
Resource-Bounded Kolmogorov Complexity Provides an Obstacle

to Soficness of Multidimensional Shifts

Julien Destombes Andrei Romashchenko

May 24, 2022

Abstract

We suggest necessary conditions for soficness of multidimensional shifts formulated in terms of
resource-bounded Kolmogorov complexity. Using this technique we provide examples of effective and
non-sofic shifts on Z2 with very low block complexity: the number of globally admissible patterns
of size n × n grows only as a polynomial in n. We also show that more conventional proofs of
non-soficness for multi-dimensional effective shifts, including the techniques of Pavlov [Proc. AMS,
141(3):987-996, 2013] and Kass and Madden [Proc. AMS, 141(11):3803-3816, 2013], can be expressed
in terms of Kolmogorov complexity with unbounded computational resources.

1 Introduction

Symbolic dynamics originally appeared in mathematics as a branch of the theory of dynamical systems
that studies smooth or topological dynamical systems by discretizing the underlying space. Since the late
1930s, symbolic dynamics became an independent field of research, see [10, 11]. A classical dynamical
system is a space (of states) S with a function F acting on this space; this function represents the
“evolution rule,” i.e., the time dependence of a configuration in the space. The central notion of the
theory of dynamical systems is a trajectory — a sequence of configurations obtained by iterating the
evolution rules,

x, F (x), F (F (x)), . . . , F (n)(x), . . .

In symbolic dynamics the space of states reduces to a finite set (an alphabet). The trajectories are
represented by infinite (or bi-infinite) sequences of letters over this alphabet, and the “evolution rule” is
the shift operator acting on these sequences. Symbolic dynamics focuses on the shift spaces — the sets
of bi-infinite sequences of letters (over a finite alphabet) that are defined by a shift-invariant constraint
on the factors of finite length. More precisely, a shift space (also called a shift) over an alphabet Σ is a
non-empty subset of bi-infinite sequences over Σ that is translation invariant and closed in the standard
topology of the Cantor space. Every shift can be defined in terms of forbidden finite patterns: we fix a
set of (finite) words F and say that a configuration (a bi-infinite sequence) belongs to the corresponding
shift SF if and only if it does not contain any factor from F . We bear in mind that different sets of
forbidden patterns can induce the same shift.

Obviously, the properties of shifts heavily depend on the corresponding set of forbidden patterns. The
following three large classes of shifts play an important role in symbolic dynamics and computability
theory:

• shifts of finite type (SFT), which can be defined by a finite set of forbidden finite patterns;

• sofic shifts (introduced in [20]), where the set of forbidden finite patterns is a regular language;

• effective (or effectively closed shifts), which can be defined by a computable1 set of forbidden finite
patterns.

1We can require that the set of forbidden finite patterns is decidable or recursively enumerable. Though formally
speaking these requirements are different, they result in one and the same class of shifts. That is, if some shift is defined
by a recursively enumerable set of forbidden finite patterns, then the same shift can be also defined by a decidable set of
forbidden patterns.

1

ar
X

iv
:1

80
5.

03
92

9v
9

 [
cs

.D
M

]
 2

1
M

ay
 2

02
2

The class of effective shifts is often understood as a class of “explicitly constructible” shifts, so it is of
considerable interest beyond the scope of computability theory. These three classes are distinct:

[the SFTs] $ [the sofic shifts] $ [the effective shifts].

The sofic shifts can be equivalently defined as the coordinate-wise projections of configurations from
an SFT:

Definition 1. A shift S over an alphabet Σ is sofic if there is an SFT S ′ over an alphabet Σ′ and a
mapping π : Σ′ → Σ, such that S consists of the coordinate-wise projections

(. . . π(y−1)π(y0)π(y1)π(y2) . . .)

of all configurations (. . . y−1y0y1y2 . . .) from S ′.
There is a simple characterization of soficness. Let us say that two words w1, w2 are equivalent in a

shift S, if they have the same follower sets, i.e., if exactly the same half-infinite configurations occur in
S immediately to the right of w1 and to the right of w2. A shift is sofic if and only if the finite patterns
in this shift are subdivided in a finite number of equivalence classes (see [9, Theorem 3.2.10]). Loosely
speaking, this criterion guarantees that when we read a configuration from the left to the right and verify
that it belongs to a sofic shift, we need to keep in mind only finite information.

The SFTs and even the sofic shifts are rather restrictive classes of shifts with several very special
properties. Not surprisingly, many important examples of effective shifts are not sofic. Non-soficness of
a shift is usually proved with some version of the pumping lemma from automata theory.

Multidimensional shifts. The formalism of shifts can be naturally extended to the grids Zd for d > 1.
A shift on Zd (over a finite alphabet Σ) is defined as a set of d-dimensional configurations f : Zd → Σ
that are (i) translation-invariant (under translations in all directions) and (ii) closed in Cantor’s topology.
Similar to the one-dimensional case, the shifts can be defined in terms of forbidden finite patterns.

The definitions of the effective shifts (the set of forbidden patterns is computable) and of the SFTs
(the set of forbidden patterns is finite) apply to the multidimensional shift spaces directly, without any
revision. The sofic shifts on Zd are defined as in Definition 1 above (as the coordinate-wise projections
of SFTs). We refer the reader to [4] for an extensive discussion of the relations between SFT, sofic, and
effective shifts on Zd.

For multidimensional shifts spaces, the classes of the effective shifts, the sofic shifts, and the SFTs
remain distinct, though the difference between these classes is more elusive than in the one-dimensional
case. In this paper we discuss the tools that help to reveal the reasons why one or another effective
multidimensional shift is not sofic.

The class of sofic shifts in dimension d ≥ 2 is surprisingly wide. Besides many simple and natural
examples, there are shifts whose soficness follow from rather subtle considerations. For instance, S. Mozes
showed that the shifts generated by (a natural class of) non deterministic multidimensional substitutions
systems are sofic [12]. L. B. Westrick proved that the two-dimensional shift on the alphabet {0, 1} whose
configurations consist of squares of 1s of pairwise different sizes on a background of 0s, is sofic; moreover,
any effectively closed subshift of this shift is also sofic [21].

On the other hand, there are several examples of effective multidimensional shifts that are known to
be non-sofic. In what follows we briefly discuss two of them.

Example 1 (the mirror shift). One of the standard examples of a non-sofic shift is the shift of mirror-
symmetric configurations on Z2. Let Σ be the alphabet with three letters (e.g., black, white, and red),
and the configurations of the shift are all black-and-white configurations (without any red letter) and the
configurations with an infinite horizontal line of red letters and symmetric black-and-white half-planes
above and below this line, see Fig. 1. We denote this shift by Smirror.

It is easy to see that this shift is effective (the forbidden patterns are those where the red letters are
not aligned, and those where the areas above and below the horizontal red line are not symmetric). At
the same time, this shift is not sofic. The intuitive explanation of this fact is as follows. Let us focus on a
pair of symmetric patterns of size n×n in black and white, above and below the horizontal red line (see
the blue squares in Fig. 1). To make sure that the configuration belongs to the shift, we must “compare”
these two patterns with each other. To this end, we need to transmit the information about a pattern of
size n2 through its border line (of length O(n)). However, in a sofic shift, the “information flow” across a

2

Figure 1: A configuration with mirror symmetry with respect to the horizontal red line. The blue squares
select two symmetric black-and-white patterns.

contour of length O(n) is bounded by O(n) bits, and this contradiction implies non-soficness. For a more
formal argument see, e.g. [1] and [5], or a similar example [6, Example 2.4]. We revisit this example in
Section 4.1 and use it as a simple illustration of our technique.

Example 2 (the high complexity shift). Let S be the set of all binary configurations on Z2 where for each
n × n pattern P its Kolmogorov complexity is quadratic, C(P) = Ω(n2). Technically, this means that
no globally admissible pattern can be produced by a program of size below cn2, for some factor c > 0
(see the formal definition of Kolmogorov complexity below).

This shift is not sofic. This follows from two facts (proven in [2]):

(i) For some c < 1, the shift defined above is not empty.

(ii) In every non-empty sofic shift on Z2, there is a configuration where the Kolmogorov complexity of
each n× n pattern is bounded by O(n).

At the same time, this shift is obviously effective: we can algorithmically enumerate the patterns whose
Kolmogorov complexity is below the specified threshold. In Section 3 we study a similar construction
based on a less conventional version of Kolmogorov complexity.

Note that the non-sofic shifts in the two examples above have positive entropy (the number of globally

admissible patterns of size n × n grows as 2Ω(n2)). This is not surprising: the proofs of non-soficness
of these shifts use the intuition about the information flows (super-linear amount of information cannot
flow through a linear contour). This type of argument can be adapted for some shifts where the number

of globally admissible patterns of size n×n grows slower than 2Ω(n2) but still faster than 2O(n) (see, e.g.
[18, Proposition 15]). As it was noticed in [21], “all examples known to the author of effectively closed
shifts which are not sofic were obtained by in some sense allowing elements to pack too much important
information into a small area.”

This type of argument was formalized as rather general sufficient conditions of non-soficness in [15]
and [6]. The theorems by Kass and Madden ([6, Theorem 3.2.10]) and Pavlov ([15, Theorem 1.1]) apply
only to the two-dimensional shifts where the number of globally admissible n × n patterns is greater
than 2O(n). However, there is no reason to think that this condition is necessary for non-soficness (see,
e.g. the discussion in [5, Section 1.2.2]). It is instructive to observe that non-effective non-sofic shifts
can have very low block complexity, see [6, 14].

In this paper we propose a new approach to the proof of non-soficness. Our technique uses algorithmic
descriptive complexity (Kolmogorov complexity). Though the definition of the sofic shifts does not involve
explicitly any resource bounded computations, we show that a suitable tool to deal with soficness is the
time-bounded version of Kolmogorov complexity. We argue that a shift on Z2 cannot be sofic if the
essential information contained in an n × n pattern cannot be compressed to the size O(n) in bounded
time.

The ideas behind our argument are similar to those used in [2] and [6], and there is no surprise
that Kolmogorov complexity helps to formalize the intuition of “information flows.” The main new
element of our approach is the idea of information compression with bounded computational resources.

3

This technique applies to several shifts with very low block complexity: we cannot “communicate” the
essential information about a pattern across its contour not because this information is too large, but
since we do not have enough time and space to compress it. In particular, we provide examples of
non-sofic effective shifts with only polynomial block complexity (and thus zero entropy).

Remark 1. A more straightforward approach to the measure of the “information flow through the border
line of a pattern” might use the notion of extender sets introduced in [6]. Extender sets are a natural
generalization of follower sets to multi-dimensional shifts. Let S be a shift and P be a globally admissible
finite pattern in this shift. The extender set of P in S is the set of all (co-finite) patterns Q completing
P to a valid configuration of S (the support of Q should be the complement of the support of P).

Let S be a shift on Z2; denote by Nk the number of different extender sets for the globally admissible
patterns with a support of size k × k. (Several patterns can share one and the same extender set, so
the number of extender sets might be much less than the number of all globally admissible patterns of
this size). It seems natural to interpret logNk as the “information flow” crossing the border line of a
k × k pattern and imposing the consistency between the pattern and its complement. As the length
of the contour around a k × k pattern is O(k), the naive intuition suggests that “a super-linear flow of
information cannot cross a contour of linear length.” This is indeed true for shifts of finite type: for
every SFT on Z2, the number Nk is not bigger than 2O(k). However, in case of sofic shifts, this approach
fails. For a sofic shift on Z2, the value of logNk can grow much faster than the length of the border
line of the pattern ([6] attributes this observation to unpublished works of C. Hoffman, A. Quas, and
R. Pavlov). In fact, for a sofic shift on Z2, the value of logNk can grow even as Ω(k2) (we mention such
an example in Section 4.2). Therefore, we cannot use the asymptotic of logNk to prove non-soficness
of a multi-dimensional shift. This is why we need a subtler refinement of the intuition of “information
flows” in sofic shifts.

Though the cardinality of the family of extender sets is not enough to distinguish between sofic and
non-sofic shifts, some finer properties of extender sets can be helpful. Kass and Madden proposed in [6]
an approach to the proof of non-soficness based on the structure of these sets. Technically, they focus on
the length of union-increasing chains of extender sets, which is a more appropriate parameter than the
total number of these sets. We discuss this method in Section 4.3 and show that it is can be interpreted
as a special case of our approach.

