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Time-Optimal Pick-and-Throw S-Curve
Trajectories for Fast Parallel Robots

Ghina Hassan, Marc Gouttefarde, Member, IEEE, Ahmed Chemori, Senior Member, IEEE, Pierre-Elie Hervé,
Maher El Rafei, Clovis Francis and Damien Sallé

Abstract—In suitable robotic applications, throwing an ob-
ject instead of placing it has the potential of improving the cycle
time. In this context, a challenge is to generate time-optimal
Pick-and-Throw (P&T) trajectories in order to further increase
productivity. This paper introduces a methodology to determine
a minimum-time throwing motion. This methodology consists
essentially in determining an optimal release configuration (i.e.
position and velocity) allowing an object to be thrown towards a
desired target while minimizing the travel time of the throwing
motion of the robot. To validate the potential of the proposed
P&T approach, a comparison with the standard Pick-and-Place
(P&P) process and an existing P&T method is made using
the Delta-like parallel robot T3KR under different operating
conditions. The obtained experimental results demonstrate the
superiority and efficiency of the proposed P&T approach over
the usual P&P and the existing P&T methods in terms of
picking speed and cycle time.

Index Terms—pick-and-throw, pick-and-place, minimum-
time trajectory, parallel robots.

I. INTRODUCTION

IN industry, SCARA robots [1] and Delta-like parallel
robots [2]–[5] are commonly used for Pick-and-Place

(P&P) operations. Recently, robots have been used in se-
lective waste sorting to complement traditional pneumatic
NIR-sorting machines. Indeed, these machines have great
detection capabilities but a not perfect selectivity. P&P
robots are also used to remove the undesired material from
the output flows to increase their purity. Most of the existing
sorting robots have been developed on the basis of the Delta
robot owing to its high dynamic capability. One example is
the ABB’s Delta robot used as the basis of a sorting robot
[6]. It is equipped with artificial intelligence (AI) to identify
recyclables. However, adopting P&P in such applications
presents many limitations in terms of picking efficiency and
workspace size. Hence, provided that the placing accuracy
is not critical in waste sorting and that the objects can
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accept additional impact, throwing an object by means of
a robotic system, instead of placing it, can make recycling
more efficient.

Throwing is known by its ability to increase the capa-
bility of a robotic manipulator as well as the range of
its workspace by throwing objects outside its maximum
kinematic range. Thanks to this potential, throwing robots
have been used in several applications. For instance, in the
military field, a throwing robot has been used to displace
goods [7], [8]. Furthermore, a throwing robot can be useful
to gather information on a disaster site for search and
rescue operations, such as in [9] where a a casting device
is thrown by a robotic system. Fagiolini et al. [10] dealt
with casting manipulation, which consists in throwing the
robot end-effector to catch objects located at a relatively
large distance from the robot’s base. Recently, the throwing
technique has been applied in waste industry. A dual arm
throwing robot has been developed as a collaborative robot
(CoBot) working alongside people to sort waste [11]. In
[12], a P&T approach with a Delta robot is applied for
fast waste sorting. Real-time experimental results prove the
improved performance of the throwing procedure, compared
to conventional P&P. Several other research works dealt
with throwing [13]–[17]. In particular, Zeng et al. [18]
investigated the challenge of accurately throwing arbitrary
objects. They proposed a framework for jointly learning
grasping and throwing policies from visual observations that
enable TossingBot, a picking robot using a UR5 arm, to pick
and throw arbitrary objects outside of its maximum range.

As mentioned above, throwing has the potential to speed
up the displacement of objects and maximize productivity.
In order to take full advantage of this benefit, a time-
optimal throwing motion should be generated. This can
be accomplished by first determining the appropriate and
feasible geometric path and then optimizing the motion time
along this path. This is of great importance for waste sorting
since the robot can perform more picks per minute and
thereby a large amount of waste can be processed. To the
best of our knowledge, none of the existing research works
address the time-minimization of a P&T trajectory through
the optimization of the throwing parameters. In all the above
mentioned works, one or two of the initial throwing param-
eters are fixed, while the others are determined according to
the target position without any optimization. For instance, in
[12], the trajectory is designed as a usual P&P trajectory with
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the difference that the object is thrown at a given position
on the horizontal path between the pick and target positions,
resulting in a null initial release angle.

The main objective of this paper is to determine an appro-
priate geometric path for a P&T motion and to find along this
path the throwing configuration yielding a minimum-time
motion. The P&T motion consists mainly of an acceleration
and a deceleration phase. For each phase, a third-order
polynomial S-curve is adopted as a motion profile to obtain
smooth, continuous and fast trajectories. The main contribu-
tion of this work is a method to determine an optimal release
configuration (position and velocity) allowing an object to
be thrown at a desired target while minimizing robot motion
time. The constraints on the robot workspace, maximum
speed, acceleration and jerk are taken into account. The
corresponding optimization problem is formulated in two
different ways. In the first one, the time between the pick
position and the release position is considered as the ob-
jective function. The optimization variables are the release
position, velocity and acceleration while constraints induced
by the minimum-time S-curve and by ballistic motion target
are taken into account. In the second method, it is shown
that this optimization problem can be simplified as it boils
down to minimizing the distance between the pick posi-
tion and the release position with this distance and the
release angle as the only variables. The second method
requires less computational time, which is useful for real-
time experiments where the optimal release configuration
must be calculated online based on the actual pick and target
positions. A comparison of the proposed P&T approach with
standard P&P and with the P&T method proposed in [12] is
conducted through real-time experimental scenarios with the
parallel robot T3KR, under different operating conditions, to
validate its effectiveness.

