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Adaptive RISE Feedback Control for Robotized
Machining with PKMs: Design and Real-Time

Experiments
Jonatan Martı́n Escorcia-Hernández, Ahmed Chemori Senior Member, IEEE, Hipólito Aguilar-Sierra

Abstract—The development of high-precision tasks, such as
machining, needs a positioning device for the cutting tool with
the smallest possible error. Multiple design factors need to be
considered to ensure a mechatronic device successfully performs
such tasks. One of these factors may be attributed to the control
scheme, which is responsible for controlling the position of the
machine. In view of the importance of designing a good control
scheme for a robotic system, in this paper, we propose a new
extension of the robust integral sign of the error (RISE) for
the positioning device a parallel kinematic machine (PKM). This
extension consists in including a nominal feedforward term based
on the inverse dynamic model of the robot and replacing the
RISE fixed feedback gains with adaptive ones. The RISE part of
the proposed controller ensures semi-global asymptotic stability.
Moreover, it can accommodate sufficiently smooth bounded
disturbances. The feedforward part cancels the nonlinearities of
the system, improving the tracking performance of the controller.
The adaptive feedback gains produce corrective actions when an
increase in the tracking errors is due to the contact forces that
occur during the machining process. A Lyapunov-based stability
analysis is conducted to prove the semi-global asymptotic stability
of the proposed control solution. To show its effectiveness real-
time experiments are performed for two case studies; the first
one is on a free motion trajectory, and the second on milling
experiments under three different forward speeds on SPIDER4,
a redundantly actuated PKM.

Index Terms—RISE Control, Adaptive control, Parallel Kine-
matic Manipulators, Machining task, Stability analysis.

I. INTRODUCTION

PARALLEL kinematic machines (PKMs) are robotic de-
vices consisting of a fixed base and a moving platform

connected by two or more link sets. Currently, the study of
this type of systems has generated a major interest within
the research community owing to the advantages they present
compared to serial kinematic machines (SKMs). Some of
these advantages include higher stiffness owing to the closed
kinematic chains, higher acceleration capabilities, and im-
proved load capacity than SKMs [1]. However, PKMs are also
associated with complex nonlinear dynamic models, several
uncertainties including unknown or time-varying parameters,
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sensor noise, variations in the operative environment (pay-
load variation and/or contact forces), and in some cases, the
actuation redundancy problem [2], [3], [4]. Moreover, it has
been reported that the effect of the nonlinearities commonly
increases when the system is operated at high accelerations,
causing undesirable mechanical vibrations [5],[6]. Despite the
above problems, PKMs have been successfully integrated
into various areas requiring high precision, such as remote
surgery, three-dimensional (3D) printing, object handling, and
machining [7]. Traditionally classical machining tools have
been built with a serial structure, e.g., standard turning and
milling machines. In this configuration, the moving axes are
connected serially; therefore, so each moving axis supports
the following moving axes. However, the drawback of this
configuration is that the moving elements of the machine have
to be sufficiently heavy to provide appropriate stiffness to
control the bending movements [8]. Unlike SKMs, machine
tools based on PKMs present significant advantages in their
mechanical structure, such as improved stiffness owing to the
closed-loop mechanism design, lower moving masses and iner-
tias, and potentially better accuracy [9]. The first machine tool
prototype using a parallel structure mechanism was patented
in 1995; it was named Variax [10]. This PKM was inspired
by the six-degree of freedom (DOF) Gough–Stewart platform.
Based on the design of this prototype, the machine tools of
various devices with parallel structures have been developed
over time, with Tricept [11], Octahedral-Hexapod [12], and
Hexa Toyoda [13] as some of the most relevant examples of
this category.