The rest of the paper is organized as follows. After recalling the necessary definitions from symbolic
dynamics and the theory of Kolmogorov complexity in Section 2, we prove in Section 3 our main technical
results and construct a non-sofic effective shift with very low block complexity. In Section 4 we extend
our technique to more general settings; we discuss several examples and show that every proof of non-
soficness using the argument from [6] (the method of union-increasing chains of extender sets) can be
reformulated in terms of our technique with the resource-unbounded Kolmogorov complexity. For the
sake of self-containedness, in Appendix we prove Theorem 3 (implicitly proven in [2]) and Lemma 1
(formulated and proven in different terms in [6]). We also prove in Appendix Theorem 4, which is a
stronger version of Theorem 4′ (though the simpler Theorem 4′ proven in the main text of the paper is
strong enough for all applications where we use it to construct effective non-sofic shifts).

2 Preliminaries

Shift spaces In the introduction we have defined the notion of shift spaces (also called shifts). More
specifically, we study shifts of finite type, sofic shifts, and effective shifts. In this paper we focus on
two-dimensional shifts, though all arguments can be extended to the shifts on Zd for all d ≥ 2.

A (finite) pattern on Z2 over a finite alphabet Σ is a mapping from a (finite) subset of Z2 to Σ; the
domain of this mapping is the support of the pattern. Sometimes a pattern P with a support A is called
a coloring of A (the “colors” are letter from Σ).

For a shift S, we say that a pattern P is globally admissible, if P is a restriction of a configuration
from S onto some finite support. For a shift of finite type determined by a set of forbidden patterns F ,
we say that a pattern is locally admissible if it contains no forbidden patterns from F . Similarly, two
patterns with disjoint domains are locally compatible if the union of these patterns is locally admissible.

The block complexity of a shift is a function that gives for each integer n > 0 the number of globally
admissible patterns of size n× n (patterns with support {1, . . . , n}2) in this shift.

4

If a sofic shift S is a coordinate-wise projection of configurations from Ŝ, we say that Ŝ is a covering
of S. Every sofic shift has a covering SFT that can be defined by a set of forbidden patterns F , where
every pattern in F is a pair of neighboring letters (see, e.g. [9]).

Computability and Kolmogorov complexity In this section we recall the main definitions of the
theory of Kolmogorov complexity. In the way that is usual in computability theory (see, e.g., [13, 16]), we
identify algorithms with Turing machines. A partial function f : {0, 1}∗ → {0, 1}∗ is called computable,
if there is an algorithm (a Turing machine)M that computes this function in the following sense: given
as the input a string x from the domain of f , machine M prints the value f(x) and stops; given as the
input a string x such that f(x) is not defined, machine M never stops. It is known that the class of
computable functions does not change if we vary minor details of the definition of a Turing machine (we
may admit machine with only one tape or with any number of tapes, the tapes can be bi-infinite or only
infinite to the right, and so on). It is generally agreed that this definition is an adequate formalization
of the intuitive idea of computability. In this paper we discuss several simple algorithms; we give only
an informal description of these algorithms and do not construct explicitly the corresponding Turing
machines.

Let U be a (partial) computable function. The complexity of x with respect to the description method
U is defined as

CU (x) := min{ |p| : U(p) = x },

where |p| stands for the length of the binary string p. If there is no p such that U(p) = x, we assume
that CU (x) = ∞. Here U is understood as a programming language; p is a program that prints x; the
complexity of x is the length of (one of) the shortest programs p that generate x.

The obvious problem with this definition is its dependence on U . The theory of Kolmogorov com-
plexity becomes possible due to the following invariance theorem.

Theorem 1 (Kolmogorov, [7]). There exists a computable function U such that for any other computable
function V there is a constant d such that

CU (x) ≤ CV (x) + d

for all x.

Notation 1. This U is called an optimal description method. We fix an optimal U and in what follows
omit the subscript in CU (x) and use the notation C(x). The value C(x) is called the (plain) Kolmogorov
complexity of x.

In a similar way, we define Kolmogorov complexity in terms of programs with bounded resources (the
time of computation). Let U be a Turing machine; we define the Kolmogorov complexity CtU (x) as the
length of the shortest p such that U(p) produces x in at most t steps. There exists an optimal description
method U in the following sense: for every Turing machine V

C
poly(t)
U (x) ≤ CtV (x) +O(1).

For multi-tape Turing machines a slightly stronger statement can be proven:

Theorem 2 (see [8]; the proof uses the simulation technique from [3]). There exists an optimal de-
scription method (multi-tape Turing machine) Um in the following sense: for every multi-tape Turing
machine V (with any number of tapes) there exists a constant d such that

Cct log t
Um

(x) ≤ CtV (x) + d

for all strings x.

Notation 2. We fix such a machine Um, and in the sequel use for the resource-bounded version of
Kolmogorov complexity the notation Ct(x) instead of CtUm

(x). Without loss of generality we may assume
that C(x) ≤ Ct(x) for all x and for all t.

5

It is easy to show that there exists a constant d such that for all bit strings x = (x1 . . . xn) ∈ {0, 1}n
we have C(x) ≤ n + d (roughly speaking, this is true because there always exists a trivial algorithm of
type “print(x1 . . . xn)” where the bits xi are listed explicitly; such an algorithm can be expressed in any
natural programming language, including Turing machines). At the same time, for every n there exists a
string x ∈ {0, 1}n such that C(x) ≥ n, because the total number of descriptions p that are shorter than
n bits, is less than 2n. (Such a string x is usually called incompressible.) More generally, in every set of
2n strings there is at least one string x such that C(x) ≥ n.

We fix a computable enumeration of finite patterns (over a finite alphabet) that assigns a binary
string (a code) to each pattern in dimension two. In the sequel we take the liberty of talking about
Kolmogorov complexity of finite patterns in dimension two (assuming the Kolmogorov complexity of
the codes of these patterns). Similarly, we can talk about Kolmogorov complexity of natural numbers
(assuming the Kolmogorov complexity of the binary expansion of these numbers).

In computability theory it is common to study relativized computations, i.e., computations with an
oracle. Let O be an infinite binary sequence. A Turing machine with oracle O is a Turing machine with
an extra read-only tape where the bits of O are written; the machine can read bits of the oracle when
necessary and then use them in the computation on the usual read/write working tape. Though the
access to an oracle can extend the power of a Turing machine, many fundamental properties of Turing
machines remain valid with any oracle (in particular, the arguments based on diagonalization apply to
Turing machines with an oracle). We refer the reader to the textbooks [13, 16] for a detailed discussion
of relativized computations.

Notation 3. Having fixed an infinite sequence O, we can define the relativized version of Kolmogorov
complexity for machines with oracle O (in exactly the same way as above but with Turing machines
having the access to the chosen oracle). We use the notation CO(x) for Kolmogorov complexity with
oracle O; similarly, Ct,O(x) denotes Kolmogorov complexity with oracle O and time bound t.

A systematic introduction to the theory of Kolmogorov can be found in [8, 19]. In what follows we
use only rather simple properties of Kolmogorov complexity. Throughout the paper, the claims of the
form Ct(x) = m can be understood as an informal statement there is a program of length m that prints
x in t steps; we avoid statements where subtle details of the formal definition of Kolmogorov complexity
become significant.

3 High resource-bounded Kolmogorov complexity is compatible
with low block complexity

The following theorem was proven implicitly in [2]:

Theorem 3. In every non-empty sofic shift S on Z2 there exists a configuration x such that for all
n× n-patterns P in x, we have

CT (n)(P) = O(n)

for a time threshold T (n) = 2O(n2).

In [2] a weaker version of this theorem is stated: it is claimed only that the plain complexity of n×n
patterns is O(n). However, the argument from [2] implies a bound for a resource-bounded version of
Kolmogorov complexity. For the sake of self-containedness, in what follows we provide a proof of this
theorem in A.

Theorem 3 guarantees that a shift is non-sofic, if in every configuration we can find a sequence
of growing size patterns with super-linear Kolmogorov complexity. In the next theorem we prove the
existence of such effective shifts.

Theorem 4. For every ε > 0 and for every computable T (n) there exists an effective shift on Z2 such
that for every n and for every globally admissible pattern P of size n× n, we have that

(i) C(P) = O(log n), and

(ii) CT (n)(P) = Ω(n2−ε).

6

We defer the proof of Theorem 4 to B. In what follows we prove a slightly weaker version of this
theorem, which is nevertheless strong enough for our main applications:

Theorem 4′. For every computable T (n) there exists an effective shift on Z2 such that

(i) for every n and for every globally admissible pattern P of size n × n, we have C(P) = O(log n),
and

(ii) for infinitely many n and for every globally admissible pattern P of size n × n, we have that
CT (n)(P) = Ω(n1.5).

From Theorem 3 and Theorem 4′ we deduce the following corollary:

Corollary 1. There exists an effective non-sofic shift on Z2 with block complexity poly(n), i.e., with
≤ poly(n) globally admissible blocks of size n× n.

Proof. We take the shift from Theorem 4′ assuming that the threshold T (n) is much greater than 2Ω(n2)

(e.g., we can let T (n) = 2n
3

). On the one hand, property (ii) of Theorem 4′ and Theorem 3 guarantee
that this shift is not sofic. On the other hand, property (i) of Theorem 4′ implies that the number of
globally admissible blocks of size n× n is not greater than 2O(logn).

Remark 2. Our proof of Theorem 4′ implies a stronger bound than property (i). In fact, instead of the
bound C(P) = O(log n) we can prove for some (large enough) computable function T̂ (n) that for every
globally admissible n× n pattern P in this shift we have

CT̂ (n)(P) = O(log n).

Now we introduce some notation.

Notation 4. For any function T (n) and for any number λ > 0, let Sλ,T denote the following shift over
the alphabet {0, 1}: a configuration x belongs to Sλ,T if and only if CT (n)(P) ≤ λ log n for every n× n
pattern P in x.

Obviously, for an integer λ and a computable T (n), the shift introduced in Notation 4 is effective.

Remark 2 can be rephrased as follows: there are an integer number λ̂ and a computable function
T̂ (n) such that for the corresponding shift Sλ̂,T̂ there exists a sequence of globally admissible patterns

Pn of size n× n (n = 1, 2, . . .) such that

C2n3

(Pn) = Ω(n1.5);

the same time, for every globally admissible pattern of size n× n we have C(P) ≤ CT̂ (n)(P) = O(log n).

Notation 5. Let S0 denote the shift defined above.

The shift constructed in Theorem 4′ is a proper subshift of S0. Indeed, besides all configurations
of the shift from Theorem 4′ (those configuration must have only patterns with high resource-bounded
Kolmogorov complexity), S0 admits also patterns with a very low time bounded complexity (e.g., the
configuration with all 0s and the configuration with all 1s). In the next section we use S0 to construct
some other examples of effective non-sofic shifts.

(Proof of Theorem 4′). In this proof we provide a construction of a required shift assuming that we have
fixed in advance a universal Turing machine in the definition of Kolmogorov complexity. The choice of a
universal Turing machine is not unique (and quite arbitrary), and the final choice of parameters in our
construction depends on this arbitrariness.

Let us fix a sequence (ni) where n0 is a large enough integer number2, and

ni+1 := (n0 · . . . · ni)c for i = 0, 1, 2, . . . , (1)

where c ≥ 3 is a constant. We set Ni := n0 · . . . · ni. In what follows we construct for each i a pair of
standard binary patterns Q0

i and Q1
i of size Ni ×Ni such that

2For every instance of an optimal Turing machine U in the definition of Kolmogorov complexity one can compute the
corresponding minimum value of n0 that makes the construction work.

7

• the plain Kolmogorov complexities of the standard patterns C(Q0
i) and C(Q1

i) are not greater than
O(logNi), and

• the resource-bounded Kolmogorov complexities CT (Ni)(Q0
i) and CT (Ni)(Q1

i) are not less than
Ω(N1.5

i).

The construction is hierarchical: both Q0
i and Q1

i are defined as ni × ni matrices composed of patterns
Q0
i−1 and Q1

i−1; for each i the blocks Q0
i and Q1

i are bitwise inversions of each other.
When the standard patterns Q0

i and Q1
i are constructed for all i, we define the shift as the closure

of these patterns: we say that a finite pattern is globally admissible if and only if it appears in some
standard pattern Qji or at least in a 2× 2-block composed of Q0

i and Q1
i (for some i).