The rest of the paper is organized as follows. Section II
is dedicated to the minimum-time S-curve trajectories. The
main contribution of the paper is presented in Section III
where the methodology to determine a minimum-time throw-
ing motion is presented. The description of T3KR parallel
robot and the real-time experimental results are provided
in Section IV. Section V provides conclusions and future
works.

II. MINIMUM-TIME S-CURVE TRAJECTORY

A. Polynomial S-Curve Motion Profile

A smooth enough trajectory with a limited jerk is neces-
sary to avoid end-effector residual vibrations and thereby
improve trajectory tracking accuracy. S-curve trajectories,
developed for the first time by Castain et al. [19], can meet
these requirements by providing high-speed motions with
minimum positioning time and minimum residual vibrations,
e.g. [20]–[23]. The S-curve profiles proposed in the litera-
ture can be based on polynomial, trigonometric or sigmoid
equations [24], [25]. In this work, a third order polynomial
S-curve is considered since it provides a good trade-off

Fig. 1. Third order polynomial S-Curve model.

between smoothness and motion time, and it has a moderate
complexity.

As illustrated in Fig. 1, the motion profile of the third
order polynomial S-curve consists of seven segments, among
which the first three and the last three constitute the ac-
celeration and deceleration phases, respectively. The fourth
segment constitutes the constant velocity phase. A symmet-
rical S-curve is considered in the present study, i.e. the
acceleration and deceleration phases are symmetrical. The
jerk along the S-curve trajectory is defined by the following
function of time:

j(t) =


J, t0 ≤ t ≤ t1, t6 ≤ t ≤ t7
0, t1 ≤ t ≤ t2, t3 ≤ t ≤ t4, t5 ≤ t ≤ t6
−J, t2 ≤ t ≤ t3, t4 ≤ t ≤ t5

(1)

where J is the jerk value. The time instants ti are shown in
Fig. 1. The time evolution of the acceleration, velocity and
position can be deduced by successive integrations of (1).

Referring to Fig. 1, d j is the time needed to raise the
acceleration from zero to its maximum value A or to decrease
the acceleration from its maximum value A to zero (i.e.
the time during which the jerk remains constant at its
maximum value J), da corresponds to the time during which
the acceleration profile remains constant and equal to the
maximum acceleration A, and dv corresponds to the time
during which the velocity profile remains constant. The
above three time intervals can be expressed as follows:

d j =
A
J
, da =

V
A
− A

J
, dv =

P
V
− V

A
− A

J
(2)

where A and V are the velocity and acceleration achieved
for a given displacement P. Note that d j, da and dv should
all be greater than or equal to zero. The total time to travel
a distance P is then expressed as follows:

T = 4d j +2da +dv (3)

B. Minimum-Time S-Curve Trajectory

Several methods have been proposed in the literature to
generate time-optimal S-curve trajectories [26]–[28]. In this
section, an original algorithm formulation to compute the
maximum velocity V and acceleration A of a minimum-time
3rd order S-curve trajectory is introduced. This formulation
is equivalent to the one presented in [29]. However, it
stems from a proof of the time optimality of this algorithm.
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Algorithm 1 Minimum-Time S-Curve Trajectory
Input: P, J, Vmax, Amax
Output: A and V yielding the minimum time

1: if (J2P≤ 2A3
max) then

2: if (JP2 ≤ 4V 3
max) then

3: V = 3
√

JP2

4 and A = 3
√

J2P
2

4: else
5: V =Vmax and A =

√
JVmax

6: end if
7: else
8: if (

√
JVmax ≤ Amax) then

9: V =Vmax and A =
√

JVmax
10: else
11: A = Amax

12: V =
−A2

max+
√

A4
max+4J2PAmax
2J

13: if (V >Vmax) then
14: V =Vmax
15: end if
16: end if
17: end if

Moreover, it will be used in Section II-C to gain further
insight into the properties of the minimum-time 3rd order
S-curve trajectory.

Taking into account constraints on the maximum acceler-
ation and velocity (A ≤ Amax and V ≤ Vmax), the goal is to
minimize the total time T needed to travel the distance P.
This can be achieved by determining the optimal acceleration
A and the optimal velocity V being given J, P, Amax and
Vmax. By substituting the three time intervals (2) in the total
displacement time (3), the function T to be minimized can
be expressed as:

T =
P
V
+

V
A
+

A
J

(4)

The optimization problem of finding the minimum-time
S-curve trajectory is then formulated as minimizing T
under the constraints da ≥ 0, dv ≥ 0, 0 <V ≤Vmax and
0 < A≤ Amax. As proved in [30], using the KKT optimality
conditions, the optimal solution of this problem can be
computed by Algorithm 1 which determines the values of
V and A yielding the minimum-time polynomial S-curve
trajectory.

C. Time T and velocity V as functions of displacement P

With acceleration A and velocity V computed by Algo-
rithm 1, this section points out that the total displacement
time T given in (4) is a continuous increasing function of
the displacement P and also that the maximum velocity V
is a continuous nondecreasing function of P. These two
properties of the minimum-time S-curve trajectory will be
used in Section III to devise a method to generate minimum-
time throw motions.

According to its expression in (4), T depends on P, V and
A. Referring to Algorithm 1, either V and A are functions of

Fig. 2. A typical evolution of the increasing function T (P) when
√

JVmax <
Amax (left) and the nondecreasing function V (P) when

√
JVmax ≥ Amax

(right).

