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Figure 1: Near-field acquisition setup

ABSTRACT
Physical attacks constitute a significant threat for any cryptosystem.
Among them, Side-Channel Analysis (SCA) is a common practice
to stress the security of embedded devices like smartcards or secure
controllers. Nowadays, it has become more than relevant on mobile
and connected devices requiring a high security level. Yet, their
applicability to smartphones is not obvious, as the architecture of
modern System-on-Chips (SoC) is becoming ever more complex.

This paper describes how a secret AES key was retrieved from
the hardware cryptoprocessor of a smartphone. It is part of an
attack scenario targeting the bootloader decryption. The focus is
on practical realization and the challenges it brings. In particular,
catching meaningful signals emitted by the cryptoprocessor em-
bedded in the main System-on-Chip can be troublesome. Indeed,
the Package-on-Package technology makes access to the die prob-
lematic and prevents straightforward near-field electromagnetic
measurements. The described scenario can apply to any device
whose chain-of-trust relies on firmware encryption, such as many
smartphones or Internet-of-Things nodes.
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1 INTRODUCTION
1.1 Secure Boot
Secure Boot refers to the verification of authenticity of any sensitive
code executed by a device. As there are many entities involved
in recent software architectures, a chain-of-trust is established
from the device reset, up to trusted services running in a Trusted
Execution Environment (TEE). An overview of the different stages
is given in Fig. 2. Each developer can extend his trust to a new one
by cryptographically assessing the authenticity of software before
execution.

This operation can be performed thanks to asymmetric cryp-
tography algorithms such as RSA or ECC, or sometimes with au-
thenticated encryption modes such as Galois/Counter Mode (GCM)
or Synthetic Initialization Vector (SIV). One major advantage of
the former is that disclosure of the private key only depends on
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Figure 2: Secure Boot sequence overview

Figure 3: Side-channel Acquisition Bench

the security of its certificate authority; whereas symmetrical keys
are necessarily manipulated by the devices in the field, which sim-
plifies physical access to the secret, and eventually its extraction.
Therefore, most secure boot implementations are based on hybrid
solutions to guarantee a strong asymmetrical authenticity, and
maintain confidentiality with the fast decryption capabilities of a
block cipher.

Generally speaking, a secure boot implementation does not re-
quire firmware confidentiality to maintain its authenticity. Kerck-
hoffs’s principle recalls that a cryptosystem should be secure even
if everything about the system, except the key, is known [17]. In
that case, the private key that is at the root of trust should remain
the only weak point.

Yet, it is really common to see device manufacturers encrypt their
firmware. Despite casting suspicion around undisclosed software
and backdoors, this decision might be beneficial. Indeed, without
this layer of secrecy, an attacker can for example study the patches
applied between firmware updates in order to find flaws in the boot
sequence. To that extent, firmware encryption allows manufactur-
ers to keep non-patched devices safe from widespread attacks after
public release of vulnerabilities. In fact, encryption is one of the

strongest barrier against firmware reverse-engineering and most
of the time prevents vulnerability exposure.

In the context of such black-box system, the attack surface is
limited, and only few paths remain. This paper explores the use of
side-channel analysis to disclose the firmware encryption key and
expose unseen vulnerabilities.

1.2 Side-Channel Analysis
Side-channel attacks aim to retrieve secret information from ob-
servation of a device processing it. This is particularly useful to
disclose cryptographic keys by analyzing the intermediate data
processed during an algorithm. Indeed, intermediate data often
provide information related to a small part of the secret key. Using
statistical tools [6], the key can be fully retrieved by pieces using a
divide-and-conquer approach.

A common way to get valuable measurements of the intermedi-
ate data is to exploit physical quantities (e.g. electromagnetic (EM)
field [1], power consumption [21], heat [16], ...) collected when a
physical device executes the cryptographic operation. As detailed
in Section 3, near-field EM emanations turn out to be relevant for
complex SoCs. It increases the chances to get valuable information
as it captures local activity, and prevents observations from being
disturbed by surrounding noise sources.

Complex devices also have the tendency to leak sensitive infor-
mation through their micro-architectural behavior. Such flaws were
recently exploited with memory addressing [28], or cache [24] and
branch prediction [20] mechanisms.