Remark 3. Due to the hierarchical structure of the standard patterns, we can guarantee that every
globally admissible pattern P of size Ni ×Ni appears in a 2× 2-block composed of Q0

i and Q1
i (no need

to try the blocks Qjs for s > i).

Since the construction of Qji is explicit, the resulting shift is effective. Properties (i) and (ii) of the
theorem will follow from the properties of the standard patterns.

In what follows we explain an inductive construction of Q0
i and Q1

i . Let Q0
0 and Q0

1 be the squares
composed of only 0s and only 1s respectively. Further, for every i we take the lexicographically first
binary matrix Ri of size ni × ni such that

Cti(Ri) ≥ n2
i (2)

(the time bound ti is fixed in the sequel). We claim that such a matrix exists. Indeed, there exists
a matrix of size ni × ni that is incompressible in the sense of the plain Kolmogorov complexity. The
resource-bounded Kolmogorov complexity of a matrix can be only greater than the plain complexity.
Therefore, there exists at least one matrix satisfying (2). If ti is a computable function of i, then given
i we can find Ri algorithmically.

Now we substitute in Ri instead of each zero and one entry the copies of Q0
i−1 and Q1

i−1 respectively,
e.g.,

Ri =

0 0 0 0 1
0 1 0 0 1
1 1 1 1 0
0 1 1 0 0
0 1 0 1 0

 =⇒ Q0
i :=

Q0
i−1 Q0

i−1 Q0
i−1 Q0

i−1 Q1
i−1

Q0
i−1 Q1

i−1 Q0
i−1 Q0

i−1 Q1
i−1

Q1
i−1 Q1

i−1 Q1
i−1 Q1

i−1 Q0
i−1

Q0
i−1 Q1

i−1 Q1
i−1 Q0

i−1 Q0
i−1

Q0
i−1 Q1

i−1 Q0
i−1 Q1

i−1 Q0
i−1

The resulting matrix (of size Ni ×Ni) is denoted Q0

i . Matrix Q1
i is defined as the bitwise inversion

of Q0
i .

Claim 1. Assuming that t′i � ti (in what follows we discuss the choice of t′i in more detail) we have

Ct
′
i(Q0

i) = Ω(N1.5
i) and Ct

′
i(Q1

i) = Ω(N1.5
i).

Proof of Claim 1. GivenQji (for j = 0, 1) we can retrieve the matrixRi (this retrieval can be implemented
in polynomial time). Therefore, for every time bound t

Ct+poly(Ni)(Ri) ≤ Ct(Qji) +O(1).

Therefore, if ti > t′i + poly(Ni) then

n2
i ≤ Cti(Ri) ≤ Ct

′
i(Qji).

It remains to observe that our choice of parameters in (1) with c ≥ 3 implies n
1/2
i ≥ (n0 · . . . · ni−1)

3/2
,

and therefore
n2
i ≥ (n0 · . . . · ni)1.5

= (Ni)
1.5.

Thus, we obtain Ct
′
i(Qji) ≥ (Ni)

1.5 −O(1), and the claim is proven.

Remark 4. By choosing a larger constant c in (1), we can achieve a lower bound Ct
′
i(Qji) = Ω(n2−ε) for

any ε > 0.

8

(a) (b)

Figure 2: A pattern of size Nk×Nk (shown in gray in fig. (a)) covered by a quadruple of standard blocks
of the same size contains enough information to reconstruct a standard pattern (fig. (b)).

Claim 2. For every globally admissible pattern P of size Ni×Ni (and not only for the standard patterns,
as it was in Claim 1) its time-bounded Kolmogorov complexity CT (Ni)(P) is Ω(n1.5) (assuming that
T (Ni)� t′i).

Proof of Claim 2. If a pattern P of size Ni ×Ni is globally admissible then it is covered by a quadruple
of standard patterns of rank i, see Remark 3 above. Then P can be divided into four rectangles which
are “corners” of standard patterns of rank i, see Fig. 2 (a). Since the standard blocks Q0

i and Q1
i are the

inversions of each other, these four “corners” (with a bitwise inversion if necessary) form together the
entire standard pattern, as shown in Fig. 2 (b). Therefore, we can reconstruct Qji from P given (a) the
position of P with respect to the grid of standard blocks (this involves O(logNi) bits) and (b) the four
bits identifying the standard blocks covering P (we need to know which of them is a copy of Q0

i and
which one is a copy of Q1

i).

The retrieval of Qji from P requires only poly(Ni) steps of computation (in addition to the time
we need to produce P). Now the claim follows from the bound for the resource-bounded Kolmogorov
complexity of the standard patterns Q0

i and Q1
i .

Claim 3. For every k × k-pattern in Q0
i or Q1

i , its plain Kolmogorov complexity is at most O(log k).

Proof of Claim 3. First of all, we observe that the standard patterns Q0
i or Q1

i can be computed given
i. Therefore, C(Q0

i) = O(log i) and C(Q1
i) = O(log i).

Every globally admissible k × k-pattern is covered by at most four standard patterns Q0
i or Q1

i with

Ni−1 < k ≤ Ni,

see Remark 3. Therefore, to obtain a globally admissible pattern P of size k × k we need to produce
a quadruple of standard patterns of size Ni × Ni and then to specify the position of P with respect
to the grid of standard blocks. This description consists of only O(logNi) bits, and we conclude that
C(P) = O(log k).

It remains to fix the time bounds ti. Given a computable threshold T (Ni), we choose a suitable
t′i � T (Ni) and then a suitable ti � t′i. The theorem follows from Claim 2 and Claim 3.

Remark 5. For all large enough i, the incompressible pattern Ri constructed in the proof of Theorem 4′

contains copies of all 24 binary patterns of size 2× 2. Therefore, we can guarantee that every standard
block Qji contains all globally admissible patterns of size Ni−1 ×Ni−1.

There exists a non-empty effective shift on Z2 where the Kolmogorov complexity of all n×n patterns
is Ω(n2) (see [2] and [17]). So a natural question arises: can we improve Theorem 4′ and strengthen
condition (ii) to CT (n)(P) = Ω(n2)? The answer is negative: we cannot achieve the resource bounded
complexity Ω(n2), even with a much weaker version of property (i) for the plain complexity:

9

Proposition 1. For all large enough time bounds T (n), there is no shift on Z2 such that

(i) for every globally admissible pattern P of size n× n, we have that C(P) = o(n2), and

(ii) for infinitely many n and for every globally admissible pattern P of size n × n, we have that
CT (n)(P) = Ω(n2).

Proof. Assume for the sake of contradiction that such a shift exists. Let us fix a real number ε > 0.
Condition (i) means that there exists an integer k = k(ε) such that the number of globally admissible

k × k patterns in this shift is Lk ≤ 2εk
2

.
Let us estimate Kolmogorov complexity of globally admissible patterns of size (Nk)× (Nk). For any

N , every globally admissible pattern P of size (Nk)× (Nk) can be specified by

• the list of all globally admissible patterns of size k× k, which requires Lk · k2 bits (with O(Lk · k2)
bits we can even provide a self-delimiting description of this list), and

• by an array of size N ×N with indices of k×k blocks that constitute P (which requires N2 · logLk
bits).

We can combine these two parts of the description in one program. Clearly, P can be reconstructed from
such a description in polynomial time. Thus, it follows that for some polynomial poly1(n)

Cpoly1(Nk)(P) ≤ O(Lk · k2) +N2 · εk2. (3)

Now we estimate Kolmogorov complexity of a globally admissible pattern P of size n × n in case
when n is not divisible by k. Let N be the integer number such that

(N − 1)k < n ≤ Nk.

Pattern P can be embedded in a bigger globally admissible pattern P ′ of size (Nk)× (Nk). To describe
P , we need to describe P ′ and then specify the position of P with respect to the borders of P ′. The
gaps between P and the borders of P ′ cannot be bigger than k. Therefore, to obtain an upper bound
for Kolmogorov complexity of P , we only need to add O(log k) bits to (3). It follows that for some
polynomial poly2(n)

Cpoly2(n)(P) ≤ O(Lk · k2) +N2 · εk2 +O(log k)

≤ ε(n+ k)2 +O(Lk · k2)

≤ εn2 + 2εnk + εk2 +O(Lk · k2). (4)

For a fixed k and large enough n, the first term in (4) dominates the remaining terms, and we get

Cpoly2(n)(P) ≤ 2εn2.

Let us recall that we can prove this bound for every ε > 0 and for all large enough n. This contradicts
condition (ii) of the proposition.

4 Epitomes

The technique from Section 3 does not apply to the shifts that contain very simple configurations (with
low resource-bounded Kolmogorov complexity of all patterns). In particular, it does not apply to Exam-
ple 1 from the introduction. In this section we propose a different technique (also based on Kolmogorov
complexity) that helps to handle such shifts. The intuitive idea behind this technique is as follows: we
try to capture the “essential” information in each pattern (discarding irrelevant data) and then measure
the plain or resource-bounded Kolmogorov complexity of an “epitome” extracted from this essential
information. We show that in a sofic shift the complexity of properly defined “epitomes of the essen-
tial information” must be bounded by the length of the contour around the pattern. Thus, if the this
condition is violated, then the shift is not sofic.

Let us fix some notation. We denote by Bn the set {0, . . . , n− 1}2 ⊂ Z2 and by Fn its complement,
Fn := Z2 \Bn. We say that two patterns with disjoint supports are compatible (for a shift S) if the union

10

of these patterns is globally admissible in S. In particular, a finite pattern P with support Bn and an
infinite pattern R with support Fn are compatible, if the union of these patterns is a valid configuration
of the shift.

In Section 4.1 we start with a simple and more restrictive definition of plain epitomes. Then, in
Section 4.2 we proceed with a more general definition of ordered epitomes and discuss several examples
of proofs of non-soficness based on this technique. In Section 4.3 we compare the technique of epitomes
with the technique of union-increasing chains of extender sets proposed by Kass and Madden in [6];
we show that the method of Kass and Madden is equivalent to a special case of the method of ordered
epitomes.

4.1 Plain epitomes

In this section we propose a general approach to the proof of non-soficness that captures the intuition
behind the standard proof from Example 1. We begin with a definition of “plain” epitome functions.

Definition 2. Let P be the set of all patterns on Z2 over some finite alphabet. Let

E : P 7→ {0, 1}∗

be a partial function mapping patterns to binary strings. We say that E is an epitome function for the
shift S if for every pattern P with support B that is globally admissible in S (in brief, P is a valid
pattern) such that E(P) is defined, there exists an epitome witness pattern R on Z2 \B (the complement
of B) for which

(i) R is compatible with P , i.e., the union of P and R is a valid configuration in S, and

(ii) for every pattern P ′ with support B that is compatible with R and for which E(P ′) is defined,
E(P) = E(P ′). In other words, the epitome witness R uniquely determines the value of E for the
valid patterns on the complement of its support.

Given an epitome function E and a pattern P , we refer to E(P) as the epitome of P , or as the E-epitome
of P if the epitome function is not clear from the context.

In general, an epitome function can be defined for patterns of any shape. However, in this paper we
only use epitome functions E defined on patterns with support Bn (a square if size n × n) for different
n > 0. In certain situations it can be helpful to focus on the restriction of an epitome function onto
the patterns of a fixed size. Given an epitome function E , we write En for the restriction of E onto the
patterns with support Bn. We refer to the sequence En (n = 1, 2, . . .) as a family of restricted epitome
functions for S. If an epitome function is defined only for patterns with supports Bn (which is always
the case in this paper), a family of restricted epitome functions En for all n > 0 and an epitome function
E are two equivalent languages to describe one and the same object.

We say that E is computable if there is an algorithm that computes E . As is customary in computabil-
ity theory, we assume that an algorithm computing a partial function returns no result for inputs outside
its domain. If, moreover, there is an algorithm computing the value E(P) in time 2O(n2) for each input
pattern P of size n × n (n = 1, 2, . . .) from the domain of E , then we say that this epitome function is
exp-time computable.

Similarly, we say that an epitome function is computable with oracle O if the domain of E is decidable
with oracle O and there is an algorithm that computes E given the access to oracle O. We can also talk
about epitome functions that are exp-time computable with an oracle.

