning and snapshot isolation.
In particular, we maintain two counters: a snapshot counter,
initialized to zero and a commit counter, initialized to one. The
commit counter is used as usual to assign increasing CTSs to
committing transactions. At start time, the transaction receives
the current value of the snapshot counter as the start timestamp.

Let us describe in more details our solution to commit pro-
cessing. The commit of a write transaction, say Ti, proceeds in four
sequential steps: (1) Ti receives its CTS from the commit counter
that is incremented; (2) Ti’s writeset is written into the redo log
that is flushed to stable storage. Then, the transaction is durable
and the client is acknowledged that commit was successful; (3)
the new versions of the data are written to the data store. Once
the data is in the data store, the transaction is readable and the
transaction manager is informed; (4) the transaction manager
updates the snapshot counter, when there are no gaps in the
serialization order until this CTS, so at this point, the transaction
is visible. Gap-freedom is essential to consistency since the gap-
free prefix grows monotonically in the order of the CTSs and each
snapshot observes only a fraction of this key–value data store,
more precisely a longer prefix with a bigger value of the snapshot.

Only step 1 is made atomic and quite fast: an integer in-
crement. Logging can be performed later. Delaying logging only
impacts the latency of the transaction commit. As we will see
later, it enables parallelizing the logging process (step 2) in order
to attain high logging throughput. The transaction response time
only includes these two steps (1 and 2), not the time needed
to store the updated data. Again, this is interesting to mask the
latency of a distributed data store and open up opportunities for
more efficient update propagation. When all the data modified by
a transaction is updated in the data store (step 3), the transaction
enters the readable state. Thus, the updated data could be read
from the data store if the right snapshot is used. However, in
order to guarantee consistency, these data are still invisible to
new transactions. The visibility state is reached in step 4, when
the snapshot counter is updated and becomes equal or greater
than the CTS.

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

t
t
t
c
a
w
t
o
g

Fig. 1. Transaction Phases.
Table 1
Untangled Transaction Commit.
CTS notifications 11 15 12 14 13

Evolution of snapshot counter 11 11 12 12 15

Given that the commit is not executed atomically, it is possible
hat Ti receives a CTS smaller than Tj while Tj stores its updates in
he data store before Ti. Had updates become visible immediately,
ransactions would potentially observe an inconsistent snapshot
ontaining Tj updates but missing Ti updates. We take this into
ccount and only advance the snapshot counter to the value X
hen the updates of all transactions with a CTS smaller or equal
o X are readable, i.e., when there are no gaps in the serialization
rder. Thus, only when the snapshot counter becomes equal or
reater than Tj’s CTS that the updates of Tj will become visible.

Thus, they can be observed by newly started transactions with a
start timestamp equal or greater than Tj’ CTS. In other words, a
transaction Ti is fully committed when the snapshot takes a value
equal or higher than the CTS of Ti. Until that point, its changes are
invisible, and from then on, they become visible to transactions
that get a start timestamp equal or higher than its CTS.

The snapshot counter represents the longest gap-free prefix
of committed transactions. It is not incremented by one each
time a transaction completes its commit since it would lead to
the visibility of a prefix with gaps and thus, inconsistent reads.
When the snapshot counter is equal to the CTS C(Tj) of transaction
Tj means that data versions created by Tj and all transactions
with CTS less than C(Tj) are durable as well as readable from the
data store (i.e., stored in the data store layer, but not necessarily
persisted on disk).

Fig. 1 shows the transaction phases during execution, with
the untangling of the commit phase. Upon receiving its start
timestamp, a transaction becomes active. Once it has received
its CTS, it has completed. After writing the updates to the log,
it is durable. Once the updates have been propagated to the data
store, they become readable. Finally, once the snapshot counter
has advanced to include the CTS of the transaction, its updates
become visible.

Let us illustrate the evolution of commit and snapshot coun-
ters with the example in Table 1. Let us assume that the commit
and snapshot counters have value 10. Then, five transactions
(assigned with CTSs 11 to 15) start to commit in parallel. The
first row in Table 1 gives the order in which the notifications that
the transaction updates have become ‘‘durable and readable’’ are
received.

But since commits are done in parallel, they can happen in any
arbitrary order. The second row shows the evolution of the snap-
shot counter with each ‘‘durable and readable’’ notification. Upon
receiving the notification of CTS=11, the snapshot counter can be
incremented safely from its current value, 10, to 11, because there
is no gap. Then, the snapshot counter receives the notification for
CTS=15. But since there are gaps between 11 and 15, it cannot
be incremented. Otherwise, it could lead to inconsistent reads.
For instance, assume the snapshot counter is incremented to 15.
Then, a transaction could observe the updates of transaction with
CTS=15 but not those of transactions with CTS=12 to 14. However,
5

it could observe later on the updates of transactions with CTS=12
to 14 once they become ‘‘durable and readable’’, thus leading to
inconsistent reads.

When notification for CTS=12 is received, the snapshot counter
is advanced to 12. However, with the notification for CTS=14, the
snapshot counter cannot be advanced since 13 is still missing.
Finally, when the notification for CTS=13 is received, the snapshot
counter can be advanced to 15 since there are no gaps until that
value.

In summary, our solution processes each commit as a pipeline
of tasks, thus enabling all commits to proceed in parallel. Thus,
commit processing can be scaled out to very large levels. Snap-
shot isolation is preserved by regulating the visibility of commit-
ted updates through the snapshot counter that allows observing
only gap-free prefixes of committed transactions.

3.4. Waiting for updates to be visible for session consistency

Our solution returns the commit to the client when durability
is guaranteed, but before the updates of the transaction become
readable and visible. This may violate session consistency, also
known as ‘‘read your own writes’’ [28], i.e., a client might not read
its own writes across different transactions. Let us consider two
consecutive transactions from one client, T1 and T2. T1 updates
x and commits. T2 starts before T1’s update is visible, and thus,
receives a start timestamp smaller as T1’s CTS. Therefore, when
T2 reads x, it will not receive the version created by T1.

Session consistency can be implemented by delaying the start
of new transactions after the commit of an update transaction
until the snapshot counter reflects the CTS of that committed
update transaction. Only then, the LTM can assign the start times-
tamp to a new transaction in that session. This delay can be a few
tens of milliseconds, which is negligible for OLTP response time,
which is in the subsecond range. This delay is only incurred by a
client when it starts a transaction immediately after committing
an update transaction. After committing a read-only transac-
tion (typically around 90% of the transactions in a typical OLTP
workload) there is no delay. Furthermore, if a client application
performs some activity between the commit of an update transac-
tion and the start of a new transaction, this delay can be masked.
Note that, although we talk in terms of delay with respect to
the time a commit becomes durable, all activities are done much
earlier than in traditional database systems that simply commit
transactions in sequence, waiting until the updates are visible
before starting the next transaction in the current session and any
other session.

4. Efficient transaction management

In this section, we present three additional principles to make
transaction management efficient (and scalable), complementing
the three principles in the previous section. The two first princi-
ples address the limitations of single-node bottlenecks introduced
by monolithic transaction processing. The first principle (distri-
bution and parallelization) applies to the components devoted to
each ACID property, yielding linear scale out. The second princi-
ple (proactive timestamp management) substantially reduces the
amount of communication and transaction latency due to com-
munication. The third principle (asynchronous messaging and
batching) helps reducing even more the overhead of distribution.

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

4

o
s
m
t
s
t
t
f
i

2

2

p
s
s
a

Fig. 2. Lifecycle of a Transaction.
.1. Distribution and parallelization

In Section 3.2, we decomposed the ACID properties and scaled
ut them independently. The principle of distribution is to as-
ign the relatively independent tasks executed by the transaction
anager to the different independent components identified in

he previous section: LTMs, conflict managers, loggers, snapshot
erver, and commit sequencer. For some of these components,
he tasks can be parallelized into many component instances
hat can run on different nodes, thus, increasing scalability even
urther. Fig. 2 summarizes the entire transaction life cycle and the
nteraction between components.

Algorithm 2 Local Transaction Manager (LTM)

1: procedure Begin(clientId)
2: tid[clientId] ← getNextTID()
3: writeset[clientId] ← ∅
4: sts[clientId] ← snapshotServer.getSnapshot()
5: function Read(table, pk, clientId)→ Tuple
6: if pk ∈ writeset[clientId] then
7: tuple ← dataManager.ReadFromWriteset

(writeset[clientId], table, pk)
8: else
9: tuple← dataManager.Read(table, pk, sts)

10: Return tuple
11: procedure Write(table, pk, cols, clientId)
12: if ¬conflictManager.Conflicts(table, pk, sts[clientId]) then
13: writeset[clientId] ← writeset[clientId] + (table, pk, cols)
14: else
15: localTransactionManager.Abort(clientId)
16: procedure Commit(clientId)
17: cts[clientId] ← commitSequencer.GetCTS()
18: conflictManager.Commit(tid[clientId], cts)
19: logger.Log(tid[clientId], writeset[clientId], cts[clientId])
20: storageServer.Write(tid[clientId], writeset[clientId],

cts[clientId])
1: snapshotServer.DurableAndReadable(cts[clientId])
2: procedure Abort(clientId, tid)

23: snapshotServer.Abort(tid[clientId])
24: conflictManager.Abort(tid)

The transaction lifecycle is managed by the LTMs (see the LTM
seudocode in Algorithm 2). LTMs are in charge of getting the
tart timestamp of a transaction (Begin), using the right snap-
hot for reads (Read) and updating the private versions (Write),
nd processing the different steps of the commit (Commit) that

involves logging its updates, making them readable and finally
6

reporting to the snapshot server about the durability and read-
ability of the transaction and providing its CTS. Since such life-
cycle management can be performed independently for different
transactions, they can be parallelized as well by having several
independent LTMs, each collocated with the query engine (see
Fig. 2).