P, e.g. at line 3, or else they are constant, i.e., independent
of P (e.g. at line 5). When V and A are independent of P,
from (4), T is directly seen to be an increasing function
of P. On the contrary, when V or A is a function of P,
it is not obvious from (4) that T is an increasing function
of P. Indeed, V and A appear both at the numerator and
denominator of one of the terms of the sum on the right-
hand side of (4).

In fact, when P is sufficiently small, V and A are the
functions of P given at line 3 of Algorithm 1 and, when P
increases, the conditions on P at lines 1, 2 and 13 will not
be satisfied anymore for large values of P, so that V and A
become constant. Let us look at the relationship between the
conditions on P at lines 1 and 2 of Algorithm 1, namely

P≤ 2A3
max

J2 and P≤

√
4V 3

max

J
(5)

respectively. In particular, when P increases from zero, line 5
will be executed if and only if√

4V 3
max

J
<

2A3
max

J2 . (6)

which, after some elementary calculations, can be shown to
be equivalent to √

JVmax < Amax. (7)

Hence, to analyze the dependency of T and V on P, two
cases are distinguished: (7) satisfied and (7) not satisfied. In
both cases, as detailed in [30], the function T (P), obtained
with Algorithm 1, can be proved to be a continuous increas-
ing function over 0≤ P≤+∞ as illustrated in Fig. 2 for the
case where (7) is satisfied.

Moreover, as also detailed in [30], the function V (P),
obtained with Algorithm 1, is a continuous nondecreasing
function of P. Since they will be used in Section III-E, the
different expressions of V (P) are presented below.

1) Case 1 –
√

JVmax < Amax: The continuous nonde-
creasing function V (P) is composed of two segments:
Namely, for 0≤ P≤

√
(4V 3

max)/J, V (P) = 3
√

JP2/4, and for√
(4V 3

max)/J < P≤+∞, V (P) =Vmax.
2) Case 2 –

√
JVmax ≥ Amax: As illustrated in Fig. 2,

the continuous nondecreasing function V (P) is composed of
three segments:
• For 0≤ P≤ 2A3

max/J2, V (P) = 3
√

JP2/4.
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Fig. 3. Illustration of the pick and throw motion consisting of robot motion
acceleration and deceleration phases together with the ballistic motion of
the thrown object.

• For 2A3
max/J2 ≤ P≤

(
JV 2

max +VmaxA2
max
)
/(JAmax), V (P)

is given by the expression at line 12 of Algorithm 1.
• For

(
JV 2

max +VmaxA2
max
)
/(JAmax)≤ P≤+∞,

V (P) =Vmax.

III. MINIMUM-TIME THROW MOTION

A. Problem Formulation

A robot moving in 3D environment has to throw an object
towards a desired target point Pf , located inside or outside
of its workspace. The main objective is then to search for an
optimal throwing configuration (i.e. position and velocity) in
order to increase as much as possible the number of picks
per minute. This configuration should thus allow to throw the
object into the desired target while ensuring a minimum-time
robot movement. Referring to Fig. 3, the throw motion of
the robot end-effector reference point P(t) and the ballistic
motion PB(t) of the object B are defined as follows.

Throw motion: The robot trajectory consists of successive
acceleration and deceleration phases. At t = 0, the manipu-
lator is at the pick position with zero velocity, i.e. P(0) = P0
with

.
P(0) = V0 = 0. Once the robot picks the object B, it

accelerates to the release position at time tr. The release
configuration is defined by the position Pr and velocity.
P(tr) = Vr 6= 0. After tossing B instantaneously, the robot
has to decelerate back to the next pick position at time t1 to
pick another object at point P1 with velocity

.
P(t1) =V1 = 0.

Ballistic motion: Once released, the object B follows a
free-flight motion from the release point Pr with the velocity
Vr to the desired target PB(t f ) = Pf reached at time t f .
During the throw motion, the robot must satisfy two sets
of constraints. The first set of constraints Σ includes the
limits of the workspace as well as the maximum velocity,
acceleration and jerk of the robot’s end-effector. The second
set of constraints Ω ensures that the ballistic trajectory
interacts with the desired target position set Γtarget . This
last one includes the target position point Pf and possibly a
tolerance for reaching the target. The target position set can
have different forms, if it is a hyper-rectangle, the tolerance
can be expressed as follows: P min

target < PB(t f )< P max
target .

For given pick positions P0 and P1, and target position
P f , the problem addressed in this paper is the determination

of the release configuration corresponding to a minimum-
time throw motion, this configuration being characterized by
the release position Pr = [Xr,Yr,Zr] and the corresponding
release velocity Vr = [Vxr,Vyr,Vzr]. On the one hand, this
configuration shall ensure that the thrown object will reach
the desired target and, on the other hand, it should guarantee
a minimum-time movement for the robot, while satisfying
the sets of constraints Σ and Ω. The geometric path from P0
to Pr is a straight line lying in the vertical plane containing
P0 and P f , θr denotes the angle between this straight line
and the straight line P0−Pf . Hence, θr is an unknown to be
determined along with the position of Pr along the straight
line and the velocity Vr. The description of the throw motion
path will be detailed in Section III-C.