To fully utilize of the benefits offered by the closed-loop
kinematic configuration of PKMs, one should design and
implement an adequate control scheme for the positioning
of the manipulator tool. This is highly important because to
perform machining tasks, it is necessary to ensure precise
trajectory tracking despite the problems caused by contact
forces and abrupt forward speed changes. In the literature,
various advanced control solutions have been reported to deal
with the problem of motion control of PKMs. These control
schemes can be categorized as adaptive control, robust control,
or their combination [14]. Considering some recent schemes,
in [15], an extended L1 adaptive controller was designed
and implemented on a four-DOF redundantly actuated (RA)-
PKM called ARROW, for milling applications [16]. This
proposed approach consists of adding an adaptive feedforward
model-based term to the original L1 adaptive controller. This
modification notably enhanced the performance of ARROW
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compared to that of the standard L1 adaptive controller,
resulting in an approximately 80% improvement in the root
mean square error (RMSE) of the tracking error. In [17], a
new terminal sliding mode (TSM) controller was developed for
PKMs; this controller incorporates an adaptive loop to estimate
the dynamic parameters of the manipulator on-line, improving
its dynamic capabilities. This motion control solution was
validated by real-time experiments on a four-DOF PKM,
Veloce, and the results showed that it outperformed the regular
TSM. In [18], a desired compensation adaptive law (DCAL)
controller with nonlinear feedback gains was developed and
validated by real-time experiments on an RA-PKM, DUAL-
V, designed for laser cutting purposes. The performance of
this controller was compared to the original DCAL, showing a
significant reduction in the tracking errors. In addition to these
examples, in the last two decades, the use of robust integral
sign of the error (RISE) controllers has become highly well-
known for the motion control of robotic systems, including
PKMs. The success of this non-model-based control scheme
is owing to its capability to ensure semi-global asymptotic
tracking under poorly or uncertain knowledge of the dynamics
of complex nonlinear systems. RISE control includes a discon-
tinuous nonlinear term providing the controller robustness to
compensate the poorly known nonlinearities, considering that
they are bounded and second-order differentiable. Moreover,
RISE control is suitable to be extended with different feedfor-
ward compensating terms. This control scheme has been com-
monly used in control of PKMs; some relevant examples are
mentioned below. Bennehar et al. proposed and implemented
a RISE-based adaptive feedforward control [19]. The proposed
adaptive feedforward term is formulated in a regressor matrix
form to estimate the unknown dynamic parameters of a three-
DOF delta PKM online. Saied et al. designed and validated a
RISE control with nonlinear feedback gains for PKMs [20],
demonstrating that the tracking error could be significantly
reduced with the incorporation of time-varying gains in the
control loop. In addition, in [21] RISE feedback control was
complemented with neural networks where a B-spline neural
network was employed to estimate the dynamics of a PKM
online to incorporate it as a feedforward compensation term in
the control law. Furthermore, in previous study of the authors
[22], a RISE controller with nominal feedforward was applied
to an RA-PKM, SPIDER4, which was designed to perform
machining operations. This controller was used to validate
the inverse dynamic model (IDM) of SPIDER4 by including
it as a feedforward compensation term in the control law.
The achieved performance was approximately 24% better, in
terms of the Cartesian RMSE, than that of the standard RISE
controller, demonstrating the need for an IDM of the robot.
The use of a simplified IDM in this study can be justified as
compromise between complexity and quality. Implementing a
complete IDM would require a high computational burden,
resulting in real-time issues, and thereby deteriorating the
overall performance of the system.

Considering the need for high precision in applications
such as machining, in this study, we establish a new RISE
feedforward controller with adaptive feedback gains. This
research aims at improving the trajectory tracking performance

of PKMs, which are designed for machining applications, such
as milling or drilling, using a new control design. The adaptive
feedback gains of the proposed control solution produce
corrective actions when the tracking errors are considerably
increased by contact forces involved in the machining process.
These gains are adjusted according to a criterion based on the
values of the joint tracking errors. It is worth mentioning that,
the main difference between this study and the contribution of
[20] lies in nature of the control schemes. In [20] the control
solution uses nonlinear time-varying gains, whose variation is
based on predefined fixed nonlinear functions. However, the
proposed scheme in the present paper is based on adaptive
feedback gains, whose variation is governed by adaptation
laws. Furthermore, beyond the different kinematics as well
as the target application, a nominal feedforward is used in the
present study to improve the tracking performance.

The remainder of this paper is organized as follows: In
Section 2, we introduce SPIDER4, an RA-PKM, describing
its inverse kinematic model (IKM) and IDM. In Section 3,
the proposed control solution is introduced, including the
Lyapunov stability analysis of the resulting closed-loop sys-
tem. Section 4 presents the obtained real-time experiments
to validate the proposed control strategy. Finally, the general
conclusion and the future study perspectives are addressed in
Section 5.

II. DESCRIPTION AND MODELING OF SPIDER4 RA-PKM

SPIDER4 is an RA-PKM with five DOFs (3T–2R), designed
to perform machining operations, such as drilling or milling,
on resin materials. SPIDER4 is formed of two independent
mechanisms: (i) the first one is a parallel mechanism inspired
by the delta parallel architecture, which is responsible for per-
forming the translational movements of the machine, (ii) the
second is a serial wrist mechanism, which orients the spindle
cutting tool in space. The overall dimensions of the machine
are 4.6 m in length, 2.5 m in width, and 2.4 m in height.
This parallel-machine tool was designed and manufactured in
a collaboration between The Laboratoire d’Informatique, de
Robotique et de Microélectronique de Montpellier (LIRMM),
and the Tecnalia company. Fig. 1-(a) shows a general overview
of SPIDER4, and Fig. 1-(b) illustrates its main components.
The parallel positioning device of SPIDER4 is composed of
four kinematic chains connecting the fixed base to the traveling
plate. Each kinematic chain includes a rear arm and a forearm,
which is constituted by two parallel bars. Each kinematic chain
is formed of one motor connected to its rear arm through
a rotational joint; the rear arm, in turn, is joined to the
forearm of the chain using universal joints; finally, the forearm
is connected to the traveling plate through a universal joint.
The wrist mechanism is located over the traveling plate; it is
formed by two actuators and their coupling parts, supporting
and orienting the spindle motor.