Remark 6. If an epitome function is exp-time computable, then the domain of E can be decided in
exponential time: it is enough to run the algorithm computing E and abort it if the computation does
not converge in due time.

Remark 7. Formally speaking, E-epitomes are binary strings — objects for which we have defined Kol-
mogorov complexity. In applications, it can be convenient to assign the values of an epitome function
to integer numbers, to vectors of integer numbers, or to multi-dimensional finite patterns over a finite
alphabet. All these constructive objects can be represented by finite binary strings (with a naturally
chosen encoding); so in some cases we abuse notation and talk about epitomes that are integer numbers
(or vectors of integer numbers, or finite patterns, and so on) and their Kolmogorov complexities.

11

n× n pattern Q

border zone ∂Q

π

n× n pattern P

a configuration in an SFT

a configuration in a sofic shift

Figure 3: Projection of an n× n pattern from an SFT onto a sofic shift.

Proposition 2. (a) For every sofic shift with a computable epitome function E, for every globally ad-
missible pattern P of size n× n such that E(P) is defined, we have C(E(P)) = O(n).

(b) For every sofic shift with an exp-time computable epitome function E, for every globally admissible
pattern P of size n × n such that E(P) is defined, we have CT (n)(E(P)) = O(n) for a time threshold

T (n) = 2O(n2).
(c) The statements (a) and (b) relativize. That is, for every sofic shift with an epitome function E

that is computable with oracle O (or exp-time computable with oracle O), for every globally admis-
sible pattern P of size n × n such that E(P) is defined, we have CO(E(P)) = O(n) (or, respectively,

CT (n),O(E(P)) = O(n) for a time threshold T (n) = 2O(n2)).

Proof. (a) Assume that S is a sofic shift with a covering SFT Ŝ (i.e., S is a coordinate-wise π-projection
of Ŝ). Let P be a pattern with support Bn in S and R be the pattern on the complement of Bn that
enforces the value of the E-epitome of P (as specified in Definition 2). Denote by Y a configuration in
Ŝ whose π-projection gives the union of P and R. Let Q be a pattern of size n × n in Y such that P
is a coordinate-wise projection of Q. Denote by ∂Q the “border zone,” i.e., the nearest neighborhood of
Q (the border zone of Q is not included in Q; if Q is an n × n square, then border zone ∂Q around Q
consists of 4(n+ 1) letters, see Fig. 3).

We assume without loss of generality that the local constraints in Ŝ involve only pairs of neighboring
nodes in Z2. Then, every locally admissible pattern Q′ of size n × n that is locally compatible with
border zone ∂Q, must be compatible with the rest of configuration Y . Therefore, the π-projections of
these Q′ are compatible with R. We apply the definition of an epitome function: if E is defined on the
π-projection of such Q′, then the epitome of Q′ must be equal to the epitome of P .

It follows that E(P) can be computed given only the coloring of ∂Q: we use the brute-force search to
find all patterns Q′ that are locally compatible with ∂Q, apply to them projection π, and run in parallel
the computation of their epitomes. As soon as we find at least one Q′ compatible with ∂Q such that
the epitome function is defined on its π-projection, we are done: though the projection π(Q′) can be
different from P , the epitome of π(Q′) must coincide with the epitome of P . Since the size of ∂Q is
linear in n, we conclude that C(E(P)) = O(n).

To prove claim (b), we observe that the brute force search over all patterns of size n×n runs in time

2O(n2), so we get C2O(n2)

(E(P)) = O(n). It is easy to verify that the proof relativizes (each step of the
argument works with any fixed oracle O), so we get claim (c).

Proposition 2 gives a necessary condition for soficness. To prove that a shift is not sofic, we need
to provide a computable (or an exp-time computable) epitome function with high Kolmogorov complex-
ities (or, respectively, resource-bounded Kolmogorov complexities). In what follows we discuss simple
examples of application of this technique. We start with the standard example of mirror symmetric shift.

Example 1 revisited. Let Smirror be the shift from Example 1 in the introduction (the mirror-symmetric
configurations). For this example we can define an epitome function E as follows:

12

• if an n× n pattern P contains only black and white letters, then E(P) is a binary string of length
n2 that identifies P uniquely (roughly speaking, E does not compress the patterns in black and
white);

• E is undefined for all patterns containing at least one red letter.

The defined E satisfies the definition of a computable epitome function, since the part of a configuration
above the red line determines uniquely all black-and-white patterns below this line. More specifically,
for every n×n pattern P that contains only black and white letters, let R be the infinite pattern defined
as follows:

• the domain of R is the complement of the n× n domain of P ,

• the horizontal line in R that is one row above P must consist of only red letters,

• the positions that are symmetric (with respect to the red line) to the positions with black letters
in P must be black,

• all other letters in R must be white,

as shown in Fig. 4. It is clear that R is compatible with P and not compatible with other n×n patterns,
as required in the definition of an epitome function.

Since there are 2n
2

patterns of size n×n with black and white letters, for some patterns of size n×n
we have C(E(P)) ≥ n2. Therefore, we can apply Proposition 2 (a) and conclude that the shift is not
sofic.

P

R

Figure 4: An n × n pattern P with black and white letters and the corresponding pattern R with the
complementary domain. The orange (dashed) frame contains the pattern that is mirror symmetric to P .

Example 3 (Mirror shift with low plain Kolmogorov complexity). Let us consider a subshift of Smirror

from Example 1: we still admit only symmetric configurations, but we now allow only those n × n
patterns P in black and white that are globally admissible for the shift S0 introduced in Notation 5,
p. 7. A non-degenerate configuration of the new shift looks as follows: there is an infinite horizontal line
composed of red letters, and two symmetric half-planes (filled with black and white letters) above and
below this line, with n× n patterns P such that

CT̂ (n)(P) ≤ λ̂ log n

(the choice of λ̂ and T̂ (n) is explained before Notation 5). The new shift is effective, and the number of
globally admissible patterns is at most 2O(logn) = poly(n). We know also that some globally admissible
n× n patterns in this shift satisfy

C2n3

(P) = Ω(n1.5). (5)

We cannot apply Theorem 3 directly and conclude that the new shift is non-sofic. The obstacle
is that this shift admits some patterns with very low time-bounded complexity; for example, the shift
admits the configuration with an infinite horizontal line in red and only white letters above and below
this line. Proposition 2 (a) also does not apply since the plain Kolmogorov complexity of all admissible
patterns (and, therefore, of the epitomes of these patterns) is logarithmic. However, in this case we can
use exp-time computable epitome functions.

13

Figure 5: An example of a special pattern of size n×n from Example 4: the border line (included in the
pattern) consists of red letters, and the remaining (n− 2)× (n− 2) letters can be only black or white.

The functions E defined for Example 1 (see p. 12) provide for this shift an exp-time computable
epitome function. For some (though not for all) n × n patterns P we have (5), so it follows from
Proposition 2 (b) that the shift is not sofic.

Remark 8. In the definition of epitome functions we permit that E can be defined for non-admissible
patterns. In the next example we show that this possibility can be useful.

Example 4. In this example we use again the alphabet of three letters (red, black, and white). Before
we define a shift on this alphabet, we need to introduce some terms. We say that a pattern P of size
n× n is special if it contains only red letters on the border line, and only black and white letters in the
internal points, as shown in Fig. 5. It is convenient to require that a special pattern contains at least
one black letter, so there are 2(n−2)2 − 1 special patterns of size n× n. For every n we fix a one-to-one
correspondence between the special patterns of this size and the binary strings of length smaller than
(n− 2)2. We denote by xP the binary string corresponding to pattern P .

Let U be the computable function from the definition of Kolmogorov complexity (see Theorem 1).
Fix an algorithm computing U . It is known that function U is partial, so the algorithm computing U
diverges on some inputs. For every integer number m > 0 we denote by p̂m the string of length smaller
than m such that the computation of U(p̂m) converges but takes longer than the computation of U(p)
for any other p with |p| < m. In case of a tie (if there are several p requiring the same number of steps
to complete the computation) we chose p̂m that is lexicographically biggest.

Now we define a shift on Z2 by the following rule: for every n, a special pattern P of size n × n
is globally admissible if U(xP) is not defined or if xP = p̂(n−2)2 (i.e., if the pattern corresponds to the
longest converging computation of U among all inputs of length less than (n − 2)2). There is no other
constraints: a configuration belongs to the shift if and only if it does not contain any special pattern
forbidden by this rule.

This shift is effective: the set of inputs p where the computation of U(p) converges is recursively
enumerable and, therefore, so is the set of forbidden special patterns. Now we prove that this shift is
not sofic. To this end, we define an epitome function E as follows:

• for every special pattern P of size n we let E(P) = P if U(xP) is defined;

• E is not defined for other patterns.

This mapping E is obviously computable. Observe that E is defined for many inadmissible patterns and
for one and only one globally admissible pattern of size n× n (namely, for the pattern representing the
longest-running computation of U). In this situation, the definition of an epitome function is trivially
satisfied.

Given p̂(n−2)2 , we can find the maximal number of steps required for a computation of U(p) to
converge for |p| < (n − 2)2. This information permits to find all converging computations of U(p) for
|p| < (n − 2)2, to reveal all strings x with Kolmogorov complexity strictly smaller than (n − 2)2, and
then to take the first incompressible string of length (n− 2)2. In other words, given p̂(n−2)2 we can find
an object with Kolmogorov complexity at least (n− 2)2. Hence, Kolmogorov complexity of p̂(n−2)2 itself
is close to (n − 2)2. Thus, for the only n × n pattern P that is globally admissible and where E(P) is
defined, we have

C(E(P)) = Ω(n2).

It follows from Proposition 2 (a) that the shift is not sofic.

14

Let us note in conclusion that we used in this example epitome functions defined on many non-
admissible patterns, and that the domain of E is recursively enumerable but not decidable. These
features seem to be essential for this argument.

4.2 Ordered epitomes

The argument based on Definition 2 does not apply to [6, Example 2.5] and similar shifts. To handle
this class of non-sofic shifts, we introduce a slightly more general definition of epitome functions:

Definition 3. Let P be the set of all patterns on Z2 over some finite alphabet, 4 be a partial order on
{0, 1}∗, and

E : P 7→ {0, 1}∗

be a partial function. We say that E (together with the assigned partial order 4) is an o-epitome function
(a function computing ordered epitomes) for a shift S, if for every globally admissible pattern P with
support B such that E(P) is defined, there exists a pattern R on F = Z2 \B such that

(i) R is compatible with P , i.e., the union of P and R provides a valid configuration in S, and

(ii) for every pattern P ′ on support B compatible with R, if E(P ′) is defined then

E(P ′) 4 E(P)

(i.e., this configuration R on the complement of B determines the maximum of the E-epitomes over all
valid P ′).

To denote an o-epitome function (a mapping considered together with a partial order) we write (E ,4).
We say that values of E are ordered epitomes or o-epitomes.

Similarly to the case of plain epitomes, in general, ordered epitomes can be defined for patterns of
any shape. However, in this paper we use only o-epitome functions defined on patterns with support Bn
(square of size n × n) for n > 0. It can be helpful to consider the restriction of an o-epitome function
onto the patterns of a fixed size. Given an o-epitome function (E ,4), we write En and and 4n for the
restrictions of E and 4 respectively onto the patterns with support Bn. We refer to the sequence (En,4n)
(n = 1, 2, . . .) as a family of restricted o-epitome functions3.

We say that an o-epitome function (E ,4) is computable if there are algorithms that compute the

mapping E and the relations 4. If, moreover, E and 4 are computable in time 2O(n2) (for patterns of size
n× n), we say that this o-epitome function is exp-time computable. As usual, an algorithm computing a
partial function must not give any result for inputs outside its domain.

Similarly, we say that an o-epitome function is computable with oracle O if there are algorithms that
can compute the mappings E and the relations 4 given the access to oracle O. We can also talk about
o-epitome functions that are exp-time computable with an oracle.

Plain epitome functions from Definition 2 can be viewed as a special case of Definition 3. If E is
a computable (or exp-time computable) epitome in the sense of Definition 2 and if 4 is an arbitrary
effectively computable (exp-time computable) order on the E-epitomes, then (E ,4) is a computable (or,
respectively, an exp-time computable) o-epitome function in the sense of Definition 3. In Definition 2 the
neighborhood R enforces the exact value of E(P ′) over all P ′ compatible with R, while in Definition 3
R enforces only the maximum of E(P ′).