B. Recall of Mathematical Modeling of Ballistic Motion

Considering the ballistic motion of an arbitrary object B
in 3D space, we assume that there is no obstacles and that
air resistance is negligible so that the ballistic trajectory is
only affected by gravity. Moreover, the object is considered
as a pointwise mass. The ballistic motion of the object B
is illustrated in Fig. 3. Applying Newton’s second law to B
gives simply g = a, where g ∈R3 is the gravity acceleration
vector (g = [0,0,−g]T , g = 9.81 m/s2, and a ∈ R3 is the
acceleration of B. By integration of the equation g = a, the
trajectory of B along the x, y and z axes can be expressed
as follows:

xB(t) =Vxrt +Xr, yB(t) =Vyrt +Yr (8a)

zB(t) =−
1
2

gt2 +Vzrt +Zr (8b)

As shown in Fig. 3, P f = [X f ,Yf ,Z f ]
T is the target position

of B, reached at the final time t f (i.e. PB(t f ) = Pf ). With
zB(t f ) = Z f , t f can be calculated from (8b) as follows:

t f =
Vzr

g
+

√(
Vzr

g

)2

+2
Zr−Z f

g
(9)

C. Throw Motion Geometric Path and S-curve Motion Pro-
file

The geometric path of the throw motion includes four
points: The pick position of the object, P0 = [X0,Y0,Z0],
the release point, Pr = [Xr,Yr,Zr], the pick position of the
second object, P1 = [X1,Y1,Z1], and the intermediate point,
Pint = [X1,Y1,Z1 +Zoff]. The overall throw motion can then
be divided into three phases: (i) An acceleration phase along
the straight line from P0 to Pr, (ii) a deceleration phase
from Pr to Pint , and (iii) finally, a vertical movement from
Pint to P1. Once the robot end-effector reaches the release
position Pr with the release velocity Vr, it throws the object
towards the target position and then moves forwards until
the velocity becomes zero. After that, it starts decelerating
towards Pint in a continuous motion. The parallel robot
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T3KR, used in the experiments (cf. Section IV), cannot
decelerate directly towards P1 because the end-effector must
move down vertically in order to successfully grasp the
object. The z coordinate of Pint is then chosen as Z1 +Zoff,
with Zoff > 0 being a small vertical offset.

The three phases of the robot throw motion are defined
as point-to-point movements. Besides, the S-curve velocity
profile described in Section II is adopted to generate each
movement, where a minimum-time point-to-point movement
is obtained by using Algorithm 1. As mentioned in Sec-
tion II-A, the motion profile of a S-curve-based point-to-
point movement consists of seven segments (cf. Fig. 1). For
each segment of motion, the evolution of the variation of the
motion profile with time, S(t), is governed by the following
equation:

S(t) = Si +Vi(t− ti)+
1
2

Ai(t− ti)2 +
1
6

J(t− ti)3 (10)

where J,Ai,Vi,Si, ti are the initial values of jerk, acceleration,
velocity, position and time corresponding to each segment.
The desired Cartesian position of the robot end-effector is
then generated as follows:

Xd(t) = Xi +
S(t)
P

(X f −Xi) (11)

where Xd(t)= [xd(t),yd(t),zd(t)] is the desired Cartesian tra-
jectory, Xi = [xi,yi,zi] and X f = [x f ,y f ,z f ] are the initial and
final positions of a point-to-point movement, respectively.
P = ‖X f −Xi‖ is the distance to be traveled. By means of
equations (10) and (11) the synchronization between axes is
guaranteed.

Regarding the connection of two consecutive phases (i.e.
corner blending), we exploit an overlap strategy (e.g. trajec-
tory generation with via points [31]) to smooth the trajectory
and eliminate discontinuities. In brief, each trajectory phase
is designed as a point-to-point trajectory. The duration of the
deceleration phase of the first trajectory is compared to the
duration of the acceleration phase of the second trajectory,
and a minimum overlap is determined. This ensures that the
first trajectory will smoothly disappear during the second
trajectory acceleration phase yielding a continuous switching
between the two consecutive trajectories.

D. Determination of the Optimal Release Configuration

The optimal release configuration is defined as the one
leading to a minimum-time throw motion of the robot.
This motion consists of the three phases described in Sec-
tion III-C. Since the third phase is a small vertical movement
required to pick the next object, which is assumed to be
located close to P0, the optimal release configuration is the
one that minimizes the time of the first two phases. By
design of the deceleration phase, the smaller the duration
of the acceleration phase, the smaller is the duration of the
deceleration phase. Hence, the minimum-time throw motion
is obtained by minimizing the time of the acceleration phase.
The release configuration, including Pr and Vr, allowing to

minimize this time, while allowing the object to reach the
target position P f , is the optimal one.

As mentioned above, the adopted motion profile along
the straight line P0−Pr is a 3rd order polynomial S-curve.
For the object to be thrown at a certain distance (to the
target position P f ), the release velocity Vr = ‖Vr‖ should
be relatively high and, according to Section II, the velocity
along the S-curve is maximal (equal to V ) at the half of the
traveling distance, i.e. at P/2. Hence, the traveled distance
P of the S-curve is defined as being equal to twice P0Pr,
P = 2‖Pr−P0‖. Accordingly, the time tr required to travel
the distance from P0 to Pr is then equal to the half of the time
calculated in (4). In this way, the release velocity is equal
to the S-curve maximum velocity, i.e. Vr =V . From (4), the
time tr can then be expressed as a function of Vr and of the
coordinates of Pr as follows:

tr =
1
2

(
2‖Pr−P0‖

Vr
+

Vr

A
+

A
J

)
(12)

The optimal release configuration (Pr,Vr) is then the one
that minimizes the traveling time tr in (12) while satisfying
the two sets of constraints Σ and Ω defined in Section II.

Let us now define x= [x1,x2,x3,x4,x5], where x1 =V =Vr,
x2 = A, x3 = Xr, x4 =Yr and x5 = Zr as well as x1max =Vmax,
x2max = Amax, x3max = Xrmax , x4max =Yrmax and x5max = Zrmax .
As illustrated in Fig. 3, Xrmax , Yrmax and Zrmax are respectively
the x, y and z coordinates of the intersection point between
the straight line P0 − Pf and the boundary of the robot
workspace. With these notations and being given that the
goal is to minimize tr given in (12), the objective function
f (x) to be minimized over x can be defined as:

f (x) =
2
√

(x3−X0)2 +(x4−Y0)2 +(x5−Z0)2

x1
+

x1

x2
+

x2

J
(13)

The optimization problem includes also the following
constraints.