To be successful, it is necessary to collect a significant number
of traces. The order of magnitude lies in the range from a dozen to
millions of traces. This highly depends on the quality of measure-
ment and the countermeasures implemented in the cryptography
code. Indeed, specific protections can be implemented to avoid the
secret key from being exposed. They usually impede the attack by
significantly raising the quantity of measurement required.

1.3 Related Work
Several EM side-channel attacks targeted the computation of asym-
metric cryptography algorithms executed on smartphones. In par-
ticular, the OpenSSL library is frequently hardened thanks to the
work of various security researchers.

In [12], ECDSA key extraction was performed without opening
the mobile. The signal analysis was able to reveal the sequence of
operation, which is key-dependent, using cheap audio equipment.
This analysis demonstrates that fast devices such as smartphones
can still leak sensitive information at very low frequency.

The authors of [2] were also able to attack a recent implementa-
tion of RSA, which integrates some protections against SCA.

Symmetric algorithms, on the contrary, are much faster and sim-
pler to compute. The literature shows EM attacks on the BeagleBone
Black development board [3, 25]. In these studies, custom AES im-
plementations are shown vulnerable against SCA. The acquisitions
were performed mainly over external decoupling capacitors.
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1.4 Guessing Entropy and Bruteforce
In the context of this paper, the Guessing Entropy (GE) metric [7]
is a natural candidate to compare the performance of different
attacks. Its computation is lightweight, but requires knowledge of
the secret key. It corresponds to the number of key candidates to
examine before finding the secret key, usually considering an ideal
key enumeration algorithm.

The GE is thus a conceptualization of the required computing
workload to bruteforce the key, assisted by the knowledge of scores
of the attack. Indeed, the attack results allow the search space to be
reduced in case the secret key is not ranked first. Therefore, it is
generally possible to exhaust the candidate efficiently and recover
the correct key with a reasonable remaining effort. For example,
using a Score-based Key Enumeration Algorithm (SKEA) [4].

Table 1 gives an overview of the computation power provided by
commodity hardware. Based on these values, we decided to choose
a reasonable GE threshold at 232. In the example given in Fig. 4, the
attack will succeed in about 255 000 traces, but given only 100 000,
an attacker should be able to recover the full secret in less than a
minute using SKEA method.

Figure 4: Example of Guessing Entropy bounds (with an
ideal, state-of-the-art and naive enumeration algorithm)

1.5 Contribution
In this work, we present the first public side-channel attack target-
ing the cryptoprocessor of a mobile phone SoC.

We detail how this attack path can be applied to compromise a se-
cure boot, by using SCA as an entry-point for reverse-engineering
the boot firmware. To illustrate this scenario, we conclude that
the secure boot of the targeted hardware can be bypassed with a
software vulnerability.

Moreover, as the arbitrary code execution allows direct access
to the cryptographic core, in-depth analysis of the leakage can be
achieved. We also performed a dedicated study on the thermal re-
sponse of the SoC when the cryptoprocessor is operating. Thus, the
focus of the paper is on the analysis methodology on such complex
devices, as many techniques might be applicable to other systems.

Even if the practical realization is tedious, the stakes of breaking
the secure boot definitely justify the mitigation of such risks.

To proceed beyond the attack, some countermeasures are dis-
cussed. The proposed low-cost solutions are shown effective to
protect this device against our side-channel attack.

2 ATTACK STRATEGY
This section describes the target cryptosystem and the path behind
our SCA. Fig. 2 recalls the architecture being examined. This de-
scription should cover most devices protected by a secure boot. As
a side note, this analysis ignores scenarios involving fault injection
attacks [34].

The target software triggering the firmware decryption cannot
be modified as it is written in the device ROM. It has been written
in factory masks and is supposed to be flawless. As it is protected by
ARM TrustZone, this code and the encrypted parts of the firmware
cannot be read nor reverse-engineered.

Nevertheless, its execution roughly follows the necessary steps
of secure loading of the next stages of bootloaders. Pseudo-code 1
summarizes the BootROM sequence responsible for loading the
first stage bootloader (BL1). This code copies BL1 from an exter-
nal memory in its own internal SRAM. The loaded data can be
of arbitrary length, but are usually limited, as with our practical
example of 16 KiB. After the copy, the CPU verifies the integrity
and authenticity of BL1 using asymmetric cryptography. After this
signature verification, data is trusted and BL1 can be decrypted
in-place by a dedicated hardware cryptoprocessor.