Conflict management is provided by an independent compo-
nent, the conflict manager, which is parallelized across many in-
stances. Its function is the same as conflict detection in any trans-
action processing system providing snapshot isolation, detecting
write–write conflicts among concurrent transactions. However,
unlike traditional systems that detect conflicts during validation,
the conflicts are detected before reaching the commit stage.

Each conflict manager instance running on a different node
(see Algorithm 3) is responsible for a subset of data record keys,
i.e., a bucket. Record keys (containing a unique table identifier
and key) are hashed and assigned to a bucket using the function:
bucket = hash(tableID, key) mod numberOfBuckets. The bucket is
the unit of distribution for the conflict manager and each conflict
manager is in charge of a number of buckets. Each bucket is
handled by a single conflict manager. The conflict manager keeps
at most two values per data item: the CTS of the last committed
version and the start timestamp of an active transaction updating
the data item, if any. Along with the distribution of conflict
managers, this avoids the conflict manager being a bottleneck
when it handles the whole set of keys, which can be huge [20].

Algorithm 3 Conflict Manager
1: conflicts← {}
2: function Conflicts(pk, tid, sts)→ Boolean
3: if ConflictsWithAnyConcurrentTxn(pk, sts) then
4: Return True
5: else
6: Store(conflicts, pk, tid, sts)
7: Return False
8: procedure Commit(tid, cts)
9: SetUpdatesToCommitted(tid, cts)

10: procedure Abort(tid)
11: DiscardUpdates(tid)

Before a transaction Ti can execute an update on a data record,
a conflict request is sent to the conflict manager that is respon-
sible for this record. A conflict is detected if the conflict manager
has previously accepted a request from a concurrent transaction
(either active or committed). For each transaction, its LTM keeps
the information about how many conflict managers have been
involved. Upon successful completion of a transaction commit,

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

a
c
c

b
F
t

t
c
a
a
s
t
T
c
t
s
t
L
a
m
a
b
c
S
s

ll the involved LTMs are informed about its CTS so that each
onflict manager updates the information about the conflicts and
an perform the proper checks for future transactions.
Fig. 3 shows the interaction and the information maintained

y the conflict manager that is responsible for rows x and y.
or each row, it keeps track of the last committed transaction Ti
hat has updated the row, and possibly an active transaction Tj
that has updated the row since then. When a new transaction Tk
checks for a conflict on x, it checks whether an active transaction
Tj exists that has updated x and if not, if C(Ti) of the last commit-
ted transaction that updated x is greater than S(Tk). If any of the
two is true, there is a conflict. Otherwise, there is no conflict and
Tk is added as an active transaction for x.

In Fig. 3, transaction T1 checks for a conflict on x, T2 for a
conflict on y, and T3 for a conflict on z. There are no conflicts. T3
checks for a conflict on y and T2 is active and changes y. Therefore,
T3 has a conflict. Then, T2 confirms the commit and information
about T2 can be discarded. When later on, a transaction T4 checks
for a conflict on y, since S(T3) ≥ C(T2), there is no conflict,
and T3 is added to x’s entry. This approach scales out conflict
management.

Durability provided by the loggers can also be handled in-
dependently. The redo records of a transaction are pushed to a
logger and made durable before the commit acknowledgment is
returned to the user. The logger is distributed and parallelized
by creating as many logger instances as needed to handle the
required throughput. Each logger takes care of a fraction of log
records (see Algorithm 4). Loggers are totally independent and
do not require any coordination. There is no requirement to log
records in any particular order, thus, it becomes possible to log
in parallel with no coordination. Log records are inserted into the
logger’s buffer. The buffer content is flushed at the maximum rate
allowed by the underlying storage, thus minimizing the latency
of logging. Note that coordination is not needed across loggers
because log records are labeled with the CTS and when redoing
upon recovery, a log record is not replayed if the current row in
the database has a CTS higher than the recovery log record. Thus,
idempotence of recovery is guaranteed.

Algorithm 4 Logger

1: procedure Log(tid, writeset, cts)
2: Persist(tid, writeset, cts)

4.2. Proactive timestamp management

Proactive timestamp management addresses a potential bot-
leneck. We separate the beginning of a transaction from its
ommit by providing two independent counters: the commit
nd snapshot counters. We provide two independent services:
commit sequencer that maintains the commit counter, and a

napshot server that maintains the snapshot counter. Note that
he work performed by these components is tiny per transaction.
hus, the main cost will become the communication with other
omponents to request start timestamps and notify readability of
ransactions. The requests for CTSs are served by the local commit
equencer while the requests for start timestamps are sent to
he snapshot server. The snapshot server is contacted by the
TM once the updated data of a committed transaction is applied
t the data store. Thus, the snapshot server keeps track of the
ost recent snapshot (i.e., update visibility) for which all updates
re readable in the data store layer. Timestamp management
ecomes the ultimate bottleneck of this approach. Therefore, it is
ritical to perform this task in a lean way that minimizes its cost.
o far in this paper, requests for start and commit timestamps are
ent in a reactive way, i.e., only when they are actually needed.
7

Fig. 3. Example of Conflict Management.

We can avoid this by adopting a proactive approach to times-
tamp management and making proactive the commit sequencer,
snapshot server, and conflict manager.

4.2.1. Proactive commit sequencer
Once a transaction enters the commit phase, it is guaranteed

that it does not conflict with any other transaction (it has already
been validated). The commit timestamp is only needed to tag the
updates with that CTS. Therefore, if two transactions request a
CTS, it does not matter which timestamp gets each transaction.
So, using Algorithm 5, the commit sequencer can send proactively
(before they are requested) a range of CTSs to each LTM. The
LTMs can then assign CTSs from their local range to commit
transactions, which avoids the synchronization with the commit
server on a per transaction basis. Thus, there is no latency in
assigning a CTS, with only one message per conflict manager
every period.

Algorithm 5 Commit Sequencer
1: nextCTS ← 0
2: function GetCTS→ Integer
3: Return nextCTS ++

Fig. 4 depicts this proactive approach. First, the commit se-
quencer proactively provides the query engine nodes with CTSs.
It sends a range of CTSs periodically. CTSs are assigned to transac-
tions from this range locally at the LTM without any communica-
tion with the commit sequencer. In the figure, the commit server
first sends a range of CTSs, B1, to the LTM. When T1 requests to
commit, it receives the first timestamp of the latest range, i.e., 0.
Then, when T2 asks for a CTS, it receives timestamp 1. Upon the
arrival of a new range of CTSs from the commit server, B2 the
range of unused timestamps will be simply discarded (2 in the
example). Therefore, when T3 requests the commit, it receives
timestamp 3.

The reason for switching to the new range instead of using
the old one is to advance CTSs in sync with timestamps globally
in the system, and therefore does not delay the freshness of

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043
Fig. 4. Proactive Commit Sequencer.

the current snapshot. If one LTM processes transactions faster, it
will receive larger timestamps while a slow LTM still uses low-
value timestamps. This will delay the advancement of the global
snapshot counter. As a result of discarding CTSs, the snapshot
server is not only informed about the timestamps of committed
transactions but also about unused CTS ranges, so that it can
advance the snapshot counter every period independently of the
relative speed of LTMs.

In the proactive approach, a period is defined for the inter-
action with the commit sequencer and snapshot server. Every
period, the commit sequencer provides a new range of CTSs to the
LTMs. Initially the range size is the same for all nodes. After each
period (e.g., 10 ms), the commit sequencer is informed about the
number of transactions that committed in the past period at each
LTM. This commit sequencer uses this information as an estimate
for the range size for the next period for each node.

4.2.2. Proactive snapshot server
In the reactive approach, each time a new transaction is

started, a message is sent to the snapshot server to request the
current snapshot and a message with the current snapshot is sent
to the requesting LTM. This means a cost of two messages per
started transaction and the latency of two messages. In the proac-
tive approach, the snapshot server proactively reports the current
snapshot counter to the LTMs for every period (see Algorithm 6).
This counter is used by newly started transactions, thus avoiding
message exchange on a per-transaction basis. Therefore, a single
message is sent every period to each LTM.

Recall that the snapshot server must also be informed about
CTSs whenever updates have been applied at the data store,
indicating that they have become readable. Instead of sending
these readability confirmations per single transaction, we report
a full range of CTSs, within the same range used by the commit
sequencer. Note that the transaction latency is not affected by
this batching, since the user application is notified as soon as the
transaction has become durable.