1) Bound constraints: 0 < x1 ≤ x1max, 0 < x2 ≤ x2max,
X0 ≤ x3 ≤ x3max, Y0 ≤ x4 ≤ x4max, and Z0 ≤ x5 ≤ x5max.

2) Nonlinear inequality constraints:

da =
x1

x2
− x2

J
≥ 0 (14)

dv =
2
√

(x3−X0)2 +(x4−Y0)2 +(x5−Z0)2

x1
− x1

x2
− x2

J
≥ 0

(15)
X f −δ ≤ x1 cosθr cos(αxy)t f + x3 ≤ X f +δ (16)

Yf −δ ≤ x1 cosθr sin(αxy)t f + x4 ≤ Yf +δ (17)

where P f = [X f ,Yf ,Z f ], αxy = arctan(x4−Y0,x3−X0) is the
angle between the x-axis and the vertical plane containing P0

and Pr, and θr = arctan
(

x5−Z0,
√

(x3−X0)2 +(x4−Y0)2
)

is the angle between the horizontal plane and P0 − Pr as
shown in Fig. 3. The constraints (14) and (15) are related to
the S-curve ensuring that da and dv are nonnegative, while
(16) and (17) ensure that the object B reaches the target
horizontal position [X f ,Yf ] with a tolerance of δ (chosen as
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δ = 0.005 m in Section IV). Note that the final time t f in
(9) is a function of x1 and x5 as follows:

t f =
x1 sinθr

g
+

√(
x1 sinθr

g

)2

+2
x5−Z f

g
(18)

since the release velocity vector is given by
Vr = x1[cosθr cosαxy,cosθr sinαxy,sinθr].

3) Nonlinear equality constraint: αxy−α = 0, where α =
arctan(Yf −Y0,X f −X0). This constraint guarantees that the
release point lies in the vertical plane containing P0 and Pf .

To sum up, the problem of minimizing f (x) over x subject
to the constraints defined above is a nonlinear constrained
optimization problem where the S-curve time minimization
is coupled with the determination of the ballistic motion
release configuration. This problem can be solved with
standard nonlinear programming solvers.

E. Optimization problem simplification

The nonlinear constrained optimization problem intro-
duced in Section III-D can be substantially simplified. First,
as shown in Fig. 3, since both the robot throw motion accel-
eration phase and the ballistic motion lie in the vertical plane
containing P0, Pr and Pf , the three-dimensional problem can
easily be converted into a planar one (setting the tolerance
zone defined in (16) and (17) aside). Moreover, the pick
position P0 is known. Hence, without loss of generality,
we can choose the reference frame origin as being P0 and
its x-axis oriented along the projection of the straight line
P0−Pr on the (x,y) plane. Then, the vertical plane containing
the acceleration phase and the ballistic motion is the (x,z)
plane. Accordingly, referring to (8a) and 8b, yB(t) = 0,∀t
and after substituting the time t calculated from the equation
of xB(t) into zB(t), and rearranging the terms, the following
expression is obtained:

zB =−g
2
(xB−Pr cosθr)

2

(Vr cosθr)2 + xB tanθr (19)

where, with the chosen reference frame, αxy = 0 and
P0 = 0 so that Pr = [Xr,Yr,Zr] = Pr[cosθr,0,sinθr] and
Vr =Vr[cosθr,0,sinθr]. By substituting the coordinates of
the target position Pf into (19) (xB = X f and zB = Z f ), the
release velocity Vr can be expressed as a function of the
distance Pr and the release angle θr as follows:

Vr =
−Pr +

(
X f /cosθr

)√
2
g (X f tanθr−Z f )

(20)

with arctan
(
Z f /X f

)
≤ θr ≤ π/2. Equation (20) is the bal-

listic motion target constraint that shall be satisfied for the
object to reach the target Pf .

Besides, as explained in Section III-D, we have P = 2Pr
and V = Vr where P and V are the displacement and
maximum velocity of the S-curve motion profile used to
generate the throw motion acceleration phase. Referring to
Section II-C, the S-curve total time T = 2tr is an increasing

Fig. 4. The ballistic motion constraint and the minimum-time S-curve
induced constraint as functions Vr(Pr). For a given θr , there exists a unique
couple (P∗r (θr),V ∗r (θr)) satisfying both constraints.

function of the distance P and thus of Pr = P/2. Conse-
quently, minimizing tr, which is f (x)/2 in Section III-D, is
equivalent to minimizing Pr, i.e., the minimum-time throw
motion is obtained by minimizing Pr.

The minimization of Pr is subjected to the ballistic motion
target constraint in (20) and to a constraint due to the
minimum-time S-curve motion profile. Indeed, the latter
imposes a relationship between P and V and thus also
between Pr and Vr since P = 2Pr and V = Vr. As pointed
out in Section II-C, this relationship takes the form of Vr
being a continuous nondecreasing function of Pr composed
of either two or three segments. For each of these segments,
the expression of Vr(Pr) is known as detailed in Section II-C
for V (P). It is worth noting that this function Vr(Pr) is
nondecreasing while, in (20), Vr is a decreasing linear
function of Pr for a given θr. Hence, as illustrated in Fig. 4,
for any value of θr, arctan

(
Z f /X f

)
≤ θr ≤ π/2, there exists

a unique couple (P∗r (θr),V ∗r (θr)) satisfying both the function
Vr(Pr) from the constraint induced by the minimum time S-
curve and the function Vr(Pr) from the ballistic motion target
constraint in (20). These values of Pr and Vr depend on θr,
and this is the rationale of the notations P∗r (θr) and V ∗r (θr).
Hence, minimizing Pr boils down to finding the value of θr
that yields the smallest P∗r (θr).