A. Inverse kinematic model

Following the description of the mechanism of SPIDER4,
here the development of its IKM is presented, which con-
sists of finding the generalized coordinates vector, Q =
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(a) Overall view of SPIDER4 RA-PKM.

Rear-Arms
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Traveling
Plate

Fixed base

(b) Illustration of main components of SPIDER4 RA-PKM.

Fig. 1. Overview of SPIDER4 redundantly actuated parallel kinematic manipulator (RA-PKM) and its main components.

[
q1 q2 q3 q4 φ ψ

]T ∈ R6×1, given the spindle po-
sition in the fixed reference frame, O − xo, yo, zo, which is

expressed as oSS =
[
x y z φ ψ

]T ∈ R5×1. It is
worth mentioning that variables φ and ψ are identical for the
operational and joint spaces. However, because the proposed
control scheme only involves the parallel structure of the delta-
like positioning device of SPIDER4, the following position
vector for the traveling plate needs to be defined: oNN =[
xn yn zn

]T ∈ R3×1, to compute the joint coordinates
of the parallel structure q =

[
q1 q2 q3 q4

]T ∈ R4×1.
As presented in [22], oNN is computed by a series of
transformations involving the variables of the vector, oSS , and
the offset distances, Aoffset and Soffset, illustrated in Fig. 2. The
IKM solution for SPIDER4 is expressed as follows:

qi = 2 arctan

(
−Di ±

√
∆i

Fi − Ei

)
(1)

Above ∆i = D2
i +E2

i −F 2
i . Because φ and ψ are considered

known for the IKM analysis, we can conclude that the IKM
solutions for q and Q are obtained.
Di = 2Li((

oCi −o Ai) · zo), Ei = 2Li((
oCi −o Ai) ·i xi),

Fi = l2i − L2
i − ||oCi −o Ai||2, and zo =

[
0 0 1

]T
. For

more details of the methodology to obtain the IKM, the reader
may referred to [22], [23], [24].

B. Inverse dynamic model of delta-like positioning device

This section briefly describes the IDM of the delta-like
positioning device SPIDER4, considering the masses of the
wrist elements. Obtaining a precise and complete IDM for
PKMs has frequently been a complex task owing to the
existence of coupling dynamics and the number of elements
involved in the mechanism [25]. Moreover, a complete IDM
may be unsuitable for real-time implementation owing to its
high demand for computing resources to solve complex math-
ematical expressions, such as the pseudo-inverse of several
non-square Jacobian matrices. Therefore, deriving a simplified
IDM is an interesting solution for the real-time implementation
of model-based ones, which may have a better performance
than non-model-based controllers. For the development of the

IDM of the delta-like positioning device of SPIDER4, in this
study, the simplification hypotheses for delta-like manipulators
presented in [26] is considered. It is worth mentioning that
these hypotheses also have been considered in previous studies
[27], [28], [23]. The considered modeling simplifications are
as follows:
• Simplification hypothesis 1: The dry and viscous fric-

tions of the active and passive joints of SPIDER4 are
neglected. This hypothesis is considered because our
proposed control solution can compensate the unmodeled
dynamics effects.

• Simplification hypothesis 2: The rotational inertia of the
forearms is neglected, and its mass is divided into two
equivalent parts; the first one is added to the rear arm
mass, whereas the second is integrated to the traveling
plate mass. This hypothesis is justified if the forearm
mass is smaller than those of the rear arm and the
traveling plate, as it occurs in the case of SPIDER4.