Remark 7 applies to the o-epitome functions: we may abuse notation and talk about ordered epit-
omes that are integer numbers (or vectors of integer numbers, or finite patterns, and so on) and their
Kolmogorov complexities.

Proposition 3. (a) For every sofic shift with a computable o-epitome function (E ,4), for every globally
admissible pattern P of size n× n such that E(P) is defined, we have C(E(P)) = O(n).

(b) For every sofic shift with an exp-time computable o-epitome function (E ,4), for every globally
admissible pattern P of size n × n such that E(P) is defined, we have CT (n)(E(P)) = O(n) for a time

threshold T (n) = 2O(n2).

3If an o-epitome function (E,4) is defined only for patterns with supports Bn, then it is determined uniquely by the
corresponding family of restricted o-epitome functions (En,4n).

15

(c) The statements (a) and (b) relativize. That is, for every sofic shift with an o-epitome function
(E ,4) that is computable with oracle O (or exp-time computable with oracle O), for every globally
admissible pattern P of size n×n such that E(P) is defined, we have CO(E(P)) = O(n) (or, respectively,

CT (n),O(E(P)) = O(n) for a time threshold T (n) = 2O(n2)).

Proof. We reuse the notation from the proof of Proposition 2: S denotes a sofic subshift, Ŝ denotes an
SFT covering S, and π is a letter-to-letter projection mapping Ŝ onto S. We may assume that the local
constraints in Ŝ involve only pairs of neighboring nodes in Z2. For an n× n pattern P in S, we denote
by Q the n × n pattern in Ŝ projected on P , and ∂Q denotes the border zone (nearest neighborhood)
around Q consisting of 4(n+ 1) letters, as shown in Fig. 3. We call such patterns ∂Q n-border zones.

We start with a proof of (b), which is very similar to the proof of Proposition 2. In the previous
proof, it was enough to find at least one pattern Q′ compatible with the given border zone ∂Q such
that the epitome of π(Q′) is defined; then computing the epitome of π(Q′) we obtain the epitome of
P . Now we should find all patterns Q′ compatible with ∂Q, apply to each of them the projection π,
compute their epitomes (for those patterns where E is defined), and then take the maximum of the
obtained results. The fact that E are partial functions provides no obstacle. Indeed, we assumed that
the o-epitome function is computable in exponential time; so we can safely abort the computations that
do not converge in due time. It only remains to observe that the exhaustive search over all patterns of
size n× n requires to examine 2O(n2) possibilities, which can be performed in exponential time.

We cannot prove (a) in the same way because the computation of epitomes can take arbitrary long
time, and we cannot find algorithmically the finalized list of E(P ′) for all P ′ compatible with ∂Q. In
this case we need a more involved argument.

Claim 1. The number of n-border zones ∂Q that are globally admissible in Ŝ is not greater than 2O(n).

Proof. This claim is pretty trivial: the domain of such a border zone consists of 4(n+ 1) nodes, and the
number of all patterns of this size (admissible or not) is at most |Σ|4(n+1), where Σ is the alphabet of
Ŝ.

Claim 2. The number of values E(P) for globally admissible in S patterns P is not bigger than the
number of all n-border zones ∂Q that are globally admissible in Ŝ.

Proof. By the definition of an o-epitome function, for every value E(P) there is a pattern R on Fn
that determines implicitly E(P): the maximum of E(P ′) for all P ′ compatible with R is equal to E(P).
Though R is infinite, the “interaction” between P and R goes through a contour of linear length. As
we observed in the proof of Proposition 2, we can choose an n-border zone ∂Q (globally admissible in
Ŝ) with the following property: if we take all n × n patterns Q locally compatible with ∂Q in Ŝ, and
then take π-projections of these patterns, we obtain the required pattern P and possibly several other
(globally admissible in S) patterns P ′ such that E(P ′), if defined, is inferior or equal to E(P) in the sense
of 4. Therefore, the chosen n-border zone ∂Q determines uniquely the value of E(P).

Observe that ∂Q determines E(P) in an abstract sense; we cannot compute E(P) from ∂Q algorith-
mically. Indeed, since E is a partial function (and the algorithm computing E does not stop on inputs
where the function is not defined), we cannot find algorithmically the maximum value of E(P ′) for all
P ′ obtained from ∂Q. However, we can claim that the number of values E(P) for globally admissible (in
shift S) patterns P is not greater than the number of globally admissible (in shift Ŝ) ∂Q.

The set of n-border zones that are globally admissible in any SFT (actually, in any effective shift)
is co-enumerable (the complement is recursively enumerable): we can examine progressively all patterns
of bigger and bigger size, detect those that are forbidden, and reveal one by one the border zones that
are inadmissible (because all their extensions contain forbidden patterns). Using this procedure we can
eventually reveal each non-admissible pattern; but a priori we do not know when the last inadmissible
n-border zone is detected.

Denote by Nn the number of n-border zones that are globally admissible in Ŝ. Given this number (its
binary expansion) we can determine the moment when the described algorithmic process finalizes the
list of globally admissible n-border zones (i.e., when all inadmissible n-border zones are revealed). Then,
given the list of all non-eliminated (globally admissible) n-border zones, we can find all n × n patterns
in Ŝ that are locally compatible with at least one globally admissible n-border zone (so these patterns

16

are also globally admissible). Then we apply to each of these patterns the mapping π and obtain the
n × n patterns that are globally admissible in S. Finally, we apply the algorithm computing E to each
obtained pattern and run these computations in parallel. Every value of E(P) for globally admissible P
will be eventually found by this procedure.

Thus, to describe one specific value of E , we need to describe the enumeration procedure explained
above and to specify the ordinal number of the sought value of E in this enumeration (in the order of
appearance). To run the enumeration process, we need to know the numbers n and Nn. Due to Claim 1,
the binary expansion of Nn consists of only O(logNn) = O(n) bits. The number of different values of
E for globally admissible patterns is bounded by Nn (Claim 2); so the ordinal number of an element in
this enumeration can be specified by logNn = O(n) bits (again, due to Claim 1). Thus, every value of
E can be described by an algorithm of size O(n), which is the claim (a) of the theorem.

The arguments used in the proofs of (a) and (b) obviously relativizes, and we get statement (c) for
computations with an oracle.

Proposition 3 provided us with another necessary condition for soficness. To prove that a shift is
not sofic, it is enough to construct a computable (or exp-time computable) o-epitome function with
super-linear resource-bounded Kolmogorov complexities.

Remark 9. When we provide an algorithm with an access to an oracle, its computational power can
increase dramatically. Thus, when we say that CO(w) = O(n) with some (unspecified) oracle O, we do
not say much about string w. However, for every oracle we still can say that there are it most 2O(n)

objects of complexity O(n). So when we claim that CO(E(P)) = O(n) for all P , we say essentially that
there are 2O(n) values of epitomes E . In other words, the bounds on Kolmogorov complexity with an
oracle (and without a time bound) is only a different language for the usual counting argument. On
the other hand, the meaning of Kolmogorov complexity becomes much subtler when we constrain the
computational resources of algorithms in use; the claims CT (n)(w) = O(n) or CT (n),O(w) = O(n) cannot
be reduced to a simple counting.

Example 5 (semi-mirror shift). In this example we define a shift space extending the one defined in
Example 1. Let Σ be the alphabet with three letters (e.g., black, white, and red); the admissible configu-
rations of the shift are all black-and-white configurations (without any red letter) and the configurations
with an infinite horizontal line of red letters and black-and-white half-planes above and below this line
that are semi-symmetric in the following sense: if the letter in the ith column at the distance k below
the horizontal red line is black, then the letter in the same ith column at the distance k above the red
line must be also black. In other words, we may take symmetric half-planes above and below the red
line, and then convert some of the black letters in the lower half-plane into white ones, see Fig. 6. We
denote this shift by Ssemi-mirror.

Figure 6: A configuration of the shift Ssemi-mirror (we show in blue the positions where the upper and
lower half-planes mismatch).

It is easy to see that this shift is effective: the forbidden patterns are those where the red letters
are not horizontally aligned, and those where the areas above and below the horizontal red line do not
satisfy the property of semi-symmetry. Below we prove that this shift is not sofic. To this end we use
the technique of ordered epitomes.

We define the epitome function E trivially for the patterns of size n× n that contain only black and
white letters. For these patterns, we let E(P) be P (or its binary encoding). For patterns with at least

17

R

P ′ P

Figure 8: On the right: a black-and-white pattern P (in the blue frame) joined with the corresponding
pattern R with the complementary domain (outside of the blue frame). On the left: another black-and-
white pattern P ′ (such that P ′ 4 P) joined with the same R. We show in green the positions that
distinguish P and P ′, and the corresponding positions in R (symmetric with respect to the red line).

one red letter, E is not defined. With this definition, for each n > 0 there are 2n
2

possible values of E(P)
for n× n patterns.

We define the partial order 4 as follows: E(P1) 4 E(P2) if P1 and P2 are patterns of the same size
n × n, and for every position with a black letter in P1 the corresponding position in P2 also contains a
black letter, see Fig. 7.

4

P1 P2

Figure 7: A pair of patterns P1 and P2: the relation E(P1) 4 E(P2) means that the set of black position
in P1 is included in the set of black positions in P2.

Let us verify that (E ,4) satisfies the definition of an o-epitome function. For every n × n pattern
P with black and white letters we define the corresponding pattern R in exactly the same way as in
Example 1 on p. 12, see Fig. 4. It is clear that when we join P with the corresponding R, we obtain an
admissible configuration of the shift. Further, if we join the same R with some other pattern P ′ (as in
Fig. 8), we obtain an admissible configuration if and only if P ′ together with R form a semi-symmetric
configuration, i.e., a letter in P ′ can be black only if the letter at the symmetric position in R is black.
Hence, R is compatible with P ′ if and only if E(P ′) 4 E(P), which is the property required in the
definition of an o-epitome function.

We have observed that for every n we have 2n
2

possible values of E . From the counting argument it
follows that for every n there exists at least one pattern P of size n × n such that C(E(P)) ≥ n2 � n.
Thus, the property C(E(P)) = O(n) cannot be true for this shift. From Proposition 3 (a) it follows that
the shift is not sofic.

A non-degenerate configuration of shift Ssemi-mirror defined in Example 5 consists of two “semi-sym-
metric” half-planes separated by an infinite horizontal line of red letters. The property of semi-symmetry
means that the lower half-plane can be obtained from the upper half-plane one by the composition of
the usual mirror symmetry and repainting of some black letters into white ones. In that definition we
do not restrict the number of black letters that are converted in white ones: the two half-planes can be

18

Figure 9: A configuration of the shift S ′semi-mirror (we show in blue the unique pair of symmetric positions
where the upper and lower half-planes mismatch).

exactly symmetric or, conversely, the lower half-plane can consist of only white letters. It is instructive to
investigate subshifts of Ssemi-mirror where the mismatch between the upper and lower half-planes is under
control. In the following two examples we briefly discuss two extremal cases: a subshift in Ssemi-mirror

where the symmetry can be broken for at most one pair of letters, and another subshift where the
symmetry is broken for all black letters except (possibly) one.

Example 5′ (semi-mirror shift with very small discrepancy between half-planes). Let us define a new
shift S ′semi-mirror (such that S ′semi-mirror ⊂ Ssemi-mirror) by adding to the definition of Ssemi-mirror another
condition saying that the symmetry between the two half-planes (above and below the line of red letters)
is violated for at most one pair of letter, as shown in Fig 9. It is easy to verify that this shift is effective.
Exactly the same argument as in Example 5 implies that S ′semi-mirror is also non-sofic.

Example 5′′ (semi-mirror shift with very large discrepancy between half-planes). Let us define one more
shift S ′′semi-mirror (again S ′′semi-mirror ⊂ Ssemi-mirror) by the condition that the half-plane under the hori-
zontal line of red letters contains at most one black letter, see Fig. 10. This shift is still effective. With
the new restriction, the argument from Example 5 does not apply. Indeed, as we have at most one
black letter in the lower half-plane, Kolmogorov complexity of the epitomes E(P) defined Example 5
sinks to O(log n), and we cannot get a contradiction with Proposition 3 (a). The fact that our proof of
non-soficness fails is not misleading: it is not hard to verify that S ′′semi-mirror is actually sofic. We discuss
this example below in Section 4.3 in the context of extender sets.