Based on the above analysis, an efficient method to
determine P∗r (θr) can be devised as follows. First, note that
obtaining a closed-form expression of Pr as a function of θr,
i.e. eliminating Vr in (20) by means of the expression Vr(Pr)
obtained from the S-curve induced constraint (Section II-C),
is difficult except in the case where Vr(Pr) =Vmax. Indeed,
in this case, (20) implies

Pr =
(
X f /cosθr

)
−Vmax

√
2(X f tanθr−Z f )/g. (21)

An analysis of this function shows that it possesses a unique
minimum Pm

r = Pr(θ
m
r ) for arctan

(
Z f /X f

)
≤ θr ≤ π/2.

Moreover, this minimum can be straightforwardly calculated
by solving a univariate nonlinear equation in θr obtained
from dPr/dθr = 0. Then, the two cases defined above in
Section II-C have to be distinguished.



PAPER SUBMITTED TO IEEE/ASME TRANSACTIONS ON MECHATRONICS 7

Fig. 5. In the case
√

JVmax < Amax, this figure shows the minimum
Pm

r = Pr(θ
m
r ) of the function in (21) (case where Pm

r <
√

V 3
max/J) and the

optimal release configuration P∗r , V ∗r and θ ∗r .

Case 1 –
√

JVmax < Amax. Referring to Fig. 4, if
Pm

r ≥
√

V 3
max/J, the problem is solved since the optimal

release configuration is P∗r = Pm
r and V ∗r =Vmax. Otherwise,

as illustrated in Fig. 5, the S-curve induced constraint is not
satisfied at Pm

r and the optimal release configuration (P∗r ,
V ∗r ) lies on the first segment Vr =

3
√

JP2
r of this constraint.

The optimal release configuration is obtained by solving
the following nonlinear optimization problem where the
nonlinear equation g(Pr,θr) = 0 is obtained by replacing Vr
in (20) by 3

√
JP2

r .

min
Pr ,θr

Pr s.t. g(Pr,θr) = 0 (22)

0≤ Pr ≤
√

V 3
max/J

arctan
(
Z f /X f

)
≤ θr ≤ π/2

The solution of this optimization problem is P∗r and θ ∗r
where P∗r is the smallest value of Pr allowing to reach
the ballistic motion target with the minimum-time S-curve
motion profile for the throw motion acceleration phase. In
other words, P∗r , θ ∗r and V ∗r = 3

√
JP∗2r constitute the optimal

release configuration. As shown in Fig. 5, it is worth noting
that the ballistic motion target constraints for θ m

r and θ ∗r are
close to each other (this comes from the fact that X f /cosθr
is an increasing function of θr). Hence, using Pm

r and θ m
r

as an initial estimate of the solution of (22) leads to a fast
solving of this optimization problem.

Case 2 –
√

JVmax ≥ Amax. Referring to Fig. 2 and
Section II-C, if the point (Pm

r , Vmax) lies on the
third segment of the S-curve induced constraint, i.e.
Pr ≥

(
JV 2

max +VmaxA2
max
)
/(2JAmax), then the optimal release

configuration is P∗r =Pm
r and V ∗r =Vmax. Otherwise, a closed-

form expression of Pr as a function of θr is obtained by
replacing Vr in (20) by A2

max/J. Similarly to the case of (21)
discussed above (with A2

max/J in place of Vmax), this function
possesses a unique minimum PM

r = Pr(θ
M
r ) which can be

easily found by solving a univariate nonlinear equation.
If PM

r ≤ A3
max/J2, then the optimal release configuration

Fixed base

Main actuator

Mobile platform

Passive spherical 
 joint

Forearm

Reararm

Revolute active 
joint

Integrated actuator 
on the platform

Fig. 6. CAD view of the T3KR parallel robot and its main components.

(P∗r , V ∗r ) lies on the first segment of the S-curve induced
constraint and can be efficiently calculated by solving the
optimization problem (22) with the initial estimate (PM

r , θ M
r ).

Otherwise, the optimal release configuration (P∗r , V ∗r ) lies on
the second segment of the S-curve induced constraint. It can
then be obtained by solving an optimization problem similar
to (22) but with g(Pr,θr)= 0 obtained from the expression of
V (P) at line 12 of Algorithm 1, and with the initial estimate
(PM

r , θ M
r ).

In summary, the optimal release configuration (P∗r , V ∗r )
yielding a minimum-time throw motion can be efficiently ob-
tained by solving one or two univariate nonlinear equations
and one optimization problem (22) having two variables
with bound constraints and one equality constraint. Solving
this rather simple optimization problem takes a short time
especially since an initial estimate close to the optimal
solution is known. Hence, compared to the nonlinear con-
strained optimization problem introduced in Section III-D,
the solving method presented in this section is more efficient.
Furthermore, it provides insight into the nature of the prob-
lem of determining the optimal release configuration. It has
notably been pointed out that the corresponding optimization
problem possesses a unique minimum, i.e., as defined in this
paper, the optimal release configuration is unique.