In general, the firmware decryption key is identical for all phones
of the same model. This assumption can be confirmed by checking
that the same firmware can be flashed on multiple devices. Which
means that any device can be used to perform the attack and retrieve
the manufacturer secret key.

Listing 1: Sketch of the BootROM code
void reset(){

hardware_init ();

int sb_en = read_efuse(SECURE_BOOT_ENABLED);
int bootmedia = read_gpio(BOOT_RESISTORS);

BL1_Copy( bootmedia );
BL1_Verify_Checksum ();

if (sb_en == 1){
BL1_Verify_Pubkey ();
BL1_Verify_Signature ();
BL1_Decrypt ();

}

BL1_jump ();
}

The target uses an AES-128 in Cipher Block Chaining (CBC) mode
to decrypt the firmware. Unlike CBC encryption, the input data
processed by the block cipher are known to an adversary, which is
mandatory to perform any SCA.

However, this architecture processes verification before decryp-
tion, which mitigates the device exposure to SCA. It forces the
adversary to work in a known ciphertext context: as input data
are verified before decryption, an attacker is not able to choose or
modify the ciphertexts that will be decrypted. Thus, the number of
unique inputs is limited to the length of a firmware in block size,
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Table 1: AES-256 exhaust time by order of magnitude, using an Intel 4790k with AES-NI instruction set

Number of keys 232 238 240 242 244 246 248
Number of computers 1 1 10 10 10 10 10
Time 1 min 1 hour 22 min 1.5 hours 6 hours 24 hours 4 days

multiplied by the number of firmware packages available.

To perform the attack, an adversary would typically flash a
firmware on the device, boot it several times and observe the de-
cryptions being handled by the cryptoprocessor. The challenges
involved in signal acquisition are discussed in Section 3.

To obtain more measurements, flashing another firmware allows
adversaries to observe different data being decrypted. Then, sta-
tistical analysis of the data is applied to retrieve the manufacturer
secret key. The quantity of data required to succeed our attack is
detailed in Section 4. Note that in order to validate the retrieval of
the manufacturer secret key, it is mandatory to decrypt few blocks
of a firmware and confirm that the data are not random but legiti-
mate ARM instructions. Without knowledge of IV, the first block
cannot be decrypted.

Finally, knowledge of the firmware encryption key enables sev-
eral malicious behaviors. First, as explained in Section 5, it becomes
possible to reverse-engineer the code that was previously encrypted.
Secondly, it is extremely valuable in case the attacker found a way
to craft a valid signature or bypass its verification [22], and wants
to rebuild his own firmware. However, due to the structure of CBC,
an attacker without the key can still craft a firmware that will be
decrypted into chosen and executable instructions [33].

3 SIGNAL ACQUISITION
3.1 Probe Position
The biggest challenge of this attack remains the signal acquisition
in order to perform a side-channel analysis. Indeed, this Section
details the solution used to overcome the Package-on-Package issue.

First, the firmware decryption lasts for 100 µs over the 0.5 s of
the boot sequence. Usually, the goal is to find a trigger signal such
as the communications with the bootmedia, that is not necessar-
ily leaking sensitive information, but allows to roughly frame the
cryptographic event in time. Then, it is possible to search for a
signal emitted from the computation of the target AES decryptions
at different locations.

On the whole surface of a smartphone, several components can
contain sensitive information about the computation:

Power Management Integrated Circuit (PMIC): This cir-
cuit, and its surrounding capacitors and inductors, are gener-
ating voltage levels for all power domains of the SoC. Among
them, oneDC voltage regulator is powering directly the ARM
cores. However, the hardware cryptoprocessor often works
on another power domain, that is unknown to the attacker
and shared with other peripherals.

External decoupling capacitors: Their role is to stabilize
power supplies and reduce noise for the different ICs of the

board. The main SoC should have many capacitors, often
located just under the chip. They are dedicated to each power
level of the PMIC, and radiate EMwaves related to the power
consumption of the different peripherals of the chip.