Figure 10: A configuration of the shift S ′′semi-mirror. We show in blue the position in the upper half-plane
that is symmetric to the unique black letter in the lower half-plane.

In the next example we discuss a shift with very low block complexity, so its non-soficness can be
proven only with help of time-bounded Kolmogorov complexity of ordered epitomes.

Example 6 (semi-mirror shift with low block complexity). In this example we use again subshift S0

introduced in Notation 5, p. 7. We define a new shift S0
semi-mirror (such that S0

semi-mirror ⊂ S ′semi-mirror) by
adding to the definition of S ′semi-mirror the following requirement: every black-and-white pattern below
the horizontal line of red letters must be globally admissible in S0.

It is easy to verify that S0
semi-mirror is also effective. By the construction, for every globally admissible

pattern P of size n×n that can appear below the horizontal line of red letters, we have C(P) = O(log n).
The same property holds for the patterns that appear above the horizontal line of red letters, since the
mirror symmetry and adding one black letter increases Kolmogorov complexity by at most O(log n). The

19

same is true for globally admissible patterns involving red letters, since such a pattern can be described
by its parts above and below the horizontal red line, and both these parts have Kolmogorov complexity
O(log n). Thus, for every globally admissible pattern P of size n× n we have C(P) = O(log n). Hence,
there are at most 2O(logn) = poly(n) globally admissible patterns, i.e., the shift has only polynomial
block complexity.

The technique of ordered epitomes with the plain Kolmogorov complexity does not apply to this shift
since for every globally admissible pattern P the value of C(P) is very low, so C(E(P)) is also sub-linear,
and we cannot obtain a contradiction with Proposition 3 (a). However, we can prove non-soficness of
this shift with help of time bounded Kolmogorov complexity. Indeed, the shift is defined in such a way

that for some n×n patterns that appear below the horizontal line of red we have C2n3

(E(P)) = Ω(n1.5).
So we can repeat the argument from Example 5 with the same o-epitome function E (it is exp-time

computable) but this time using Kolmogorov complexity with a time bound T = 2ω(n2). By applying
Proposition 3 (b), we conclude that the shift is non-sofic.

In the next example we discuss an interesting instance of a shift proposed by Kass and Madden in
[6, Example 2.5]. We reformulate the proof of non-soficness given in [6] in the language of Kolmogorov
complexity, in terms of ordered epitomes. In this case, the definition of an epitome function is less
straightforward than in the previous examples.

Example 7 (the shift with no hidden red-black squares). Let Σ be the alphabet with three letters (e.g.,
black, white, and red), and the forbidden patterns be all squares (of all sizes) where the top side consists of
red letters, and the bottom one consists of black letters (hidden red-black squares), as shown in Fig. 11a.

Proposition 4 ([6]). The shift on Z2 defined by the set of forbidden patterns specified above is not sofic.

In [6] this proposition was proven with the technique of union-increasing chains of extender sets. In
what follows we propose essentially the same argument, but explain it in terms of ordered epitomes.

Proof of Proposition 4. We define for this shift an o-epitome function. First of all, we define a class
of simple patterns: the simple patterns are all square patterns that (i) consist of only black and white
letters (with no red letters), where (ii) every row starts with a few successive black letters followed by
a sequence of white letters, as show in Fig. 11b. Every simple pattern of size n× n can be specified by
its profile — a tuple of integers (k1, . . . , kn), where ki is the number of black letters in the i-th row of
the pattern. (Thus, a simple pattern with the profile (k1, . . . , kn) is an n×n square where each i-th row
starts with ki black letters followed by (n− ki) white letters.)

Let epitome E assign to each simple pattern its profile, and be undefined for all other patterns. For
example, for the pattern P show in Fig. 11b we have E(P) = (4, 3, 8, 5, 4, 2, 4, 6).

We introduce the natural order 4 on the profiles of simple patterns of the same size n × n; we say
that the profile of P1 is not greater than the profile of P2, if the first profile is coordinate-wise not greater
than the second one. For example, the profiles of the two patterns shown in Fig. 11c are not greater
than the profile of the pattern in Fig. 11b (and incomparable with each other).

The introduced E and 4 are obviously computable, even in polynomial time. Some work is required
to show that (E ,4) satisfies Definition 3:

Lemma 1. The defined above (E ,4) provides an exp-time computable o-epitome function for the shift
under consideration.

This lemma is proven implicitly in [6]. We sketch this proof in C.

It remains to observe that for every n there are (n+1)n simple patterns of size n×n (in each row of a
simple pattern the frontier between black and white areas varies between 0 and n). Therefore, for some
simple patterns P of size n× n the Kolmogorov complexity of their profile is greater than n log(n+ 1),
i.e., even the plain Kolmogorov complexity C(E(P)) is super-linear. We apply Proposition 3 (a) and
conclude that the shift is not sofic.

20

(a) Forbidden pattern: a
square with a red top and
a black bottom.

(b) A pattern for which
the epitome E is defined:
each row starts with a few
black letters on the left
followed by white letters
on the right.

(c) A pair of incomparable patterns.

Figure 11

4.3 The technique of ordered epitomes and union-increasing chains of ex-
tender sets

In Example 7 we translated in the language of epitomes a proof proposed by S. Kass and K. Madden in
[6]. In this section we show that this example is a special case of the general situation: the technique
of Kass and Madden is equivalent to a special case of the technique of ordered epitomes. In this special
case we require that the epitome functions have decidable domains, and we use the plain Kolmogorov
complexity (i.e., with no bounds for computational resources). We begin with two definitions from [6].

Definition 4. Let S in Z2 be a shift and let P be a pattern with support Bn. The extender set of P ,
denoted ES(P), consists of all patterns Q on Fn such that the union of P and Q gives a configuration
in S. The family of extender sets for all globally admissible patterns P with support Bn is denoted

ExtnS := {ES(P) | P is a globally admissible pattern on Bn}.

In some sense, the cardinality of ExtnS corresponds to the “information flow” between an n×n pattern
and the rest of the configuration on Z2. Intuitively, this “information flow” crosses the borderline around
an n × n pattern, while the length of this borderline is only O(n). This intuition can be made more
precise for SFTs: for every shift of finite type S on Z2 the size of ExtnS cannot be bigger than 2O(n).
However, this property is not necessary true for multi-dimensional sofic shifts. In fact, it is known that
for some sofic shifts on Z2 the size of ExtnS can grow faster than 2O(n) (see Remark 1). For instance, for

the sofic shift in Example 5′′ the size of ExtnS grows as 2Ω(n2).
Thus, to show that a shift is not sofic, it is not enough to study the size of the family of extender sets,

we need to reveal subtler properties of these objects. More specifically, we are going to use the structure
of the class of extender sets imposed by the relation of inclusion. Technically, we use union-increasing
chains of extender sets.

Definition 5. Let S1, . . . , Sm be a finite sequence of non-empty sets. This sequence is called union-
increasing chain if the partial unions of the Si strictly increase, i.e., if for each 1 ≤ i ≤ m

Si *
i−1⋃
j=1

Sj .

Now we can formulate the theorem of Kass and Madden.

Theorem 5 ([6]). Let S in Z2 be a shift space. Suppose given any M > 0, there exists an n > 0, an
m > Mn, and globally admissible patterns P1, . . . , Pm with support Bn for which

ExtS(P1), . . . , ExtS(Pm)

is a union-increasing chain. Then S is non-sofic.

Loosely speaking, this theorem claims that the “essential information” that must cross the borderline
of an n×n pattern (in a sofic shift) corresponds not just to the number of extender sets but to the length
of union-increasing chains of extender sets. This theorem can be reformulated as follows.

21

Corollary 2. Let S in Z2 be a shift space. For every n we choose a sequence of globally admissible
patterns Pn1 , . . . , P

n
m(n) with support Bn for which the sequence of extender sets

ExtS(Pn1), . . . , ExtS(Pnm(n))

is a union-increasing chain. If logm(n) = ω(n), then S is non-sofic.

This approach is pretty general. Kass and Madden have shown in particular that Theorem 5 allows
to express any argument based on the technique of Pavlov ([15, Theorem 1.1]).

We show that every proof of non-soficness based on Theorem 5 can be rephrased in terms of o-
epitome functions from Definition 3 with decidable domains and with the plain (resource-unbounded)
Kolmogorov complexity, and vice-versa. We prove this equivalence in two steps: first we show that an
argument in the language of union-increasing chains of extender sets can be translated in the language of
o-epitome functions (Proposition 5); then we prove the opposite implication and show that an argument
explained in the language of o-epitome functions can be reformulated in terms of union-increasing chains
of extender sets (Proposition 6 and Proposition 7).

Next proposition is formulated and proven in terms of families of restricted o-epitomes (let us remind
that (En,4n) is the restriction of (E ,4) onto patterns of size n× n).

Proposition 5. Let S in Z2 be a shift space. Assume that for every n there is a sequence of globally
admissible patterns P1, . . . , Pm(n) with support Bn such that the set of extender sets

ExtS(P1), . . . , ExtS(Pm(n))

is union-increasing. Then for every n there exists an onto mapping

En : [patterns with domain Bn]→ {1, . . . ,m}

defined on a subset of globally admissible patterns in S with support Bn and a partial order 4n on
{1, . . . ,m(n)} such that (En,4n) satisfies the definition of a family of restricted o-epitome functions for
S.

Proof. The construction of a suitable family of epitome functions is straightforward: we let En(Pi) = i
for i = 1, . . . ,m(n), and assume that for all other patterns the function En is undefined. We introduce
on the values of En the linear order that is inverse to the natural order on the integer numbers,

m(n) 4n . . . 4n 2 4n 1.

Let us verify that the obtained (En,4n) satisfies the definition of a family of o-epitome functions. Since
the sequence of extender sets ExtS(Pi) is union-increasing, for every i we have

ExtS(Pi) 6⊂
i−1⋃
j=1

ExtS(Pi).

This means that there exists a pattern R with support Fn that is compatible with Pi (i.e., belongs

to ExtS(Pi)) but not with P1, . . . , Pi−1 (i.e., does not belong to
i−1⋃
j=1

ExtS(Pi)). Thus, for every n × n

pattern P ′ compatible R, if En(P ′) is defined then En(P ′) 4n i, which is exactly the definition of restricted
o-epitome function.

Assume that for every positive integer number n we have a sequence of globally admissible patterns
Pn1 , . . . , P

n
m(n) with support Bn such that the corresponding sequence of extender sets

ExtS(Pn1), . . . , ExtS(Pnm(n))

is a union-increasing chain. By applying Proposition 5 we obtain a family of restricted o-epitome func-
tions En that have m(n) values for patterns of size n × n. In general, this epitome function can be
non computable. However, due to a trivial reason it is computable with the oracle O that contains a
description of the sequences Pn1 , . . . , P

n
m(n).

22

If the number logm(n) grows faster than a linear function (i.e., m(n) = 2ω(n), which is necessary to
apply Corollary 2), then from the counting argument it follows that Kolmogorov complexity of En(Pni)
(even with oracle O) is not bounded by a linear function. More precisely, for every λ > 0 and for a large
enough n there is a pattern Pni such that CO(En(Pni)) > λn. So we can apply Proposition 3(c) and
conclude that S is non-sofic.

Thus, if we can prove that a shift S is non-sofic with the technique of Kass and Madden (Corollary 2),
then due to Proposition 5 we can apply Proposition 3 (c) (with Kolmogorov complexity relativized
conditional on the chosen above oracle O) and prove non-soficness of S with the technique of epitomes.

In the next two propositions we show that the reverse translation (from the language of ordered
epitomes to the language of chains of extender sets) is also possible as long as we use o-epitome functions
with decidable domains and resource-unbounded Kolmogorov complexity.

Proposition 6. Let S be a shift space, (En,4n) be a family of restricted o-epitome functions for S, and
m = m(n) be the number of images of En computed for globally admissible patterns. Then there exists a
family of globally admissible patterns P1, . . . , Pm such that the chain of extender sets

ExtS(P1), . . . , ExtS(Pm)

is union-increasing.