IV. REAL-TIME EXPERIMENTAL RESULTS

A. Description of the Experimental Testbed

The T3KR robot (3-Translation Kinematically Redun-
dant robot) is a rigid-link parallel robot with an optimized
workspace to footprint ratio, designed by Tecnalia, LIRMM
and SATT AxLR. The CAD view of T3KR is shown in
Fig. 6. It is a kinematically redundant Delta-like parallel
robot having four kinematic chains providing three trans-
lations at the mobile platform. An actuator located on the
mobile platform allows the rotation of the end-effector
around the z-axis but this rotation is not needed in the present
work. Due to its asymmetrical mechanical structure, T3KR
has an elliptical workspace in top view. The actuator of each
kinematic chain can generate a maximum torque of 530 Nm.
The robot is controlled by an industrial PC equipped with
the B&R Automation studio with a sampling frequency
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Fig. 7. The experimental testbed: T3KR robot, conveyors, recyclable
objects and the sorting box.

of 2500 Hz. The motors motion control is performed by
a PID controller integrated in ACOPOSmulti B&R drive.
The mobile platform can reach a maximum speed of 6 m/s
(i.e. Vmax = 6 m/s), a maximum acceleration of 12 G (i.e.
Amax = 12G = 120 m/s2) and carry a maximum payload
of 5 kg. The experimental setup is displayed in Fig. 7.
It includes the T3KR robot, two conveyors, three objects
(recyclables) of different masses, sizes and materials, and a
sorting box to deposit the objects.

B. Description of P&P and P&T Reference Trajectories
To validate the efficiency of the proposed P&T technique,

i.e., the minimum-time throw motion introduced in Sec-
tion III, comparisons with a standard P&P method as the
one used in [3] and with the P&T approach proposed in [12]
are conducted in real-time experiments. The three associated
reference trajectories are described hereafter. All the length
units are in meters.

1) Pick-and-Place Reference Trajectory: The 3D view
of the adopted P&P trajectory in Cartesian space is de-
picted in Fig. 8. A standard P&P trajectory consists of
a vertical movement, followed by a horizontal movement
and a final vertical movement. The robot moves from
the initial position Pinitial = [0,−0.77,0] to the first pick
position Ppick1 = [−0.2,−0.25,−0.85] (the conveyor height
is −0.85). After picking the object, it follows the first
P&P trajectory (shown in the red) to place the object at
Pplace = [0.3,0.4,−0.85]. Then, the robot follows the second
P&P trajectory (shown in green) to pick the second object at
Ppick2 = [−0.2,−0.35,−0.85] and moves back to Pplace. The
same movement is repeated for the third object located at
Ppick3 = [−0.3,−0.35,−0.85]. After placing the third object,
the robot goes back to the initial position Pinitial .

2) Existing Pick-and-Throw Reference Trajectory: The
P&T trajectory used in [12] is shown in Fig. 9. This
trajectory is similar to a P&P trajectory and can be described
as follows: After moving the end effector from its initial
position Pinitial to the first pick position Ppick1, the robot
performs a vertical movement followed by a horizontal
movement towards the release point. It throws the object
to the target position P f = [0.3,0.4,−0.85] along the hor-
izontal movement and then makes a U-turn to decelerate

Fig. 8. 3D-view of P&P reference trajectory in Cartesian space.

Fig. 9. 3D-view of existing P&T reference trajectory [12].

towards the next pick position Ppick2. The same movement
is repeated for the third object located at Ppick3. After
throwing the third object, the robot returns back to its
initial position. In [12], the path of the P&T trajectory is
presented without describing the release point computation.
In the present experiments, the release points are computed
with the methodology proposed in Section III where only
the horizontal distance to the release position has to be
optimized because, in the P&T trajectory of [12], Zr is fixed,
Vzr = 0 m/s and θr = 0 deg.

3) Proposed Pick-and-Throw Reference Trajectory: The
P&T trajectory proposed in this work is depicted in Fig. 10.
The robot follows the first picking motion from Pinitial to
Ppick1 . After picking the object, the optimal release con-
figuration, including Pthrow1 = Pr1 and Vr1, is calculated
as described in Section III. The robot accelerates while
moving along a straight line towards the calculated release
point Pthrow1 at which it throws the object towards the
target P f . Once released, the object follows a ballistic
trajectory to P f while the robot decelerates back to pick
the second object. The same cyclic movement is repeated
for the second and the third objects, located at Ppick2 and
Ppick3 , respectively. After throwing the third object, the robot
moves back to Pinitial . As a numerical example, in a case
study with 30% of the maximum dynamic performances of
the T3KR robot (i.e. 30% of Vmax = 6 m/s, Amax = 12 m/s2

and J = 3000 m/s3) and for a target position inside its
workspace, Pf = [0.3,0.4,−0.85], the following optimal re-
lease configurations are calculated with the method pro-
posed in Section III: Pthrow1 = [0.09,0.13,−0.75] and Vr1 =
1.8 m/s, Pthrow2 = [0.15,0.17,−0.75] and Vr2 = 1.8 m/s,
Pthrow3 = [0.12,0.17,−0.75] and Vr3 = 1.8 m/s.

C. Obtained Experimental Results

The performance of the proposed P&T approach is eval-
uated through three experimental scenarios. These scenarios
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Fig. 10. 3D-view of the proposed P&T reference trajectory.

are performed under different operating conditions (accel-
eration, speed, and different types of objects of different
sizes, materials and masses, etc.). The three types of objects
considered are: A paper object of 7 g of mass, a metallic can
with a mass of 16 g (∆mass = +128% w.r.t the first object)
and a plastic package of 49 g of mass (∆mass =+600% w.r.t
the first object). The demonstration video of the three tested
scenarios is available at: https://youtu.be/4bRvqKurMJU.
These three scenarios are detailed in the sequel.