Sense resistors: The board might contain test points used
for factory testing of the device. Sometimes, there are sense
resistors dedicated to current consumption measurement of
the ARM cores. Or, an attacker may also add a sense resistor
in the power delivery path of the target components.

System-on-Chip die: As silicon chips are mainly composed
of transistors and metal wires, any transient current flowing
through the logic gates is generating an EMfield [11, 31]. The
simultaneous switching of thousands of gates leads to the
emission of high energy peaks. This radiated signal, which is
directly relates to the device activity, can be measured with
adequate EM probes, in the vicinity of the chip.

Of all side-channel sources priorly listed, near-field measurement
over the die is the most promising. Indeed, it enables separation
of signals emitted from a single peripheral, or even a part of it,
from those of other functional blocks. In practice, EM side-channel
attacks tend to be more precise and localized than other methods
such as power analysis [29], especially for chips as complex as
modern SoCs.

However, on high-end devices, memory speed and miniaturiza-
tion push manufacturers to use Package-on-Package (PoP) [15], as
depicted in Fig. 2 in which the DRAMs are placed on top of the main
SoC. This configuration can be a show-stopper for side-channel
signal acquisition. Indeed, the sensitive emissions of the SoC are
blocked and absorbed by the upper package. On top of that, the
DRAM emits more than the SoC itself, as it is usually closer to the
EM sensors and is typically comprised of 4 memory chips, hundreds
of wire bondings, and a PCB interposer with metallic routing lines.

While CPU activity can often be observed with all methods
described, our target is a smaller peripheral: the cryptoprocessor.
During the boot sequence, the device’s power consumption is fairly
high, typically up to 2W. In contrast, the sole consumption induced
by the AES computation is likely to be negligible.We experimentally
estimated it to be around 2mW.

To a certain extent, decoupling capacitors and power measure-
ments will be hard to leverage. The cryptoprocessor power domain
is shared with many peripherals and they are all decoupled through
the same bank of capacitors. In practice, on this device, we were not
able to find anything that could look like an AES in these signals.

Additionally, leakage assessment tools such as theWelch t-test or
related techniques [13] cannot be used without synchronous obser-
vations of the cryptographic signals. This point is also highlighted
in [25], where the authors are not able to identify the HW AES
signal unless they somehow modify the chip behavior to fallback
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in a CPU mode for memory copy.

Physical alteration of the device can address the issue of PoP
assembly. As the target cryptographic operation happens at the
very first stage of the boot sequence (ROM), the device does not
have to boot completely in order to decrypt BL1. An attacker can
take advantage of this particularity and desolder the PoP stack to
allow a much simpler physical access. The device will continue
booting normally until the initialization of the DRAM produces a
deadlock in the second stage bootloader (BL2).

Indeed, our only goal is to retrieve the secret key allowing
firmware decryption. As it is a static key, identical for all devices, it
does not matter if several boards are broken in the process.

Removing the stacked memory can be performed manually with
low-cost tools such as an hot air station [34]. After some practice,
there is a quite high chance of success to not damage the SoC. As
seen in Fig. 1, the use of heat-resistant adhesive on the component
surrounding the SoC is of great help to avoid further rework on
the board. Alternatively, a CNC milling machine could be used to
finely carve out the solder balls at the edges of both packages.

In order to flash different firmware on the prepared device with-
out its DRAM, few options are available. First, it is possible to
cold-flash the external memory with dedicated recovery tools [27].
Else it is also possible to make the SoC boot on other external
media, such as an SD card or a serial port. Indeed, disabling the
flash often force the device to fallback in other boot modes. Alter-
natively, using the board schematics, it is possible to modify the
resistors determining the bootmedia in Pseudo-code 1. With these
techniques, we were able to conveniently load different firmware
from an external SD card.

Thanks to these tricks, near-field EM measurements can be per-
formed directly over the cryptoprocessor, which greatly simplifies
the signal acquisition process. Our experimental bench, visible in
Fig. 3, is comprised of a Lecroy WaveRunner 8-bit oscilloscope, a
Langer H-Field probe (RF-B 0.3-3) and its 30dB low-noise amplifier
(PA303). Fig. 1 shows the EM probe performing near-field acquisi-
tion over the SoC die. The chip backside is directly exposed, which
allows to put the probe on contact with the silicon substrate and
capture the fields emitted by logic layers underneath.