Proof. Denote by e1, . . . , em the images of En. Without loss of generality we may assume that for every
i

ej 64n ei for all j < i (6)

(in every finite partially ordered set we can arrange the indices of ej so that (6) holds true: e1 should
be one of the maximal elements, e2 must be maximal among the remaining elements, and so on). Then,
we fix globally admissible patterns Pi with support Bn such that En(Pi) = ei. By the definition of an
epitome function, for each i there exists a pattern Ri with support Fn that is compatible with Pi but not

compatible with P1, . . . , Pi−1. Therefore, ExtS(Pi) is not contained in the union
i−1⋃
j=1

ExtS(Pi). Thus,

the sequence of extender sets ExtS(Pi) is union-increasing, and we are done.

Proposition 7. Let (E ,4) be a computable o-epitome function for an effective shift S.
(a) Assume that for an admissible pattern P of size n× n

C(E(P)) = m, (7)

and m � log n. Then there exist 2Ω(m) different values of E corresponding to patterns of size n × n
(globally admissible or non-admissible).

(b) Assume the domains of E are decidable (there is an algorithm that can decide for every n and
every pattern P of size n× n whether E(P) is defined or not) and that (7) with m� log n holds for at
least one globally admissible pattern P of size n × n. Then there exist 2Ω(m) values of E corresponding
to globally admissible patterns of this size.

(c) Both propositions (a) and (b) relativize: they remain true for Kolmogorov complexity relativized
with any oracle O.

Proof. (a) For a given n, we can apply the algorithm computing E to each pattern of size n× n and run
these computations in parallel. As some of these computations converge, we can write down the revealed
values of E one by one. (If the domain of E is undecidable, we never know whether the last terminating
computation is over, and some of these computations last infinitely long time without any result.) Let
Nn be the number of all values that eventually appear. Each value of E can be specified by its index in
this list (in the order of appearance) together with the binary expansions of n. The index (position in
the list) can be specified by dlogNne bits. Therefore, for every n× n pattern P we have

C(E(P)) = O(logNn) +O(log n),

and the statement (a) follows.
(b) Let Nn be the number of values of E(P) for all patterns P of size n×n, and let N ′n be the number

of values of E(P) for globally admissible patterns P of this size. Denote ` = dlogN ′ne.

23

If N ′n > Nn/2, the statement (b) follows from (a). Otherwise, we compute E(P) for all patterns of
size n× n (this is possible since the domain of an epitome function is decidable) and start enumerating
non-admissible patterns of the shift. As non-admissible patterns are progressively revealed, we eliminate
one by one the values of E(P) that do not correspond to any non-discarded (and potentially globally
admissible) pattern P . We stop this process when there remain exactly 2` non-eliminated values of
epitomes (that can a priori represent globally admissible patterns). Now the epitome of every globally
admissible P can be specified by the numbers n and ` and by the ordinal number of the value E(P) in
the list of 2` non-eliminated candidates. Such an ordinal number can be represented by a string of `n
bits. Thus,

C(E(P)) = O(`) +O(log n),

and we are done.
(c) It is easy to see that the argument remains valid for algorithms accessing an oracle.

Assume that we can prove non-soficness of a shift S with the technique of ordered epitomes from
Proposition 3 using Kolmogorov complexity without time bounds. This is possible if we have for S an
o-epitome function (E ,4) that is computable (possibly with some oracle O) and such that C(E(P)) is
not bounded by a linear function. Assume now that the union of domains of E is a decidable set. Then
it follows from Proposition 7 (b) that the number of values of E for globally admissible patterns grows as
2ω(n). Now we apply Proposition 6 and obtain a list of globally admissible n×n patterns Pn1 , . . . , P

n
m(n)

with m(n) = 2ω(n) such that the chain of extender sets ExtS(Pn1), . . . , ExtS(Pnm(n)) is union-increasing.
Hence, we can apply Corollary 2 and prove non-soficness of S with the argument of Kass and Madden.

Proposition 5 and Proposition 6 show that the technique of union-increasing chains of extender sets
is closely connected with the version of the technique of ordered epitomes with a decidable domain and
the plain Kolmogorov complexity. On the other hand, it seems that an argument using plain epitome
functions with undecidable domains (see Example 4) cannot be translated directly in the language of
union-increasing chains of extender sets. We also recall that the method of epitomes is getting stronger
when we use resource-bounded version of Kolmogorov complexity. In particular, it helps to handle shifts
with sub-exponential block complexity, which is unachievable with Theorem 5 and Corollary 2.

5 Conclusion

To the best of our knowledge, all previously known proofs of non-soficness for multi-dimension effective
shifts (including the one proposed in [15]) can be reformulated in terms of union-increasing chains of
extender sets, as proposed in [6]. Therefore, these proofs can be rephrased in terms of ordered epitomes
with the plain Kolmogorov complexity, as we explained in Section 4.3. The technique of epitomes
becomes more powerful if we use resource-bounded Kolmogorov complexity; in particular, it allows to
handle shifts with sub-exponential block complexity. So it seems that Kolmogorov complexity helps
to capture substantial properties that are necessary for soficness. It would be interesting to adapt the
technique of resource-bounded Kolmogorov complexity to reveal properties that are sufficient for a shift
to be sofic.

Open Problem. Find sufficient conditions of soficness that can be formulated in terms of resource-bounded
Kolmogorov complexity.

Acknowledgments We thank Bruno Durand, Alexander Shen, and Ilkka Törmä for fruitful discus-
sions. We are grateful to Pierre Guillon and Emmanuel Jeandel for motivating comments. We also thank
the anonymous referees of STACS 2019 and JCSS for many insightful comments.

In the source of Fig. 3 we use a Tikz code based on examples by Marco Miani on texample.net and
Martin Wegmann on en.wikipedia.org/wiki/PGF/TikZ.

References

[1] N. Aubrun, S. Barbieri, and E. Jeandel. About the domino problem for subshifts on groups. Se-
quences, groups, and number theory. Birkhäuser, Cham, pages 331–389, 2018.

24

[2] B. Durand, L. Levin, and A. Shen. Complex tilings. The Journal of Symbolic Logic, 73:2:593–613,
2008.

[3] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing machines. Journal of the
ACM, 13(4):533–546, 1966.

[4] M. Hochman. On the dynamics and recursive properties of multidimensional symbolic systems.
Inventiones mathematicae, 176(1):131, 2009.

[5] E. Jeandel. Propriétés structurelles et calculatoires des pavages. Habilitation thesis, Université
Montpellier 2, 2011.

[6] S. Kass and K. Madden. A sufficient condition for non-soficness of higher-dimensional subshifts.
Proceedings of the American Mathematical Society, 141:11:3803–3816, 2013.

[7] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of
information transmission, 1:1:1–7, 1965.

[8] M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applications. 3rd ed.
Springer, New York, 2008.

[9] D. Lind and B. Marcus. An introduction to symbolic dynamics and coding. Cambridge University
Press, 1995.

[10] M. Morse and G. A. Hedlund. Symbolic dynamics. Amer. J. Math., 60:815–866, 1938.

[11] M. Morse and G. A. Hedlund. Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.,
62:1–42, 1940.

[12] S. Mozes. Tilings, substitution systems and dynamical systems generated by them. Journal d’analyse
mathématique (Jerusalem), 53:139–186, 1989.

[13] André Nies. Computability and randomness, volume 51. OUP Oxford, 2009.

[14] N. Ormes and R. Pavlov. Extender sets and multidimensional subshifts. Ergodic Theory and
Dynamical Systems, 36:3:908–923, 2016.

[15] R. Pavlov. A class of nonsofic multidimensional shift spaces. Proceedings of the American Mathe-
matical Society, 141:3:987–996, 2013.

[16] Hartley Rogers Jr. Theory of recursive functions and effective computability. MIT Press, 1987.

[17] A. Rumyantsev and M. Ushakov. Forbidden substrings, Kolmogorov complexity and almost periodic
sequences. In Proc. Annual Symposium on Theoretical Aspects of Computer Science, pages 396–407,
2006.

[18] V. Salo. Subshifts with sparse projective subdynamics. arXiv preprint, arXiv:1605.09623, 2016.

[19] Alexander Shen, Vladimir A. Uspensky, and Nikolay Vereshchagin. Kolmogorov complexity and
algorithmic randomness, volume 220. American Mathematical Soc., 2017.

[20] B. Weiss. Subshifts of finite type and sofic systems. Monatsh. Math., 77:462–474, 1973.

[21] L. B. Westrick. Seas of squares with sizes from a Π0
1 set. Israel Journal of Mathematics, 22:1, 2017.

25

A Proof of Theorem 3

It is enough to prove the theorem for shifts of finite type (since a configuration in a sofic shift is a
coordinate-wise projection of a configuration from a shift of finite type).

We fix an SFT (which can be defined by a set of forbidden patterns F where every pattern in F is a
pair of neighboring letters) and show that for every k there exists a locally admissible (2k +1)× (2k +1)-
pattern Pk with the required property: every n×n square pattern inside Pk has Kolmogorov complexity
O(n).

To this end we choose an arbitrary coloring of the border line of a square of size (2k + 1)× (2k + 1)
so that this coloring can be extended in at least one way to a locally admissible coloring of the entire
square, see Fig. 12 (a). Since the set of all colorings of the square is finite, we can find algorithmically (by
a naive brute-force search) the lexicographically first coloring of the horizontal and vertical centerlines
of the square that are compatible with the fixed coloring of the border line (i.e., the coloring of the
border line together with coloring of the centerlines can be extended to a locally admissible coloring of
the whole square), see Fig. 12 (b). Observe that the centerlines split the square into four squares of size
(2k−1 + 1)× (2k−1 + 1).

(a) (b) (c)

⇒ ⇒ ⇒ ...

Figure 12: Three steps of the recursive coloring procedures for a pattern of size (2n + 1)× (2n + 1).

Then, we repeat the same procedure recursively: in each of the four squares of size (2k−1 + 1) ×
(2k−1 + 1) we find the lexicographically first coloring of their horizontal and vertical centerlines that
are compatible with the coloring of the border around each of these squares (see Fig. 12 (c)), and so
on. On the last step we end up with the lexicographically first valid coloring of isolated patterns of size
1 × 1 (that must be coherent with the chosen above coloring of the neighborhood). This concludes the
construction of Pk.

In the procedure explained above, the initial square of size (2k+1)× (2k+1) is split into four squares
of size (2k−1 +1)× (2k−1 +1), then into sixteen squares of size (2k−2 +1)× (2k−2 +1), etc. This recursive
procedure finds the coloring of each of these squares in “standard” positions given (as a kind of boundary
condition) the coloring of the border around this square.

Thus, to find the assigned coloring of a square of size (2m + 1)× (2m + 1) in a “standard” position,
the recursive procedure needs to know only the coloring of the border around this square (which requires
O(2m) letters and therefore O(2m) bits of information); it is not hard to see that the recursive call runs
in time

2O
(

(2m+1)×(2m+1)
)

+ 4× 2O
(

(2m−1+1)×(2m−1+1)
)

+ 16× 2O
(

(2m−2+1)×(2m−2+1)
)

+ . . . = 2O(22m)

(this is a recursive computation of depth m, with a brute-force search and four recursive calls on each
level of the hierarchy).

An arbitrary square of size n × n (possibly in a non-standard position) is covered by at most four
“standard” squares (of size at most twice bigger than n), see Fig. 13.

26

Figure 13: A pattern of size 7× 7 (hatched in red) covered by a quadruple of “standard” blocks of size
9× 9.

Thus, to identify an n×n-pattern inside Pk, it is enough to describe the quadruple of standard squares
covering this pattern and, in addition, the position (the coordinates of the corners) of this pattern with
respect to the covering standard squares. In turn, each standard square is, by construction, determined
by its border line. Hence, every n× n square in Pk can be specified with only O(n) bits of information;

moreover, it can be recovered from this description in time 2O(n2) (at first we reconstruct the four
standard squares from their border lines, and then cut out the pattern with the given coordinates of the
corners).

To conclude the proof of the theorem, we observe that Pk are defined for arbitrarily large k, and the
compactness argument gives a valid coloring of the entire Z2 with the required property.

B Proof of Theorem 4

The high level scheme of the proof of Theorem 4 is similar to the proof of Theorem 4′. At first we
construct “standard” building blocks of growing size so that all patterns in these blocks have a large
time-bounded Kolmogorov complexity. Then we define a shift as the closure of these standard patterns.

Stage 1: building standard blocks. We fix parameters ni, i = 0, 1, 2, . . .

n0 � 1, ni+1 = (n0 · . . . · ni)c (8)

(the constant c to be specified later) and

Ni := n0 · . . . · ni.