1) Scenario 1: It consists in comparing the usual P&P (cf.
Section IV-B1) and the proposed P&T (cf. Section IV-B3)
trajectories inside the workspace, i.e., both the pick and the
target positions are located inside the robot workspace. For
comparison purposes, we use different percentages of the
maximum speed (Vmax = 6 m/s) and maximum acceleration
(Amax = 12 G) of T3KR end-effector. These percentages are
15%, 30% and 40%, which correspond to 0.9 m/s, 1.8 m/s
and 2.4 m/s of maximum velocity, respectively and to 1.8 G,
3.6 G and 4.8 G of maximum accelerations, respectively. The
desired Cartesian positions, generated using the minimum-
time S-curve motion profile, are shown on the left side of
Figs. 11 for the P&P tasks and on the right side of Figs. 11
for the proposed P&T tasks inside the workspace. Figure 12
depicts the time evolution of the desired Cartesian velocity
Vs and acceleration As of the robot end-effector obtained
with the proposed P&T method for the case study that
corresponds to 1.8 m/s of maximum velocity and 3.6 G of
maximum acceleration. As clearly shown in this figure, Vs
and As are continuous. Moreover, they reach their maximum
constraints (i.e. the maximum of Vs is 1.8 m/s while the
maximum of As is 36 m/s2, equivalent to 3.6 G) which is
a consequence of the time optimality of the proposed P&T
method. Similarly, the velocities and accelerations for the
other case studies and those for the next scenarios also attain
their maximum values. The corresponding curves are not
shown due to space limitations.

2) Scenario 2: This scenario consists in comparing, in-
side the robot workspace, the proposed P&T method with
the existing P&T strategy of [12] (cf. Section IV-B2). As in
the previous scenario, this test is performed under 15%, 30%
and 40% of maximum acceleration and maximum velocity.
The desired Cartesian positions of the existing P&T strategy
are depicted on the left side of Figs. 13.

3) Scenario 3: In this scenario, the proposed P&T method
is compared with the existing P&T method of [12], but with
a target position outside the robot workspace. The generated
P&T trajectories are executed with 35%, 40% and 45% of
maximum velocity and maximum acceleration, which corre-
sponds to 2.1 m/s, 2.4 m/s and 2.7 m/s of maximum velocity,
respectively and to 4.2 G, 4.8 G and 5.4 G of maximum
acceleration, respectively. We start with a percentage of 35%
in this scenario because, with a lower percentage, the speed
is not sufficient to throw the object towards the desired target
located outside the workspace, Pf = [0.45,0.65,−0.85]. The
evolution of desired positions is depicted on the left side
of Figs. 14 for the existing P&T method [12] and on the
right side of Figs. 14 for the proposed P&T approach. As it
can be seen, with the increase in the operating acceleration,
the calculated release point is closer to the picking position.
Therefore, the duration of the whole trajectory is reduced
and the robot can perform more picks per minute.

D. Results Discussion

The obtained experimental results demonstrate the superi-
ority of the proposed P&T approach over the standard P&P
method and the existing P&T method of [12]. The number of
picks per minute obtained by each method in each case study
are summarized in the Table I. Inside the workspace, using
the P&P method, the robot can perform 24 to 51 picks per
minute when the acceleration increases from 1.8 G to 4.8 G.
While for the existing P&T method, it can perform 29 to
75 picks/min. However, with the proposed P&T approach,
the obtained number of picks per minute goes from 30 to
120. Therefore, the proposed P&T method outperforms the
two other strategies. At 4.8 G of maximum acceleration,
the existing P&T method increases the number of picks
per minute by up to 32% compared to the P&P approach.
The proposed P&T strategy improves the performance by
57.5% over the standard P&P approach and by 37% over
the existing P&T method, which are significant performance
improvements for applications requiring reduced processing
time and high productivity. Moreover, the improvement
brought by the proposed P&T method over the existing
approaches illustrate the relevance of determining an optimal
release configuration. Regarding scenario 3, the P&T is the
only candidate to perform such a task since the P&P method
cannot place an object outside the workspace of the robot.
At an acceleration of 5.4 G, the robot can reach 65 picks
per minute by adopting the existing P&T method and 81
picks per minute by using the proposed P&T method. In
conclusion, the proposed P&T method largely outperforms
the two other methods in all case studies.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new approach to generate a time-optimal
throwing trajectory has been proposed. This approach con-
sists in determining an optimal release configuration re-
sulting in a minimum-time throw motion while ensuring
that the released object will reach the desired target. The

https://youtu.be/4bRvqKurMJU
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Fig. 11. Scenario 1: Evolution of the desired Cartesian positions versus
time for the P&P task [3] and the proposed P&T task for different values
of the maximum acceleration.
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Fig. 12. Scenario 1: Evolution of the desired Cartesian velocity and accel-
eration of the robot end-effector versus time for the proposed P&T method
at 1.8 m/s of maximum velocity and 3.6 G of maximum acceleration.

corresponding optimization problem has been formulated in
two different ways where the second one allows the optimal
release configuration to be efficiently computed. A com-
parison between the proposed P&T procedure, an existing
P&T method and the conventional P&P has been conducted
through real-time experiments on the T3KR parallel robot.
The obtained experimental results validate the efficiency of
the proposed P&T method, over the two other methods,
in terms of processing time minimization and, thereby, of
productivity maximization. The optimized Pick-and-Throw
trajectory, combined with an AI technique to identify re-
cyclables, can be applied in real waste recycling industry.
Furthermore, this work may be extended to consider not
only the position of the object into the desired target but
also its orientation in the target landing position.
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