Still, finding the precise location of the AES computation over
the SoC remains challenging and highly depends on the target hard-
ware. A block cipher logic is typically comprised of few thousands
transistors while the SoC actually contains several billions of them.
We did not succeed in finding the cryptoprocessor using visual
inspection. However, searching for an EM signature that could cor-
respond to the cryptographic operations took several hours but was
achievable. The goal was to find a repeated signal happening after
copy of BL1 from flash, with main components at low frequency
(hundreds of MHz). In the meantime, CPU activity was expected to
be lower than usual.

To exhaustively find the locations of interest over the die, a
thermography was also performed.

(a) IR emission amplitude map.

(b) In-phase with AES in red, Out-of-phase in blue.

Figure 5: Lock-in Thermal Imaging of the SoC during AES

3.2 Lock-in Thermography
In some cases, the attacker can have access to the cryptoprocessor
hardware outside of the secure boot context. If so, lock-in ther-
mography [5] of the SoC can help at identifying areas of interest
precisely [10].1

Lock-in thermography is based on thermal analysis of the die
using infrared (IR) measurements. For that, the nominal thermal
behaviour is modulated at a known frequency. In this case, the mod-
ulation is software based and realized by cycling through phases of
encryption (warming up) and CPU wait (cooling down). A Fourier
transform applied on the infrared signal at the modulation fre-
quency provides the main characteristics of the cartography: am-
plitude and phase. Scanning the chip and acquiring measurements
at each location allow precise thermal maps of the die to be built.

Fig. 5 represents the results of an IR analysis conducted over
the SoC with (a) the amplitude map and (b) the phase map. On

1The secure boot vulnerability allowed to perform this analysis with custom software,
but its applicability to the boot sequence remains an open question.

Full Paper  ASHES ’19, November 15, 2019, London, United Kingdom

27



both images, warm colors show respectively areas of power con-
sumption and in-phase activity. Conversely, cold colors are used
for weak power consumption and out-of-phase activity. Looking at
the amplitude map, two main areas are distinguishable. The area of
highest consumption, on the left, is confirmed by the phase image
to be the cryptoprocessor. Indeed, it is warming up during phases
of encryption. The second area therefore corresponds to the CPU
performing timer checks during cooling phase with respect to the
modulation timings.

Consequently, this thermal lock-in scan allows an attacker to
reduce the search space and directly target the EM emissions of
the cryptoprocessor. It could probably be applied to identify the
location of other peripherals if needed.

3.3 Near-field Electromagnetic Emissions
Once a correct probe position over the cryptoprocessor is found, it
is possible to trigger the oscilloscope directly on any cryptographic
event. In addition, the AES computations can be identified in the
acquired signals by counting the number of blocksmanipulations. In
Fig. 6, the EM signal is composed of a steady 200MHz clock, where
multiple AES decryptions occur, visible in the signal envelope.

A close-up of this signal in Fig. 6 illustrates the computation flow
of the firmware decryption. Each clock cycle of the active area is
associated to an AES round computation. During idle phase, a DMA
is responsible for moving data in and out of the cryptoprocessor.
Even if the AES is identified clearly in the signal, the overall signal-
to-noise ratio remains low, as the peaks amplitude only increase by
about 10% during cryptographic activity. This weak signal might
explain why power and far-field side-channels were unsuccessful.

In this context, let us define the following terms: an input is a
unique ciphertext, being a piece of correctly authenticated firmware
to be decrypted by the cryptoprocessor; a trace corresponds to
the recorded side-channel signal of a whole firmware decryption,
and an observation is a part of the signal corresponding to a sole
execution of AES.

Finally, by repeatedly acquiring the signal of AES-CBC decryp-
tion and extracting each individual block cipher from the traces, a
statistical analysis of the relationship between processed data and
physical observations can be performed. Similarly to usual SCA,
this analysis can be done with a really large set of observations.
However, because the number of inputs is limited by authentication
prior to the decryption, there are many observations of the same
deciphering. Therefore, the set of inputs processed is extremely
reduced. This is a key difference that should limit the efficiency of
SCA by reducing the exploration of the statistical space from 2128
to only a few thousands.