4.2.3. Proactive conflict manager
Checking conflicts on a per updated row basis has a high cost

since two messages are exchanged. For this reason, in the proac-
tive mode, conflict checks are batched and sent every period.
Thus, the conflict management communication cost is amortized
across as many rows as possible. Fig. 3 shows how batching is
applied to the example. Thus, transactions do not wait for mes-
sages to be exchanged to receive a start and commit timestamp.
Furthermore, commit timestamp ranges and start timestamps are
distributed proactively in a periodic manner to avoid two syn-
chronous message exchanges on the transaction response time.
8

Algorithm 6 Snapshot Server
1: snapshot ← 0
2: nonConsecutiveCTSs← ∅
3: procedure DurableAndReadable(cts)
4: if cts = snapshot + 1 then
5: snapshot ← snapshot + 1
6: while snapshot + 1 in nonConsecutiveCTS do
7: snapshot ++
8: nonConsecutiveCTS ← nonConsecutiveCTS −
{snapshot}

9: else
10: nonConsecutiveCTSs← nonConsecutiveCTSs+ {cts}
11: function getSnapshot→ Integer
12: Return snapshot

The snapshot server also interacts periodically with query engines
to collect readability notifications and report the latest snapshot
timestamp. Thus, the only way to saturate these components will
be with a very large-scale system that would send too many
messages per period. This issue can be easily overcome using a
multicast tree of nodes to distribute this information at very large
scale, e.g., as in content distribution networks, yielding seamless
scalability to our timestamp management.

4.3. Asynchronous messaging and batching

Each transaction needs several messages for transaction man-
agement, to perform conflict detection, reading and writing data,
and logging. As these message exchanges are synchronous, i.e.,
the transaction waits for them to be completed, they become part
of the critical path of the transaction response time. Although
these tasks are performed synchronously, we have adopted an
asynchronous approach whenever possible to remove message
latency from the transaction response time. Another issue related
to distribution and the inherent message exchange is the cost of
messaging. For a large-scale system, it is important to minimize
this cost as much as possible to reduce the distribution overhead.

We have already seen how timestamp management latency
can be fully removed from the transaction response time by our
proactive timestamp management. Conflict management latency
can also be mostly removed from the transaction response time.
We do this by checking for conflicts asynchronously. Additionally,
to reduce the distribution overhead, we apply batching of re-
quests and responses extensively. In typical batching approaches,
latency is traded for throughput, which increases response times.
We apply batching combined with asynchrony to avoid a negative
impact on response time.

In the naive solution, an update is only executed after the
conflict manager checks for conflicts. This delays transaction ex-
ecution considerably. Every update causes a round-trip message
delay. Additionally, it incurs the CPU cost of a round trip message
exchange at the sending and receiving sides. We avoid this by
performing conflict management mostly in an asynchronous way
and overlapping it with transaction execution to hide its latency.
We send conflict detection requests asynchronously to the con-
flict managers and immediately continue with the update before
receiving the accept/reject response. Only when the commit is
initiated, the transaction might wait for all outstanding responses
to conflict requests. Note that if a negative response arrives in the
middle of transaction execution, we can immediately abort the
transaction.

This asynchrony does not only allow keeping response times
short but also enables to apply batching to conflict manage-
ment without affecting response time. Conflict detection requests

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

a
(
c
p
T
w
c
b

w
t
b
i
t
i

5

a
p
l
c
m
t
I
g
b
m

n
d
c
(
b
a
o
e
r
t

5

s

t

re buffered, with one buffer per conflict manager. Periodically
e.g., every 10 ms), the buffers are sent to the corresponding
onflict managers. When a conflict manager receives a buffer, it
erforms all checks and returns all responses in a single message.
his reduces considerably the total number of messages sent,
ithout affecting the response time as the delay is hidden by the
oncurrent transaction execution. Only the waiting for the last
atch can affect the overall response time of a transaction.
Reads are necessarily synchronous. However, in our approach,

rites can be performed asynchronously and we take advan-
age of this possibility. Writes from different transactions can be
atched to be sent to KiVi instances. By trading off some delay
n the update propagation, it then becomes possible to batch all
he updates propagated to a particular data store instance, thus
ncreasing the overall efficiency.

. Elastic transaction management

Efficient, scalable transaction management (as provided by our
pproach so far) is useful for static workloads for which data
artitioning can be well designed. However, when the work-
oad changes dynamically, performance can degrade dramati-
ally. For instance, in a deployment with 100 servers, the load
ay suddenly concentrate on the data handled by one server,

hus limiting the performance to that of a centralized system.
n order to adapt to workload changes and be able to process
reater (or lower) transaction rates, scalability must be elastic,
ut also non-intrusive, i.e., without hurting the QoS of transaction
anagement.
In this section, we present three additional principles to attain

on-intrusive elasticity of transaction management and the un-
erlying components, namely, transaction manager (LTM, logger,
onflict manager), query engine, and KiVi. The first principle
non-intrusive moving of data partitions) is the first building
lock. The second principle (dynamic load balancing of trans-
ctional components) is the second building block, leveraging
n the previous one. The third principle (transactional elasticity)
xtends dynamic load balancing with the capability of adding or
emoving nodes with transactional component instances when
he average cluster load gets either too high or too low.

.1. Non-intrusive moving of data partitions

This principle is the ability to move data partitions to other
ervers1 in a non-intrusive way, i.e., when being accessed by
transactions while guaranteeing the ACID properties. This prin-
ciple is supported by the capability of splitting transactional
data partitions dynamically and moving them across servers also
dynamically while fulfilling the ACID properties. Transactional
data partitions are represented by means of a B+ tree that is
updated as an LSM tree, in batches from a cache. A transactional
data partition is thus the combination of a B+ tree and a cache.
The split of the data partition involves partitioning both the B+
tree and the cache. The splitting process is as follows. First, the
metadata indicates that the data partition is going to be split into
two data partitions, with their key ranges. The key at which the
split is performed is the middle key in the root of the B+ tree.
Then, the B+ tree root node is split into an atomic process into
two different root nodes, each with half of the children of the
root. If the root node has a single key, the two children of the root
become the two new trees. The cache is not split. Instead, when it
is propagated to the B+ tree, it is propagated to the two new trees.
When the cache starts to be propagated, two empty caches are

1 The method and system for online data partition movement described in
his paper is protected by a patent application [1].
9

created, one for each tree. In this way, the split process is totally
online and does not stop or disrupt transaction processing.

Dynamic movement of data partitions is achieved by an algo-
rithm that moves a data partition without stopping the ongoing
transactions, not even those updating the data partition being
moved. The algorithm starts by telling the metadata server that
the data partition is going to be moved from the current origin
KiVi server to the destination KiVi server. Then after, it notifies
both the origin and destination KiVi servers about the data parti-
tion movement. The destination KiVi server can start buffering all
the changes that might arrive for the data partition being moved.
Then, all the instances of the client side of KiVi are notified about
the data partition movement. Each client instance upon notifica-
tion starts sending changes not only to the origin data partition,
but also to the destination data partition. Once all client instances
have been notified, then all changes are being sent to both origin
and destination KiVi servers. Then, the origin KiVi server is asked
to start sending the data partition to the destination KiVi server.
Note that the KiVi client side configuration is not atomic, that
is, all clients are configured concurrently and the final order in
which they get configured can be any. Thus, the changes being
sent to the destination KiVi server can be different from each
client side. What is important is that all client sides are configured
to send to the origin and destination servers, before starting to
move the data partition, which guarantees that no updates can
be missing.

The data partition being sent can be updated in the meantime.
Thus, some changes might be incorporated in the sent data par-
tition while some other changes will not. The process to send a
copy of the data partition sends all the rows in the partition by
traversing the corresponding leaves of the B+ tree. Changes to a
row are atomic, i.e., a particular row is moved before or after a
change, but not during the change itself. Since multiversioning is
used, a change is always implemented as an insertion, so a row
is sent either before it has been inserted or after.

At the destination KiVi server, rows are inserted using the
regular processing using a cache and a B+ tree. At some point,
all the rows on the origin data partition have been sent to the
destination KiVi server. Then, the destination KiVi server is noti-
fied about this fact and starts applying the row changes that has
been buffered and are still buffering.

An important aspect for data consistency is to guarantee the
idempotence of all row changes. This is achieved by taking advan-
tage of combining the primary key of the row with the commit
timestamp. This makes a unique identifier for a particular row
change. Thus, when applying the buffered row changes, if a row
with the same primary key and commit timestamp is found,
then the buffered row change is just discarded since the change
was already applied. When a change is actually applied we say
that it has been effectively applied. Also, since the buffering of
changes started before starting to send a copy of the data par-
tition, it is guaranteed that no change is missing. Any change
after finalizing the reconfiguration of the clients is guaranteed to
be already buffered at the destination server. In extreme loads,
where the destination KiVi server never catches up, there is a
temporal limit, upon which the processing over the partition
would be paused to enable to complete the movement and fi-
nalize the reconfiguration. In practice, this mechanism is almost
never needed.