In what follows we define inductively standard blocks Qji of size Ni ×Ni for i = 0, 1, 2, . . . The major
difference between this proof and the proof of Theorem 4′ is that for each i we define a set of `i = n2

i+1

standard blocks of level i
Q1
i , . . . , Q

`i
i

(instead of only two of standard patterns used in the previous proof). The construction is hierarchical:
each standard block of rank i is defined as an ni × ni array of standard blocks of level (i − 1). In this
inductive construction, we maintain for each i the following property:

Main Property : For every i > 0, for the list of standard blocks Q1
i , . . . , Q

`i
i , we have that

Cti(Q1
i , . . . , Q

`i
i) ≥ `i log(`i−1!) = (ni+1)2 · log

(
(n2
i)!
)

(9)

(the time threshold ti to be specified later).

Our construction is explicit, and the standard blocks Qji are computable (given i and j) though the
time required for this computation can be pretty large.

Remark 10. Let us explain the intuition behind this construction. We inductively construct standard
blocks that have the following two properties. On the one hand, all large enough patterns in each
standard Ni × Ni blocks should have a high time-bounded Kolmogorov complexity due to the “local
structure”: each of the standard blocks of rank (i−1) (of size Ni−1×Ni−1) is complex, and these blocks
are independent of each other. On the other hand, the whole standard block of size Ni×Ni should have
a high time bounded Kolmogorov complexity (with even a bigger time bound) due to the information

27

embedded in its “global structure” (how the blocks of level (i− 1) are arranged inside of a block of level
i). To carry out the inductive argument, we construct for each i a large family of standard blocks of size
Ni ×Ni, and these blocks must be in some sense “independent.”

Base of induction: We defined blocks Q1
0, . . . , Q

`0
0 as arbitrary distinct binary matrices of size n0×n0

(we can do it assuming that 2n
2
0 > `0 = n2

1).

Inductive step: Given a set of standard patterns Q1
i , . . . , Q

`i
i of size Ni×Ni, we construct the standard

patterns of the next level, Q1
i+1, . . . , Q

`i
i+1 of size Ni+1 ×Ni+1. Each new pattern Qji+1 is defined as an

ni+1 × ni+1 array composed of blocks Q1
i , . . . , Q

`i
i .

Since `i = n2
i+1, we may require that each block Qki is used exactly once in every Qji+1. In other

words, every standard block Qji+1 can be represented by a permutation

πj : {1, . . . , `i} → {1, . . . , `i}

that arranges the set of standard patterns of the previous level.
There are (`i !) possibilities to choose each permutations πj and (`i !)`i+1 possibilities to choose all

permutations π1, . . . , π`i+1
. From a trivial counting argument it follows that there exists a tuple of

permutations π1, . . . , π`i+1
such that

C(π1, . . . , π`i+1
) ≥ `i+1 log(`i!)

Therefore, for every computable threshold hi, we can algorithmically find a tuple of permutations such
that

Chi+1(π1, . . . , π`i+1
) ≥ `i+1 log(`i!).

Since each πj is uniquely determined by the corresponding pattern Qji+1, we obtain

Chi+1−gapi+1(Q1
i+1, . . . , Q

`i+1

i+1) ≥ `i+1 log(`i!),

where gapi+1 is the time required to extract the permutations πj from the corresponding patterns Qji+1.
Thus, if the threshold hi+1 is much bigger than ti, we conclude that

Cti(Q1
i+1, . . . , Q

`i+1

i+1) ≥ `i+1 log(`i!),

i.e., the Main Property holds true for the level i+ 1.

Lemma 2. For every i > 0 and every tuple of k (pairwise different) standard blocks Qj1i , . . . , Q
jk
i , we

have that

Ct
′
i(Qj1i , . . . , Q

jk
i) ≥ 1

2
k log(`i−1!)

(the threshold t′i is specified in what follows).

Remark 11. The factor of 1
2 in this lemma could be changed to any constant less than 1.

Proof of lemma. Assume for the sake of contradiction that for some blocks Qj1i , . . . , Q
jk
i we have

Ct
′
i(Qj1i , . . . , Q

jk
i) <

1

2
k log(`i−1!)

Then we can provide the following description of the entire list of standard blocks of level i:

• a description of size 1
2k log(`i−1!) for these particular k blocks,

• k log `i bits to specify the indices j1, . . . , jk of these particular k block,

• a straightforward description for the other standard blocks of level i, which requires (`i−k) log(`i−1!)
bits.

28

We need to add an overhead of size O(log k + log i) to join these parts in one description. It remains to
observe that the summarized length of these data is less than `i+1 log(`i!) (the right-hand side of (9)).

Let us estimate the time required to produce the list of all standard blocks of level i using this
description. First of all, we compute the list of all standard blocks of lower rank Qji−1 (we have to
assume that the time required to compute these blocks is much less than ti). Then, in time t′i we obtain
the k “peculiar” blocks with a short description. With poly(Ni) steps we generate the remaining (`i−k)
standard blocks, and in poly(Ni) more steps we merge all blocks in one list. Assuming that ti is large
enough, we get a contradiction with the Main Property of standard blocks.

Lemma 3. For every standard block of rank i, the plain Kolmogorov complexity of Qji is very low:

C(Qji) = O(logNi).

Proof. There are `i standard blocks of level i, and the list of all standard blocks can be computed given
i. Therefore,

C(Qji) = O(log `i).

For the chosen parameters we have log `i = log(n2
i+1) = O(logNi).

Observe that the construction of standard blocks is explicit, and we can choose a computable function
T̂ (n) so that all standard blocks are computed given i in time T̂ (n). This observation implies the
statement of Remark 2.

Stage 2: complexity of patterns inside standard blocks. Let P be an array of m ×m (pairwise dis-
tinct) standard blocks of level i. Observe that the size of P (measured in individual letters) is k × k,
where k = mNi.

Due to Lemma 2, we have

Ct
′
i(P) ≥ 1

2
m2 log(`i−1!) = Ω(m2`i−1) = Ω

(
(mni)

2
)
.

In other words, the time-bounded Kolmogorov complexity of this pattern of size k × k is bigger than

Ω
(
(mni)

2
)

= Ω
(
k2/(n0 · . . . · ni−1)2

)
.

Stage 3: the closure of standard blocks. We define a shift as the closure of the standard blocks: a
finite pattern is globally admissible if and only if it appears in a 2×2 array composed of standard blocks
(of some level i). Due to the hierarchical structure if standard blocks, we can conclude that an Ni ×Ni
pattern is not globally admissible if it never appears in 2×2 arrays composed of standard blocks of rank
i.

Let P be a globally admissible pattern of size k× k in the shift defined above. Let 2Ni ≤ k < 2Ni+1

for some i > 0. Then P must be covered by a 2 × 2 array of standard blocks of level i + 1. Therefore,
a constant fraction of P can be represented as an array of blocks of level i (inside a standard block of
level (i+ 1)). We can apply the bound from Stage 2 and conclude that

CTi(P) = Ω(k2/(n0 · . . . · ni−1)2) (10)

(assuming that the gap between t′i and Ti is large enough).
On the other hand, the plain Kolmogorov complexity of every globally admissible block is very low.

Indeed, to describe a globally admissible block P of size k, we need to specify four standard blocks
covering P and the position of P with respect to the grid of standard blocks. Due to Lemma 3, we
obtain

C(P) = O(log k).

Stage 4: the choice of parameters. We chose constants c in (8) so that for k = Ω(Ni) equality (10)
rewrites to

CTi(P) = Ω(k2−ε).

It remains to comment the choice of time bounds. The threshold Ti is given in the theorem. Given Ti,
we choose a suitable threshold t′i (the gap between t′i and Ti must be large enough, so that the argument

29

due to the bar of red letters
on the top, this row in the
8× 8 frame can start with at
most 5 black letters

we control max of E for this n× n frame

line 1

line 2

line 3

.

.

.

line n

line 2n + 1

line 2n + 2

.

.

.

line 3n

3n

3n− 1

Figure 14: An n× n pattern P with a neighborhood that enforces the desired maximum of E .

on Stage 3 works). Then, given t′i we choose a suitable value ti (the gap between ti and t′i must be large
enough, so that the proof of Lemma 2 is valid). The choice of ti determines the value of hi on Stage 1.
The definition of these sequences is inductive: to define ti we need to know ti−1 and the time required
to produce the standard blocks of level (i− 1) (see the proof of Lemma 2).

As Ti is a computable function of i, we can choose computable sequences t′′i , t′i, ti, and hi. This
observation concludes the proof.

C Proof of Lemma 1

In this section we sketch the proof of Lemma 1. For every simple pattern P of size n × n we should
construct a configuration R on the complement of Bn, so that

(i) P and R are compatible,

(ii) for every other simple pattern P ′ compatible with R we have E(P ′) 4 E(P).

To build the required R, we follow the construction from [6].
By definition, each row of P consists of a contiguous sequence of black letters followed by a contiguous

sequence of white letters, as shown in Fig. 11b. The pattern R will consist of a finite number of black
and red letters (the other letters will be white).

Black letters in R. To construct R, we extend each stripes of black letters in P to the left, so
that in the first line we get a contiguous sequence of (3n− 1) black letters (including those black letters
that belong to P), in the second line a contiguous sequence of (3n− 3) black letters, in the third line a
contiguous sequence of (3n − 5) black letters, etc. In the n-th line we obtain a contiguous sequence of
(n+ 1) black letter, see Fig. 14.

Red letters in R. Similarly, we put in R stripes of red letters: 3n contiguous red letters in line 3n,
(3n−2) contiguous red letters in line 3n−1, . . . , (n+2) contiguous red letters in line (2n+1). We place
these stripes of red letters so that for each i = 1, . . . , n the leftmost red letter in the line (3n− i+ 1) is
vertically aligned with the leftmost black letter in the line i, as shown in Fig. 14.

All other letters outside Bn are made white.

30

Claim 1. The constructed R is compatible with P .

Proof of Claim 1: This fact is easy to verify: we have chosen the lengths of black and red stripes so
that they cannot form a forbidden pattern (as in Fig. 11a), regardless the horizontal placement of each
stripes. Indeed, on the one hand, the black letters of the i-th line cannot interfere with the red stripes
in lines 3n, 3n − 1, . . . , 3n − i, since this black stripe is too short to form a forbidden pattern together
with any of these red stripes; on the other hand, the black letters of the i-th line cannot interfere with
the red stripes in lines 3n− i− 1, 3n− i− 2, . . . , 2n+ 1, since those red stripes are too short.

Claim 2. The constructed R is compatible only with simple patterns P ′ such that E(P ′) 4 E(P).

this n× n pattern P ′ is compatible with the neighborhood

Figure 15: A pattern P ′ with E(P ′) 4 E(P) matches the neighborhood.

by adding one supplementary
black letter we get a forbidden
pattern

this n× n pattern P ′′ is incompatible with the neighborhood

Figure 16: A pattern P ′′ with E(P ′′) 64 E(P) does not match the neighborhood.

31

Proof of Claim 2: If R is compatible with an n × n pattern P ′, the profile of P ′ is not determined
uniquely. In fact, R can be compatible with simple patterns P ′ whose profiles are strictly less than the
profile of P (in each row of P ′ the number of black letters must be not greater than the number of black
letters in the corresponding row of P), see Fig. 15. On the other hand, if at least one row of P ′ contains
more black letters that the same row in P , than P ′ and R are incompatible, i.e., the joint of P ′ and R
contains a forbidden pattern, as shown in Fig. 16.

The lemma follows from Claim 1 and Claim 2. For a more detailed argument we refer the reader
to [6].

Remark 12. In the construction discussed above, pattern R does not determine uniquely the epitomes
of P ′ compatible with R (these epitomes can be different, though they all must be not greater than
the epitome of the initial pattern P). This is why we cannot apply Proposition 2, and we have to use
Proposition 3.

32

	1 Introduction
	2 Preliminaries
	3 High resource-bounded Kolmogorov complexity is compatible with low block complexity
	4 Epitomes
	4.1 Plain epitomes
	4.2 Ordered epitomes
	4.3 The technique of ordered epitomes and union-increasing chains of extender sets

	5 Conclusion
	A Proof of Theorem 3
	B Proof of Theorem 4
	C Proof of Lemma 1