In order to finely characterize the cryptoprocessor side-channel
leakage, we performed an acquisition campaign of 2500 traces and
5000 inputs, which corresponds to 12.5 million AES observations
overall. It can be performed in about 3 h thanks to the cryptopro-
cessor efficiency.

As taking control of the hardware cryptoprocessor is enabled by
the arbitrary code execution presented in Section 5, we redeveloped
a driver and modified the secret key. This dataset can thus be shared

with interested researchers, without disclosing the manufacturer’s
secret key.

4 SECRET KEY RECOVERY
4.1 Leakage Analysis
In the context of this attack, two solutions are available. First, the
analyst can work directly on the trace set; or average all observa-
tions sharing the same input data, and attack this reduced trace set,
which is lighter and faster from a computational point-of-view.

The two solutions turn out to be equally efficient at retrieving
the secret key. It is expected when looking at Pearson correlation
formula, as the covariance (numerator) is identical in the two cases.

A classical correlation analysis [6] is able to retrieve each of the
128 bits of secret key. Fig. 7 (top) depicts the correlation found for
the correct byte coming apart from all the other candidates. The
evolution of the score in convergence traces shows that very few
inputs are required to deduce that this byte is legitimate.

The overall attack can retrieve the key with only two firmware
when averaging 2500 traces together, as shown by the GE in Fig. 8.
When limited to a single firmware of 1000 inputs, only a small
bruteforce of 232 candidates is required to find the key. Otherwise,
it is also possible to acquire more traces to increase the amount of
observations of the same decryption and reducemeasurement noise.

Without dedicated side-channel protections, it is straightforward
to conduct an attack on this device. That being said, the challenges
of signal acquisition had to be overcome beforehand.

4.2 Attack Extrapolation
This section is focused on a methodology to better estimate the
number of inputs that the device is allowed to decrypt without
threatening the secret key.

When limited to few unique inputs, the previous SCA seems to
struggle at retrieving the key. Our testing showed that even when
averaging more traces, the attack is no more successful.

Our hypothesis, which is confirmed experimentally, is that the
cryptoprocessor is leaking information about the 128 bits of the
AES state simultaneously. As a result, when attacking a key byte,
algorithmic noise coming from all the others will disrupt the signal.
When adding new traces of the same decryption, the algorithmic
noise remains. Nevertheless, the device can boot as many times
as the attacker wants, which allows for a very large number of
traces/observations that remove measurement noise.

As the cryptoprocessor is focused on performance, it is possi-
ble to capture hundred millions observations within hours. The
question is then to know if an attacker could retrieve the secret
key with 1000 inputs, 500, or less, given an unlimited number of
observations. If not, it will be possible to leverage this limitation as
a countermeasure.

To address this issue, we deeply analyzed the leakage model of
the device. This characterization requires knowledge of the secret
key. Fig. 9 shows the relationship between the estimated value (i.e.
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Figure 6: (top) Signal signature of firmware decryption - (bottom) Close-up on AES computation

Figure 7: Attack results on byte 12 - (a) CPA scores (b) Con-
vergence traces

the intermediate data targeted by the attack) and the value that is
observed in the signal of that trace. The violin plot gives a clue of the
distribution of observed values for each processed data; while the
middle dash of each segment represents the average observed value.
A linear regression in orange confirms that the cryptoprocessor is
leaking all 128 bits of information simultaneously, with a strong
correlation ρ = −0.73.

Figure 8: Guessing Entropy of the attack targeting the cryp-
toprocessor AES decryption, with 2500 averaged traces

The leakage strength, though, is very small: the signal amplitude
decreases by 0.15 point for each additional bit set in the interme-
diate state of the computation. Which also indicates that an 8-bit
oscilloscope might not be precise enough to capture fine changes
in this configuration.

Thanks to this model, an empirical dataset can be crafted, con-
taining the same input data as the one used for the attack, but
removing all measurement noise and imprecisions. This dataset
ensures perfect correlation with the model, and is left only with
algorithmic noise induced by simultaneous leakage of all bytes.