5.2. Dynamic load balancing of transactional components

The dynamic load balancing of the transactional components
(query engine, transaction manager, KiVi storage engine) depends
on the nature of the state they manage: session state, temporal
state, or persistent state. Session state is the state related to a

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

c
l
t
s
L
s
m
s
o
u

t
b
T
h
s
f
t
t
l
t
t
w
c
b
A
m
m
c
b

K
a
f
i
m
o
l
o
l
t
r
c

i
i
m
t
a
a
c
c
l
a
r
c

5

t
m
a
v
p
b

lient session. Both the query engines and LTMs that are col-
ocated have session state. They keep client sessions connected
o them that start and commit transactions and submit SQL
tatements. The way to balance the load across query engines and
TMs is by moving sessions across their instances. We move ses-
ions only when there is no transaction active in the session. Thus,
oving sessions requires reconfiguring the client connection to
end new transactions to a different query engine and LTM. The
nly state that is moved is the timestamp of the last committed
pdate transaction needed for session consistency.
Conflict managers keep a temporal state. This state is related

o the updates performed over the different keys, which has to
e remembered for some time to detect write–write conflicts.
he unit of distribution in conflict managers are buckets. We use
ashing and then get the modulo by the number of buckets to as-
ign a bucket to a key. Then, each conflict manager is responsible
or a set of buckets. Since this information is just needed for some
ime, the way we deal with dynamic load balancing is by giving
he responsibility of a bucket of a loaded conflict manager to a
ess loaded conflict manager. A naïve solution would be to send
he bucket state from one conflict manager to the other and buffer
he conflict requests on the receiving conflict manager. Instead,
e exploit the temporality of conflict information and just send
onflict requests to the old and new conflict manager for that
ucket. The replies are sent only by the old conflict manager.
t some point, all conflict information is in the two conflict
anagers. Then, LTMs are reconfigured to get the replies for the
oved bucket from the new conflict manager and send only the
onflict requests to the new conflict manager and remove the
ucket information from the old conflict manager.
There are two components with persistent state: loggers and

iVi. However, although they are stateful, loggers can be handled
lmost as session state components because of two features. The
irst feature is that loggers are append only. The second feature
s that logging information can be stored in any logger and only
etadata information needs to be kept to relevant loggers in
rder to do recovery efficiently. To move the load from a highly
oaded logger to a less loaded logger, we just need to reconfigure
ne LTM that sends logs to the highly loaded logger to send the
ogs to the less loaded logger. This information is also stored in
he metadata to know that the less loaded logger is involved to
ecover transactions from the associated LTM from a particular
ommit timestamp.
The load balancing of KiVi leverages the principle of non-

ntrusive moving of transactional data partitions. When a KiVi
nstance becomes highly loaded, one of its data partitions is
oved to a less loaded KiVi instance. Such moving is transparent

o applications. Load balancing is a hard problem by itself. When
single resource is involved (e.g., CPU or IO bandwidth), there
re greedy solutions that provide an optimal solution. This is the
ase for all transactional components but KiVi. A KiVi instance
an be CPU, memory or IO bound. Unfortunately, multi-resource
oad balancing is an NP hard problem [29]. We have designed
greedy multi-resource load balancing that handles multiple

esources with a solution very close to the optimal in affordable
omputation time [30].

.3. Transactional elasticity

Transactional elasticity combines the capabilities of splitting
ransactional data partitions, moving them and deciding where to
ove them based on the dynamic load balancing algorithm. The
lgorithm proceeds as follows. Once a new server has been pro-
isioned and registered in the metadata, then a number of data
artitions can be moved to it. When a particular data partition
ecomes too big or overloaded, it is split and can be moved if
10
needed to another KiVi server. Elasticity requires setting thresh-
olds of the average server load on the different dimensions of the
load, CPU, memory and IO bandwidth. There is an upper threshold
for each resource (e.g., 80% CPU) that, when overcome, triggers
the provisioning of a new server. The data partitions moved to the
new server are decided by the dynamic load balancing algorithm.
There is a lower threshold for each resource. When the average
cluster resource utilization of all resources after removing one
server is below the lower threshold, then the less loaded KiVi
server is chosen and the dynamic load balancing algorithm de-
cides to which other KiVi servers to move each partition. When
the server does not have any data partition, then it is decommis-
sioned. Note that there is a highly available version of LeanXcale
that provides replication of all components. However, this topic
is outside the scope of this paper.

6. Correctness

In this section, we show that LeanXcale transaction manage-
ment is correct, i.e., it correctly provides snapshot isolation and
1-copy transactional data movement.

6.1. Snapshot isolation level correctness

We start with some basic definitions. Then, we prove that
LeanXcale provides snapshot isolation and session consistency.

Definition 6.1 (Data Items and Transactions). A transaction Ti is
a sequence of read and write operations bracketed by a start
operation si and a commit (ci) or abort (ai) operation. A data
item x starts with its unborn version xinit and finishes with its
tombstone version xdead. A transaction Ti creates a version xi of
an object x when executing a write over it, denoted by wi(xi). The
reading of a particular data item version j from a transaction Ti is
denoted by ri(xj). When a transaction Ti has written a data item
xi, it becomes committed when Ti commits. A data item is read
and/or written at most once within a transaction.

Definition 6.2 (Transaction History). Let T be a set of transactions.
A history H over T represents a particular execution of the
transactions in T . A history defines two orders:

1. The time precedes order, denoted by ≺t , over the transac-
tion operations, characterized as:

(a) Every transaction Ti in T has a start operation (si)
and a commit (ci) or abort operation (ai). All opera-
tions of committed transactions appear in H .

(b) All operations of a transaction Ti are totally ordered
according to the order in which they were executed.
If oij was executed before oik then oij ≺t oik.

(c) If a transaction Tj reads a data item xi written by Ti
then wi(xi) ≺t rj(xi).

(d) Given two transactions Ti and Tj, it follows that either
sj ≺t ci or ci ≺t sj.

2. A version total order, denoted by≪, among the versions of
a data item where xinit is the first version and if xdead exists,
is also the last version.

Definition 6.3 (Snapshot Read [31]). All reads performed by a
transaction Ti occur at its start point, i.e., if ri(xj) occurs in history
H , then:

(1) cj ≺t si
(2) If wk(xk) also occurs in H (j ̸= k), then

• Either s ≺ c
i t k

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

D

S
p

L
s

• Or ck ≺t si and xk ≪ xj

efinition 6.4 (Snapshot Write [31]). For any two committed
transactions Ti and Tj in H that write the same object x:

(1) Either ci ≺t sj or cj ≺t si
(2) If ci ≺t sj ≺t cj then xi ≪ xj and if cj ≺t si ≺t ci then

xj ≪ xi

We now provide a definition of snapshot isolation derived
from the one provided in [31] without using the GILD formalism.

Definition 6.5 (Snapshot Isolation). A transaction history H over
T fulfills Snapshot Isolation when:

1. No aborted reads. For any aborted transaction Ti in H , any
committed transaction Tj cannot read any object modified
by Ti.

2. No intermediate reads. For any committed transaction Ti in
H , no transaction Tj can read a version of an object xwritten
by Ti that was not the final modification of x.

3. No circular dependencies. H cannot contain circular infor-
mation flow, i.e., if Ti reads or writes a version written by
Tj, Tj cannot read or modify a version written by Ti.

4. H fulfills Snapshot Read (Definition 6.3).
5. H fulfills Snapshot Write (Definition 6.4).

Definition 6.6 (Session). A session Si is a subset of the transactions
participating in a history H , such that Si ⊆ T with a total
order among the transactions in the session, denoted by ≺Si . All
sessions defined in a history H are disjoint, i.e., ∀Si, Sj ∈ S, i ̸=
j.Si ∩ Sj = ∅.

Definition 6.7 (Session Consistency). A transaction processing sys-
tem provides session consistency when it is guaranteed that all
transactions within a session Sm of a history H observe all the
updates of previous transactions in that session, i.e., ∀Ti, Tj ∈
Sm, i ̸= j, Ti ≺Sm Tj H⇒ ci ≺t sj.

Let us now prove that our solution provides snapshot isolation
(Definition 6.5). In order to do so, we first prove that a concurrent
execution is equivalent to a snapshot isolation execution in the
commit timestamp order. We first prove that there are no aborted
reads (Definition 6.5.1), no intermediate reads (Definition 6.5.2),
nor circular dependencies(Definition 6.5.3). Then, we prove that
we guarantee the snapshot read property (Definition 6.3). Fi-
nally, we also prove that the conflict detection algorithm satisfies
the snapshot write property (Definition 6.4), providing the first
updater wins version of it.

Finally, since the isolation levels deal with the ordering of
individual transactions but not session consistency, we prove that
LeanXcale also provides session consistency (Definition 6.7). This
adds an extra requirement for the visibility of updates across
transactions within the same session, i.e., that transactions in a
session observe the writes of all previous update transactions in
that session.

Lemma 6.1. LeanXcale does not suffer aborted reads.