Attacking such a dataset corresponds in practice to an extrapo-
lation of the attack with an infinite number of traces, or in other
words, infinite signal-to-noise ratio.
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Figure 9: Linear leakage model of the device over 128 bits,
using averaged traces

Fig. 10 gives an overview of the impact of algorithmic noise. A
correlation analysis that would normally retrieve the key in about
10 traces requires around 700 in the context of simultaneous leakage
of 128 bits.2

This graph will help gauge the security level achieved by a key
usage limitation countermeasure, as explained in Section 6.3.

5 FIRMWARE ANALYSIS
Firmware encryption is the strongest barrier against reverse engi-
neering of the boot sequence. Finding the decryption key is there-
fore an entry point for different kinds of attacks. Previous work,
targeting higher level of the boot sequence, have shown that most
implementations have flaws that could potentially be exploited [30].

Recovering the firmware decryption key allows an attacker to
reverse-engineer the boot sequence at very early stages. This new

2 This resulting entropy depends on the input data distribution. In practice, as the
firmware is ciphered, the input can be considered as uniform, which leads in average
to the presented results. Still, some variations from this graph are to be expected.

Figure 10: Forecast security bounds of the attack

entry-point can reveal major security issues in the secure boot se-
quence. For example, an attacker can quickly study the differences
found between firmware upgrades in order to find what vulner-
abilities were fixed, and deploy a malicious exploit targeting the
previous versions.

In our practical example, several issues could bewitnessed thanks
to analysis of the decrypted software:

Decryption Key Reuse:
The secret key found via SCA can quickly be tested to decrypt
various firmware packages provided by the manufacturer. It
turns out that the same master key was used many times: all
firmware updates for this particular phone model, as well as
manymobiles based on the same SoC, including development
boards. Such a decision exposes more code to be reversed,
and implies that a single attack can affect a wider scope of
devices. It also eases SCA, as it allows a wider statistical ex-
ploration of the link between ciphered data and observations.
In our example, using multiple firmware enables retrieving
the key without bruteforce.

Incautious Signing:
When looking at development or early released firmware, it
appears that the security features, such as signature verifica-
tion, are not fully implemented. Still, the development code
was signed with the same private key and packaged in the
same format than for any smartphone on the field. Without
anti-downgrade protections, it is then straightforward to run
malicious code by simply using an insecure firmware, not
intended to be run on the final product. This allows arbitrary
code execution in secure world, at bootloader stage.

Software Resilience:
In addition, the overall firmware security does not appear to
be hardened. For example, the data parsers involved in BL2
loading are not resilient to unexpected length configurations.
A software exploit might be possible, but was actually not
necessary, thanks to the previously mentioned flaw.

Key Sanitization:
The secret key is not erased from the cryptoprocessor after
its purpose is fulfilled. Hence, the following entities of the
chain-of-trust might be able to reuse the AES without recon-
figuration of the key. It becomes even more problematic if
the device exposes an API to the user, for example through
a Linux driver or a TEE service.

To sum up this analysis, it is extremely difficult to guarantee a
firmware to be flawless, especially during development and product
launch phases. Therefore, firmware encryption plays a decisive role
in the overall security of the boot sequence, and should not be
neglected.

Being able to read several iterations of the bootloader revealed
critical flaws in its design, which result in arbitrary code execution
in secure world. Such tool can definitely be exploited for disrep-
utable operations. This can threaten trusted services of the TEE,
such as mobile payment, DRM, or user data encryption. But can
also be used to deeply establish a powerful malware in secure world,
that can be made undetectable.
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6 MITIGATIONS
The design issues and software weaknesses described in Section 5
can be addressed to strengthen the secure boot. But as it is difficult
to guarantee flawless firmware all along the device life cycle, mit-
igating the side-channel attack scenarios can greatly enhance its
security.

6.1 Decorrelation
Efficient countermeasures against SCA have been developed in the
smartcard industry since [8]. In practice, delicate hardware design
efforts are required to reduce the information leakage of the cryp-
tographic operations [18]. These countermeasures will complicate
the attack but might not prevent it.

However, decorrelation of the leaking physical quantity with the
manipulated data can also be achieved at logical level. Applying a
masking scheme on the entire combinatory logic of the algorithm
is laborious though, as it requires to adjust the circuit to handle
randomly masked data. Besides, it is necessary to validate exper-
imentally that the protection is also effective at hardware level,
as physical effects can introduce unexpected bias [9], that can be
exploited by an adversary [23]. We believe that Boolean masking
is not mandatory on this particular use case, as other mitigation
techniques are also viable, and might be more efficient.

In the following Sections, the paper describes two countermea-
sures particularly suited to prevent the presented attack scenario.

6.2 Shuffling
In the smartcard industry, it is common to see up to 15 fake exe-
cutions of an algorithm along with a genuine one hidden among
them. Such hiding countermeasure is efficient against statistical
attacks, as the analyst has no clue of where the information stands.
He is forced to consider all fake operations as legitimate, which sig-
nificantly increases noise. This technique, though, implies a severe
performance drawback.

In the case of AES-CBC, the sequence of block decryptions can
be shuffled randomly3 without performance loss. Doing so, the
attacker is not able to tell which block is being handled when.
Given the length of a firmware, and assuming that the attacker is
not able to recover the disposition of the AES blocks, the leakage
will be significantly diluted within the entire decryption process.

From a theoretical point of view, when the leakage is uniformly
located over t samples, the attack will require at least t times more
traces to succeed [32]. At a rate around 1 trace per second enforced
by device reboot time, the presented attack can be performed in
around 1 h. After shuffling, it would then take more than 40 days
of continuous acquisition, which implies new challenges, such as
environmental stability of the measurements. The goal of such
countermeasures is simply to seek for impracticality of the threat.

6.3 Key Usage Limitation
Manufacturers should consider using a firmware-dependent key
derivation algorithm, seeded for example on a firmware version
number. Such mechanism limits the key usage to a single firmware.

3This property does not apply to CBC encryption.

It will not be possible to use different firmware in the same statistical
attack.

Furthermore, it would reduce the scope of the attack significantly.
Indeed, retrieving the key would only affect a single firmware, and
no other version or device.

In our example, a single firmware is already vulnerable to side-
channel analysis. Therefore, dynamic re-keying protocols could
be considered to further reduce the amount of data processed per
key [19, 26]. With such technique, each secret key is used so little
that it is no longer possible to extract it by SCA. Yet, the protocol
should be designed with care and expertise, otherwise opening new
attack paths, for example on the key derivation algorithm.

More specifically, looking at the extrapolated security bounds
of Fig. 10: with 400 inputs and infinite amount of observations,
an attacker should be able to extract the secret key with our side-
channel attack. However, if the key is used only to handle 100 input
blocks, it should be safe from this attack. The guessing entropy is
reducing so quickly that even limiting to 200 blocks corresponds to
a risk that should not be undertaken.

7 RESPONSIBLE DISCLOSURE
Our results have been communicated to the SoC manufacturer
following their responsible disclosure guidelines. The confidential-
ity of BL1 is not a critical issue in their security policy. Indeed, it
does not directly allow bypass of the secure boot. Moreover, the
proposed countermeasures imply modifications of the BootROM,
which cannot be patched. As a result, no further action was taken,
but the reference of the chip was not exposed.

8 CONCLUSION
The scenario unfolded in this paper demonstrates that side-channel
attacks can enable decryption of closed-source firmware. Practical
results on a mobile phone illustrate the use of near-field measure-
ments to extract the key from the System-on-Chip cryptoprocessor.
The complexity of the attack mostly resides in the acquisition setup,
and requires some tricks to get close access to the die.

Such tool is especially valuable when no software exploit can be
found, as it exposes new entry-points for reverse engineering and
analysis of the boot sequence.

Although complex, our attack scenario is not out of range. Many
examples on popular devices show that the strong software security
barriers of secure boot, and the stakes of breaking it, have been
motivating malicious individuals to attempt physical attacks.

Our results show that side-channel threat should be seriously
taken into considerationwhen designing a product, especially for as-
sets as strategic as the secure boot sequence. The described method-
ology is intended for a large number of IoT devices but particularly
applies to security demanding endpoints such as mobile phones.

Low-cost protections are suggested and could have been used
to significantly mitigate the risk. However, as with the security
industry standards, practical evaluation should be systematically
performed on the final product to make sure the protections are
efficient.
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