Proof. Since LeanXcale uses private versions for the updates
of transactions before a transaction is readable, no transaction
can ever read an object written by an aborted transaction be-
cause the aborted transaction will never become either durable
or readable. □

Lemma 6.2. LeanXcale does not suffer intermediate reads.
11
Proof. Also due to the use of private versions, it is impossible
for any transaction to read any intermediate result. Lines 6–7
in Algorithm 2 show that private versions are only accessible to
the active transaction in a session that created them. Only final
results will become readable by other transactions and this only
happens when the transaction is committing. □

Lemma 6.3. LeanXcale does not exhibit circular dependencies.

Proof. The proof is by contradiction. There are only four possible
cycles: read–read, read–write, write–read, and write–write:

• Assume that Ti reads x from Tj (ri(xj)) and Tj reads y from Ti
(rj(yi)). For Tj to read x from Ti, Ti should have committed and
thus, its updates would be visible to Tj. Thus, Tj would have a
start timestamp equal or higher than the CTS of Ti, ctsi ≤ stsj.
If Ti has read data from Tj, then ctsj ≤ stsi. Since stsj < ctsj
and stsi < ctsi, we would get: ctsi ≤ stsj < ctsj ≤ stsi < ctsi,
which leads to a contradiction.
• Assume Ti reads x from Tj (ri(xj)) and Tj writes y that was

already written by Ti (yj ≫ yi). For Ti to read x from Tj, Tj
should have committed and thus, be visible for Ti. Thus, Ti
would have a start timestamp equal or higher than the CTS
of Tj: ctsj ≤ stsi. For Tj to write a version yj ≫ yi, Tj can only
do while Ti is not yet committed, in which case it would
be aborted by the conflict manager, or after Ti has already
committed. In the latter case, either Tj is concurrent to Ti
and then the conflict manager would still abort Tj because
of the write–write conflict between concurrent transactions
or Tj starts after the commit of Ti which implies that the
start timestamp of Tj is equal or higher than the CTS of Ti:
ctsi ≤ stsj. In the latter case, since stsi < ctsi and stsj < ctsj,
we would get: ctsj ≤ stsi < ctsi ≤ stsj < ctsj, which leads to
a contradiction.
• Assume that Tj reads x from Ti (rj(xi)) and Ti writes y that

was already written by Tj (yi ≫ yj). For Tj to read x from Ti,
Ti should have committed and thus, be visible for Tj. Thus,
Tj would have a start timestamp equal or higher than the
CTS of Ti: ctsi ≤ stsj. For Ti to write a version yi ≫ yj, Ti can
only do while Tj is not yet committed, in which case it would
be aborted by the conflict manager, or after Tj has already
committed. In the latter case, either Ti is concurrent to Tj
and then the conflict manager would still abort Ti because
of the write–write conflict between concurrent transactions
or Ti starts after the commit of Tj, which implies that the
start timestamp of Ti is equal or higher than the CTS of Tj,
i.e., ctsj ≤ stsi. For the latter, since stsj < ctsj and stsi < ctsi,
we would get: ctsi ≤ stsj < ctsj ≤ stsi < ctsi, which leads to
a contradiction,
• Assume Ti writes xi after Tj writes xj, xi ≫ xj and Tj writes yj

after Ti writes yi, yj ≫ yi. For the former, both transactions
could be concurrent or sequential. If they are concurrent, Ti
would be aborted due to the write–write conflict. If they are
sequential, then we would have: ctsj ≤ stsi. For the latter,
similarly, both transactions can be concurrent or sequential.
In the concurrent case, Tj would be aborted by the conflict
manager. In the sequential case, we would have: ctsi ≤ stsj.
Since stsj < ctsj and stsi < ctsi, we would get: ctsj ≤ stsi <

ctsi ≤ stsj < ctsj, which leads to a contradiction.

ince all possible cases lead to a contradiction, the lemma is
roven. □

emma 6.4. LeanXcale transaction management satisfies the snap-
hot read property (Definition 6.3).

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

P
p
c

roof. The proof is by contradiction. Assume the snapshot read
roperty (Definition 6.3) is not satisfied. Then, there are two
ases:

1. ri(xk) and (ck ≺t cj ≺t si and xk ≪ xj). Thus, a transaction
Ti reads an older version (xk) that is not the last one before
its snapshot. Then, although the current snapshot when Ti
started was the one corresponding to the CTS of Tj, Ti read
xk that corresponds to an earlier snapshot. However, this
is impossible since when the snapshot reaches the CTS of
Tj, all transactions with CTS lower than or equal to the
CTS of Tj are already durable and readable. Lines 5–8 in
Algorithm 6 show that the snapshot only progresses where
there are no gaps in the serialization order in terms of
durable and readable transactions. Thus, the versions of
their updated data are already in the KiVi servers. This
is shown in lines 20–21 in Algorithm 2, where snap-
shotServer.DurableAndRedable is only invoked after
logger.Log and dataManager.Write. This makes the
transaction durable and readable. Therefore, when per-
forming the read operation, it is guaranteed that the KiVi
servers get the oldest version that has a version number
lower than or equal to the snapshot, corresponding to the
CTS of Tj (see lines 3–4 in Algorithm 1). So, this leads to a
contradiction.

2. rj(xi) and (ck ≺t sj ≺t ci and xk ≪ xi). Thus, Tj reads
a younger version, xi written by Ti, which is after Tj’s
snapshot stsj. There are five cases (all the possible states
of a transaction from ongoing to visible):

(a) xi is still private. In this case, it is impossible that any
other transaction reads it, thus leading to a contra-
diction. Lines 6–7 in Algorithm 2 show that only a
session can read from the private versions stored in
the session local writeset.

(b) Ti is durable but xi has not yet been written in a KiVi
server. As in the previous case, xi could not be read
by Tj from storage, thus leading to a contradiction.
This is shown in lines 16–20 in Algorithm 2: since
line 20 has not yet been executed, xi only exists in
the session local writeset so it cannot be read by any
other transaction.

(c) xi is in storage, but Ti is not yet readable. Since Ti is
not readable, the snapshot is lower than the CTS of Ti
and thus can never be chosen by the storage engine
as version to be read, which leads to a contradiction
This is shown in lines 16–21 in Algorithm 2: since
line 21 has not yet been executed, xi is readable since
it is written on the KiVi server but because the CTS
has not yet been notified as durable and readable
and thus the snapshot is lower than that CTS, no
transaction can read (see lines 2–4 in Algorithm 1).

(d) Ti is readable but not visible. Although it is readable,
Ti is still not visible. Since the snapshot is lower
than Ti’s CTS, it can never be chosen by the storage
engine as the version to be read, which leads to a
contradiction (see lines 2–4 in Algorithm 1).

(e) Ti is visible. The snapshot server provides newly
started transactions with a snapshot equal to or
higher than the CTS of Ti, ctsi. However, we have
stsj < ctsi, so the KiVi server will never return xi
as version of x for the read operation, since it only
returns versions with a timestamp equal to or lower
than stsj, which leads to a contradiction (see lines
2–4 in Algorithm 1).

Since all possible five cases lead to a contradiction, the lemma
is proven. □
12
Lemma 6.5. LeanXcale transaction management satisfies the snap-
shot write property (Definition 6.4).

Proof. The proof is by contradiction. Assume that the snapshot
write property (Definition 6.4) is not satisfied. Then, there are two
cases:

1. Two concurrent transactions modify the same row and
then commit. This leads to a conflict that is detected by the
conflict manager that handles the row key. One transaction
update notification will be processed before the other by
this conflict manager. The notification that is received first,
and thus also processed first, will be successful (see lines
5–7 in Algorithm 3). The other transaction will fail and
the transaction will be aborted (see lines 3–4 in Algorithm
3 and lines 14–15 in Algorithm 2). Since all conflicts are
solved before starting the commit, this leads to a first
updater wins strategy and guarantees that two concurrent
transactions cannot both update the same row and commit,
which yields a contradiction.

2. Two non-concurrent transactions, Ti and Tj, produce ver-
sions in reverse order that they have been committed,
i.e., ci ≺t cj and xj ≪ xi. Since ci ≺t cj, Ti has necessarily
a CTS lower than Tj because LeanXcale uses the commit
timestamp order as commit order (see Algorithm 6). This
commit order is applied to the data versioning where the
commit timestamp ordering is used to choose the version
to be read (see lines 2–4 in Algorithm 1). Thus, we have
ci ≺t cj H⇒ xi ≪ xj, which leads to a contradiction.

Since the two cases result in a contradiction, the lemma is
proven. □

Theorem 6.6. LeanXcale transaction management provides snap-
shot isolation (Definition 6.5).

Proof. Snapshot isolation (Definition 6.5) requires to fulfill five
properties. Lemmas 6.1, 6.2, 6.3, 6.4, 6.5 prove each of the proper-
ties, thus, LeanXcale transactional management satisfies snapshot
isolation. □

Lemma 6.7. LeanXcale transaction management provides session
consistency (Definition 6.7).

Proof. The proof is by contradiction. Assume that session con-
sistency is not guaranteed in session Sm. Thus, a transaction
Tk ∈ Sm will not observe a snapshot that includes the updates
of all update transactions in Sm that committed before Tk in Sm.
Violating session consistency means that Tk, instead of reading a
version xj of Tj ∈ Sm, reads a row with a version xi written by Ti
that committed before Tj, i.e., rk(xi), xi ≪ xj, Ci ≺t Cj ≺t Sk.

Since the session consistency mechanism enforces that the
start timestamp stsk of any new started transaction Tk is greater
than the CTS ctsj of any transaction Tj ∈ Sm, Tj ≺Sm Tk, we
have: Cj ≺t Sk. For this to happen, Tj should become durable
and readable before the start of Tk and the snapshot server has
to advance the snapshot to a value equal to or higher than ctsj.
The snapshot getting the value of ctsj or higher means that all
committed transactions with CTSs lower than or equal to ctsj
were also durable and readable. Thus, it is impossible that Tk
reads row xi, since LeanXcale guarantees that the biggest version
that will be read by Tk has a CTS lower than or equal to the
snapshot associated to the reading transaction, stsk, which means
that it will return a version of x that is xj or older, but not younger.

This leads to a contradiction and thus, the lemma is proven. □

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

6

t
L
t
t
s
d

L

c
K
o
t
d
t
p
t
w
s

L

t
o
a
l
(
s
s
i
C

T
t

P

c
d
t
2
o
i
E
i
a

f
T
r

7

s
o
m
T
9
i

c
A
y
f
w
c
o
o
e
p

T
O
s
b
i
p
g
c
c

7

n
b
s
K

.2. 1-copy transactional data movement

Elastic transaction management relies on the movement of
ransactional data partitions during transaction processing.
eanXcale guarantees full consistency during the movement of a
ransactional data partition. We formalize the concept as 1-copy
ransactional data movement, meaning that the behavior of the
ystem during data movement is equivalent to that without any
ata movement with a single data partition not being moved.

emma 6.8. No updates lost.

Proof. The data partition movement starts by configuring all
lient sides to send updates to both the origin and destination
iVi servers. Suppose for the sake of contradiction that at least
ne update is lost. If the update is lost, it can only be because
he update did not reach the destination KiVi server since the
estination KiVi server would apply all buffered updates. Thus,
he update would have been sent before the client side that
roduces it was reconfigured. This leads to a contradiction since
he data partition movement would only start after the client side
as reconfigured to send to both the origin and destination KiVi
ervers. □

emma 6.9. Idempotence of updates.

Proof. Updates are identified by the primary key of the row
hey modify and the CTS. If an update that is applied on the
rigin KiVi server is also buffered at the destination KiVi server,
nd thus re-applied, the row with that primary key would be
abeled as a version equal or higher to the CTS of that transaction
higher in the case that some updates happened on the origin KiVi
erver before the state of the row was sent to the destination KiVi
erver) and that update would be discarded. Thus, updates are
dempotent and only effectively applied once in the order of the
TSs. □

Lemma 6.10. Synchronous replica after data partition movement
is completed.

Proof. After the data partition is moved, i.e., all the rows from
the data partition have been copied to the destination KiVi server,
the destination KiVi server has a copy of the data partition with
a fraction of the updates that happened after all client sides
were reconfigured to send to the origin and destination servers.
Furthermore, the destination KiVi server has all the updates
that have been sent since the data partition was moved (see
Lemma 6.8) and continues to receive all the updates over that
data partition as part of each transaction. Thus, once all buffered
updates have been applied, it becomes a synchronous replica of
the origin data partition. □

heorem 6.11. Data partition movement satisfies 1-copy guaran-
ees.

roof. From Lemmas 6.8–6.10, it follows that no updates are lost
and that duplicate updates are applied only once. It also follows
that after the data partition movement is completed, both origin
and destination data partitions are updated synchronously. Thus,
the process guarantees that the data partition behaves as 1-copy
that is not moved. □

7. Performance evaluation

This section evaluates the scalability and elasticity of trans-
action processing in LeanXcale using the TPC-C benchmark and
microbenchmarks on Amazon Web Services (AWS). After intro-
ducing our experimental setup, we present our experimental
results.
13
7.1. Experimental setup

Cluster configuration. For the TPC-C benchmark, we deploy
LeanXcale using two kinds of nodes: metadata nodes and data
nodes. The metadata nodes contain instances of metadata com-
ponents (configuration manager, conflict manager, logger, . . .).
The data nodes contain the query engine, LTM and KiVi servers.
We use a cluster of up to 200 AWS i3en.2xlarge servers as data
nodes and up to 20 AWS i3en.2xlarge servers as metadata nodes.
Each i3en.2xlarge instance has 8 vCPUs (4 physical cores with
hyperthreading), 64 GB of memory and 2 NVMe disks of 2,5TB.
For load injection, we use 1 AWS server for every 20 LeanXcale
data servers.

LeanXcale deployment. One node is used for the meta-data
omponents across all configurations from 1 to 200 servers. Each
ata node has 4 instances of KiVi servers, and one instance of
he query engine and LTM. There is one metadata node for every
0 data nodes or fraction of them. Each metadata node has
ne instance of the Apache Zookeeper configuration manager, 4
nstances of the conflict manager, and 8 instances of the logger.
ach 4 loggers are assigned to one of the two disks in each AWS
nstance. There is a minimum of 5 zookeeper instances, so there
re always at least 5 metadata nodes.
TPC-C dataset deployment: The TPC-C dataset is deployed as

ollows. Each server node handles 2,000 data warehouses. All the
PC-C tables are partitioned using the warehouse id, except the
ead-only table Item that is replicated at all nodes.

.2. Scalability

We run TPC-C with 4 configurations of 1, 20, 100 and 200 data
ervers in AWS. The experiments (see Fig. 5) show linear scale
ut from 1 to 200 servers, reaching 11 million transactions per
inute (TPM). In particular, we reach about 5 million New Order
PM, which is greater than the TPC-C throughput obtained by the
th highest result in all history. Out of these 9 results only 5 are
n a cluster deployment [32].

For TPC-C, there are only two results released in a cloud data
enter, which are also the two top ones. These results are from
libaba Cloud Elastic using 65,394 and 6,720 cores, respectively,
et used exclusively (not shared with other users as we do)
or the benchmark. Trying with those high-end configurations
as beyond our economic capabilities. However, LeanXcale’s effi-
iency per core (TPM per core) is much higher, with 22700+ new
rder TPM per core versus 10800+, i.e., double that of Alibaba. The
ther systems use highly tuned bare metal hardware (SANs with
nough memory to keep all data in memory) while we run on a
ublic cloud with shared instances.
Fig. 6 shows the average latency (response time) of different

PC-C transactions (NewOrder, Delivery, Payment, StockLevel and
rderStatus) for the largest deployment, i.e., with 200 AWS in-
tances. Note that the latencies are quite below the SLA required
y the benchmark (5 s for all transactions except StockLevel that
s 20 s). Another important observation is that the latencies are
retty steady. Latencies for low loads are under millisecond. The
reater latencies shown in Fig. 6 are due to the system getting
lose to saturation, which yields larger request queues and thus
orresponding waiting times.

.3. Elasticity

To evaluate the elasticity of the different transactional compo-
ents described in Section 3, we exercise several micro-
enchmarks, one per component (logger, conflict manager, KiVi
erver). We also study the effectiveness of load balancing across
iVi servers and the global elasticity of all components.

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

7

t
t
t
f
r
n
g
o
m
w
w
i
h
t
t
t
o
b
m
2
a
l
l
w
t

7

t
(

Fig. 5. TPC-C Scalability Results for 1, 20, 100 and 200 Nodes.
Fig. 6. Transaction Latency for 200 Server Deployment.
.3.1. Logger elasticity
It is exercised by increasing the update transaction load in

erms of number of warehouses (actually, the client threads of
he warehouses) during around 15 min until the threshold for
riggering logger elasticity is reached. Then, the load is kept stable
or half an hour and then, the load is started to be reduced. The
esults are shown in Fig. 7. On the left y axis, we can see the
umber of messages processed by each logger (initially, one log-
er). On the right y axis, we can see the load in terms of number
f warehouses, where each warehouse has 10 client threads as
andated by TPC-C. The load is increased from 4,000 until 40,000
arehouses. When the load goes beyond 30,000 warehouses,
hich results in over 40,000 log messages per second, elasticity

s triggered, and a new logger is provisioned (orange line). Then,
alf of the LTMs connect to the new logger and disconnect from
he initial one. This process is quite fast, taking only a few seconds
o commute to the new logger. This is possible because LeanXcale
ransaction management does not have any requirement in terms
f log ordering. Once the switch of half of the LTMs is completed,
oth loggers get half the load of the log messages. Finally, around
inute 42, the load starts to decrease. When the load gets below
0,000 log messages per logger, elasticity is triggered again and
ll LTMs sending load to the second logger switch back to the first
ogger. In a few seconds, the process is completed, and the second
ogger decommissioned. Then, the first logger gets the full load,
hich is below 40,000 log messages per second and goes down
o 5000 messages per second.

.3.2. Conflict manager elasticity
The micro-benchmark for conflict manager elasticity is similar

o that for loggers. The load is increased in terms of warehouses
actually, the client threads allocated to each warehouse) until the
14
elasticity threshold is reached. Then, the load is sustained for half
an hour and then decreased until reaching the initial load. The
results are depicted in Fig. 8. The load is shown with double y axis
as before. On the left y axis, the load is shown in terms of conflicts
per second received by each conflict manager (initially one, see
the orange line). On the right y axis, the load is shown in terms
of warehouses. The increase in warehouses has a faster effect on
the load received by the conflict managers in terms of conflicts
per second, since they are received along the transaction instead
of at the end as with the loggers. When the load goes above
160,000 conflicts per second, a new conflict manager is provi-
sioned. Unlike with logger elasticity, the process takes longer, but
there is the advantage that no state is transmitted across conflict
managers. Each of them receives all the conflict information and
at some point, the conflicts known only by the first conflict
manager are forgotten because they are obsolete. Thus, at that
point, the second conflict manager knows all the needed conflicts
and the responsibility of half of the conflict buckets is transferred
to the second conflict manager. Then, the first conflict manager
starts receiving half the load. The process for provisioning the
second conflict manager until the first conflict manager handles
half the load takes about two minutes. Then, after 30 min of
constant load, the load is decreased. This process takes a little
less than the first two minutes, since the load is smaller and it
takes less time for the information kept by the second conflict
manager to become totally obsolete, at which point, all its buckets
are transferred to the first conflict manager that starts to handle
the full load. The responsibility of conflict buckets just requires
sending configuration messages to all LTMs. The advantage of this
process is that it does not require to stop the processing at any
point, thus not disrupting the QoS of transaction management.

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

7

s
C
o
s
t
l
t
t
t
w
t
l
s
A
s
s
s

7

K
t
r
t
K
o
n
K
e
w
l
w
t
l
f
m
K

Fig. 7. Logger Elasticity.
Fig. 8. Conflict Manager Elasticity.
.3.3. KiVi Server elasticity
In this micro-benchmark, we show the elasticity of the KiVi

ervers. The results are shown in Fig. 9. The top chart shows the
PU usage of the two servers and the bottom chart the evolution
f the overall throughput and response time. We run one KiVi
erver in charge of 200 warehouses. Initially, only the load for
he first 100 warehouses is generated. Five minutes later, the
oad for the other 100 warehouses starts to be injected. Each
able partition corresponds to 100 warehouses. This increases
he load in the KiVi server above the elasticity threshold, which
riggers the provisioning of a new KiVi server five minutes later
ith another KiVi server. One of the table partitions starts to be
ransferred to the second KiVi server. The transfer is completed in
ess than 1.5 min, including the time it takes for the second KiVi
erver to process all the buffered requests during the transfer.
s can be seen in the figure, the only effect in the QoS is a
light increment in average response time of 10 ms during the
tate transfer across the two KiVi servers. The throughput is kept
teady all the time.

.3.4. Load balancing across KiVi servers
We show how the load of table partitions is balanced across

iVi servers. We focus on KiVi server load balancing, which is
he most challenging since it is stateful. The micro-benchmark is
un with 2 KiVi servers. The results are shown in Fig. 10. Each
able partition contains information of 40 warehouses. The first
iVi server is responsible for 9 table partitions and the second
ne for 7 table partitions. There are 80 warehouses for which
o load is injected, corresponding to 2 table partitions for which
iVi server 1 is responsible. Thus, each KiVi server is receiving
xactly the same load corresponding to 7 table partitions, i.e., 280
arehouses. Ten minutes after the start of the experiment, the

oad starts to be injected in the two table partitions (i.e., 80
arehouses) without any load. This causes the first KiVi server
o get significantly more load than the second one. Then, 2 min
ater, load balancing is triggered and one table partition is moved
rom the first KiVi server to the second one. The table partition
ovement takes one minute to be completed. At this point, each
iVi server is handling half the workload. As can be seen during
15
the table partition movement, there is a load increase in both
servers. The first server receives more load and sends a copy
of one of the table partitions to the second server. The second
server gets a load increase because it receives a copy of the table
partition. Thus, it must also buffer the requests corresponding to
this table partition, and when the copy is finished, it has to apply
the buffered updates. The full process takes around 3 min and
at that point, the load of both servers is fully balanced, each one
processing 160 warehouses.

7.3.5. Global elasticity
To evaluate the elasticity of all components, we deploy one

node with data populated for 1,200 TPC-C warehouses. This node
has one instance of each transactional component (KiVi server,
logger, conflict manager, query engine, commit sequencer, snap-
shot server and LTM). Then, we start injecting load corresponding
to the first 200 warehouses. Every 15 min, the load for another
200 new warehouses is added to the overall workload. Each load
increase makes the overall load to go above the threshold, which
triggers the provisioning of a new node. Each new node contains
an instance of all components. After provisioning a new node, the
load is balanced across all nodes. The warehouses still with no
load remain as they are while the rest of the load corresponding
to the active warehouses is balanced across all servers.

Fig. 11 top left shows the overall throughput and average
latency. There are a couple of peaks of about 50 ms every time
the load is increased. The first peak corresponds to initial tasks
for balancing the data to the new server. The second peak cor-
responds to the finalization of these tasks, mainly to apply all
the buffered updates to the data partitions of the moved tables.
The process of moving all data across all servers (KiVi servers,
conflict managers) is completed in about 5 min. Note that the load
increase is done in steps, while in a real workload, the change in
load would be smoother, thus giving us more time to adapt.

The throughput evolution of the conflict managers is shown
in Fig. 11 bottom right. When the load is increased, the number
of conflicts per second in the conflict managers increases. This
increase is each time smaller, since the load increase is shared
across all conflict managers. Such behavior stems from the fact

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

t
d

g
T
o
w
w

K
K
w
s
l
p
o

a
t

Fig. 9. KiVi Server Elasticity.
Fig. 10. KiVi Server Load Balancing.
hat the conflicts are hashed so their load is more or less evenly
istributed across buckets.
Fig. 11 top right shows the throughput evolution in the log-

ers. Each load increase is actually received by the first node.
hus, the impact on the load is always the same, since the logger
f the first node gets its load doubled each time. This is because
e increase the load on warehouses without load and these
arehouses are not actually moved until they receive load.
Fig. 11 bottom left shows the evolution of CPU usage of the

iVi servers. As for loggers, the load increase falls in the first
iVi server since it is the one that contains the data partitions of
arehouses with no load. This doubles the load of the first KiVi
erver. In the new KiVi server, there is a first period where the
oad is low, as it is just buffering updates and receiving the data
artition messages. Then, its CPU usage raises to the level of the
ther KiVi servers.
In summary, this experiment shows the elasticity of all trans-

ctional components that, by working together, deliver the elas-
icity of the LeanXcale database system as a whole. Such elasticity
16
is non intrusive so that the QoS is barely affected during the
elastic reconfigurations.

8. Conclusion

In this paper, we presented our solution to elastic scalable
transaction processing in LeanXcale, an industrial-strength
NewSQL database system. Unlike previous solutions, it does not
require any special hardware assistance, such as RDMA-enabled
networks or specialized clocks. Furthermore, its architecture is
different than most NewSQL database systems such as Spanner
that rely on a NoSQL key–value store. Our approach to elastic scal-
able transaction management is based on a number of principles,
which we divided in three groups: scalable, efficient and elastic
transaction management.

We proved that LeanXcale transaction management is correct,
i.e., it correctly provides snapshot isolation and 1-copy transac-
tional data movement.

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043

o
b
s
o
(
A
n

c
I
.
a

t
e
w
i

D

c
t

A

m
b
t
#
S
1
t

R

Fig. 11. Overall Throughput and Latency.
Finally, we provided a thorough performance evaluation of
ur solution on AWS. The experimental results using the TPC-C
enchmark show that LeanXcale can scale linearly from 1 to 200
ervers and reach 5 million of NewOrder TPM and 11 million TPM
verall. Furthermore, they also show double efficiency per core
i.e., 2*TPM per core) compared to the two top TPC-C results from
libaba, which are the only results in a cloud data center but with
o shared instances.
Elasticity is demonstrated individually for all transactional

omponents (logger, conflict manager, KiVi server) and globally.
n particular, it is shown that all servers (i.e., loggers, KiVi servers,
. .) can be scaled up and down without impacting the QoS as well
s balancing the load across KiVi servers.
As far as we know, this is the only industrial-strength solu-

ion for transaction processing that provides both scalability and
lasticity in the cloud without resorting to any special hardware,
ith its performance evaluation in a public cloud with shared

nstances.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work has been partially funded by the European Com-
ission under the projects Infinitech (contract #856632), Cy-
ele (contract #825355) and PHYSICS (contract #101017047),
he Comunidad de Madrid under the industrial doctorate grant
IND2018_TIC-9846 and EDGEDATA P2018/TCS-4499 and, by the
panish Research Council under the projects QoSDATA (PID220-
19461GB-100/AEI/10.13039/501100011033) and CloudDB (con-
ract TIN2016-80350-P).

eferences

[1] R. Jimenez-Peris, F. Ballesteros, Method and system for online data par-
tition movement, 2022, European Patent Office. File application number:
#EP22382126.5. Filing date: 16/02/2022.

[2] J. Shute, M. Oancea, S. Ellner, B. Handy, E. Rollins, B. Samwel, R. Vingralek,
C. Whipkey, X. Chen, B. Jegerlehner, K. Littlefield, P. Tong, F1 - the fault-
tolerant distributed rdbms supporting google’s ad business, in: SIGMOD,

2012.

17
[3] T. Özsu, P. Valduriez, Principles of Distributed Database Systems, fourth
ed., Springer, 2020.

[4] D. Agrawal, S. Das, A.E. Abbadi, Data Management in the Cloud: Challenges
and Opportunities, Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2012.

[5] H. Garcia-Molina, K. Salem, Sagas, SIGMOD Record (1987) 249–259.
[6] P. Valduriez, R. Jimenez-Peris, M.T. Özsu, Distributed database sys-

tems: The case for newSQL, Transactions on Large-Scale Data- and
Knowledge-Centered Systems (TLDKS) (2021) 1–15.

[7] R. Taft, E. Mansour, M. Serafini, J. Duggan, A.J. Elmore, A. Aboulnaga,
A. Pavlo, M. Stonebraker, E-Store: Fine-grained elastic partitioning for
distributed transaction processing systems, Proceedings of the VLDB
Endowment (PVLDB) (2014) 245–256.

[8] F. Färber, S.K. Cha, J. Primsch, C. Bornhövd, S. Sigg, W. Lehner, SAP
HANA database: data management for modern business applications, ACM
SIGMOD Record (2011).

[9] M. Stonebraker, A. Weisberg, The voltDB main memory database system,
IEEE Data Engineering Bulletin (2013).

[10] Y. Lin, B. Kemme, M. Patiño-Martınez, R. Jimenez-Peris, Middleware-based
data replication providing snapshot isolation, in: SIGMOD Conference,
2005, pp. 419–430.

[11] M. Patiño-Martinez, R. Jimenez-Peris, B. Kemme, G. Alonso, MIDDLE-R:
Consistent database replication at the middleware level, ACM Transactions
on Computer Systems (TOCS) (2005) 375–423.

[12] Y. Lin, B. Kemme, M. Patiño-Martınez, R. Jimenez-Peris, Snapshot isolation
and integrity constraints in replicated databases, ACM Transactions on
Database Systems (TODS) (2009) 1–49.

[13] P. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery
in Database Systems, Addison-Wesley, 1987.

[14] R. Jimenez-Peris, M. Patiño-Martınez, G. Alonso, B. Kemme, Are quorums
an alternative for data replication? ACM Transactions on Database Systems
(TODS) (2003) 257–294.

[15] A. Dragojevic, D. Narayanan, E.B. Nightingale, M. Renzelmann, A. Shamis, A.
Badam, M. Castro, No compromises: distributed transactions with consis-
tency, availability, and performance, in: USENIX Symposium on Operating
Systems Design and Implementation, OSDI, 2015, pp. 54–70.

[16] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos, A. Dragojevic, D.
Narayanan, M. Castro, Fast general distributed transactions with opacity,
in: SIGMOD Conference, 2019, pp. 433–448.

[17] A. Kalia, M. Kaminsky, D.G. Andersen, FaSST: Fast, scalable and simple dis-
tributed transactions with two-sided (RDMA) datagram RPCs, in: USENIX
Symposium on Operating Systems Design and Implementation, OSDI, 2016,
pp. 185–201.

[18] E. Zamanian, C. Binnig, T. Harris, T. Kraska, The end of a myth: Distributed
transactions can scale, Proceedings of the VLDB Endowment (PVLDB)
(2017) 685–696.

[19] J.C. Corbett, et al., Spanner: Google’s globally distributed database, in:
USENIX Symposium on Operating Systems Design and Implementation,
OSDI, 2012, pp. 251–264.

[20] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S.B. Zdonik, E.P.C. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, D.J. Abadi, H-Store: A high-
performance, distributed main memory transaction processing system,
Proceedings of the VLDB Endowment (PVLDB) (2008) 1496–1499.

http://refhub.elsevier.com/S0306-4379(22)00040-0/sb1
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb1
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb1
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb1
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb1
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb2
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb2
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb2
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb2
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb2
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb2
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb2
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb3
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb3
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb3
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb4
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb4
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb4
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb4
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb4
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb5
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb6
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb6
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb6
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb6
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb6
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb7
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb7
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb7
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb7
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb7
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb7
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb7
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb8
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb8
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb8
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb8
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb8
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb9
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb9
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb9
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb10
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb10
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb10
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb10
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb10
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb11
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb11
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb11
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb11
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb11
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb12
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb12
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb12
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb12
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb12
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb13
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb13
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb13
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb14
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb14
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb14
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb14
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb14
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb15
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb15
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb15
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb15
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb15
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb15
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb15
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb16
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb16
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb16
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb16
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb16
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb17
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb17
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb17
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb17
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb17
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb17
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb17
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb18
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb18
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb18
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb18
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb18
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb19
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb19
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb19
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb19
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb19
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb20
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb20
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb20
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb20
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb20
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb20
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb20

R. Jimenez-Peris, D. Burgos-Sancho, F. Ballesteros et al. Information Systems 108 (2022) 102043
[21] S. Machine, Splice Machine: The Only Hadoop RDBMS, Tech. Rep.,
2014, http://www.splicemachine.com/wp-content/uploads/sp.WhitePaper_
141015.pdf.

[22] EsgynDB, EsgynDB: Enterprise Class Operational SQL-on-Hadoop, Tech.
Rep., 2016, https://esgyn.com/wp-content/uploads/EsgynDB-Technical-
Whitepaper-v2.1.pdf.

[23] Apache, Hbase, 2021, https://hbase.apache.org/.
[24] P. O’Neil, E. Cheng, D. Gawlick, E. O’Neil, The log-structured merge-tree

(LSM-tree), Acta Informatica (1996) 351–385.
[25] R. Jimenez-Peris, M. Patiño-Martinez, System and method for highly

scalable decentralized and low contention transaction processing, 2011,
European Patent #EP2780832, US Patent #US9, 760, 597.

[26] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, D. Shasha, Making snapshot
isolation serializable, ACM Transactions on Database Systems (ACMTDS)
(2005) 492–528.
18
[27] M.J. Cahill, U. Röhm, A.D. Fekete, Serializable isolation for snapshot
databases, in: SIGMOD Conference, 2008, pp. 729–738.

[28] W. Vogels, Eventually consistent, Communications of the ACM (2008)
14–19.

[29] C. Chekuri, S. Khanna, On multidimensional packing problems, SIAM
Journal on Computing (SICOMP) (2004) 837–851.

[30] Y. Jia, I. Brondino, R. Jimenez-Peris, M. Patiño-Martinez, D. Ma, A multi-
resource load balancing algorithm for cloud cache systems, in: Proceedings
of the ACM Symposium on Applied Computing, SAC, 2013, pp. 463–470.

[31] A. Adya, Weak Consistency: A Generalized Theory and Optimistic Im-
plementations for Distributed Transactions (Ph.D. thesis), Massachusetts
Institute of Technology, 1999.

[32] The Transaction Processing Performance Council, TPC-C Top Results, Tech.
Rep., 2021, http://tpc.org/tpcc/results/tpcc_results5.asp.

http://www.splicemachine.com/wp-content/uploads/sp.WhitePaper_141015.pdf
http://www.splicemachine.com/wp-content/uploads/sp.WhitePaper_141015.pdf
http://www.splicemachine.com/wp-content/uploads/sp.WhitePaper_141015.pdf
https://esgyn.com/wp-content/uploads/EsgynDB-Technical-Whitepaper-v2.1.pdf
https://esgyn.com/wp-content/uploads/EsgynDB-Technical-Whitepaper-v2.1.pdf
https://esgyn.com/wp-content/uploads/EsgynDB-Technical-Whitepaper-v2.1.pdf
https://hbase.apache.org/
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb24
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb24
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb24
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb25
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb25
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb25
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb25
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb25
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb26
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb26
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb26
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb26
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb26
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb27
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb27
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb27
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb28
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb28
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb28
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb29
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb29
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb29
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb30
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb30
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb30
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb30
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb30
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb31
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb31
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb31
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb31
http://refhub.elsevier.com/S0306-4379(22)00040-0/sb31
http://tpc.org/tpcc/results/tpcc_results5.asp

	Elastic scalable transaction processing in LeanXcale
	Introduction
	Related work
	Scalable transaction management
	LeanXcale Architecture
	Decoupling the ACID properties
	Decoupling update visibility and atomic commit
	Waiting for updates to be visible for session consistency

	Efficient transaction management
	Distribution and parallelization
	Proactive timestamp management
	Proactive commit sequencer
	Proactive snapshot server
	Proactive conflict manager

	Asynchronous messaging and batching

	Elastic transaction management
	Non-intrusive moving of data partitions
	Dynamic load balancing of transactional components
	Transactional elasticity

	Correctness
	Snapshot isolation level correctness
	1-copy transactional data movement

	Performance evaluation
	Experimental setup
	Scalability
	Elasticity
	Logger elasticity
	Conflict manager elasticity
	KiVi Server elasticity
	Load balancing across KiVi servers
	Global elasticity

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