The IDM establishes the actuators input torque Γ ∈ R4×1, as
a function of (i) the torques produced by the traveling plate
Γna ∈ R4×1, (ii) the torques produced by the inertia of the
actuators located at the fixed base Γact ∈ R4×1, and (iii) the
torques produced by the set of rear arm-forearm Γrfa ∈ R4×1.
The mathematical equation is denoted as follows:

Γ = Γna + Γrfa + Γact (2)

To determine the torques acting on the traveling plate, it is
necessary first to compute the inertial and gravity forces acting
on it. To this end, we apply the Newton-Euler formulation.
Subsequently, using the pseudoinverse Jacobian matrix we
can map from the linear forces to the torques acting on the
traveling plate, leading to the following equation:

Γna = HTMp(
oN̈N + g) (3)

where H ∈ R3×4 is the non-square pseudoinverse Jacobian
matrix, Mp ∈ R4×4 is a diagonal mass matrix including the
half masses of the forearms and the masses of the actuators
located on the traveling plate, g ∈ R3×1 is the gravity vector
expressed by g = [0 g 0]T with g = 9.81 m/s2, and
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Fig. 2. Illustration of one kinematic chain of SPIDER4 RA-PKM.

oN̈N ∈ R3×1 is the traveling plate acceleration vector. The
matrix, Mp ∈ R3×3, is a diagonal matrix whose elements are
as follows:

Mp = mna +mnamotors + 4
mfa

2
∀i = 1, ..., 4 (4)

where mna represents the mass of the traveling plate, mfa is
the forearm mass composed of the mass of the two parallelo-
gram bars, and mnamotors = mφ+mψ+ms, is the masses of
the three motors located at the traveling plate, including their
coupling parts.
According to [22], the torques produced by the set of rear
arm–forearm are related to the inertial and gravity forces as
follows

Γrfa = Irfaq̈ + gMrfa cos(q) (5)

where Irfa ∈ R4×4 is a diagonal matrix whose elements are
formed by Iarm+

L2mfa

2 , where Iarm and L are the inertia of
one rear arm and its length, respectively. The term, cos(q) ∈
R4×1, represents a vector of cosines as a function of each
joint position of the actuators located at the fixed base, and
Mrfa ∈ R4×4 is a diagonal matrix whose elements are as
follows:

mrfa = (mraLc +
mfaL

2
) sin(αi) ∀i = 1, ..., 4 (6)

Above mra is the mass of one rear arm, and Lc is the
distance between its rotational axis and its center of mass.
The components of (5) show the implication of the second
hypothesis simplification, which involves consideration of the
half masses of the forearms. Moreover, the term, sin(αi),
represents the fixed orientation of each kinematic chains, i.e.,
the traveling plate cannot rotate.
Finally, the produced torques related to the inertia of the
actuators are expressed in the following form:

Γact = Iactq̈ (7)

where Iact ∈ R4×4 is a square diagonal matrix containing
the inertia values of each motor placed over the fixed base.
Equation (2) represents the IDM as a function of the joint
and Cartesian space variables. Therefore, to rewrite it only

as a function of the joint variables, one should consider the
following kinematic relationship based on the pseudoinverse
Jacobian matrix:

oN̈N = Hq̈ + Ḣq̇ (8)

By substituting (3), (5), and (7) in (2), using (8), and rearrang-
ing terms, we establish the IDM for the delta-like positioning
device of SPIDER4 as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + f(q, q̇) = Γ (9)

where
• M(q) = Iact + Irfa + HTMpH
• C(q, q̇) = HTMpḢ
• G(q) = HTMpG + gMrfa cos(q)
• f(q, q̇) is a vector of the friction effects.

The kinematic and dynamic parameters of SPIDER4 are
summarized in Table I. It is worth mentioning that the dynamic
parameters as the masses of the rear arms, forearms, traveling
plate, coupling parts, and the rear arms inertia were calculated
using the material assignation functionality of SolidWorks
software. However, the other dynamic parameters — the
inertia of the motors and their masses— are obtained from
the datasheets of the manufacturers of the actuators.
For further details about the complete IDM of SPIDER4 as
well as the formulation of its Jacobian matrices, the reader
can refer to [22].
The following notable properties of the IDM are assumed to
hold for the subsequent stability analysis:

Property 2.1: The mass matrix, M(q) ∈ Rn×n, is symmet-
ric positive-definite satisfying the following inequality [29]:

m||ζ||2 ≤ ζTM(q)ζ ≤ m(q)||ζ||2, ∀ζ ∈ Rn (10)

where m is a positive constant, m(q) is a positive non-
decreasing function, and ||.|| represents the standard Euclidean
norm.

Property 2.2: If q and q̇ are measurable and bounded, then
C(q, q̇) and G(q) are also bounded. Additionally, the first and
second partial derivatives of the elements of M(q), C(q, q̇),
and G(q) with respect to q, and the first and second partial
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TABLE I
SUMMARY OF KINEMATIC AND DYNAMIC PARAMETERS OF SPIDER4

RA-PKM.

Parameter Description Value

L Rear arm length 0.535 m
l Forearm length 1.100 m
Rb Fixed base radius 0.4 m
Rp Traveling plate radius 0.260 m
Soffset Distance between ψ and oSS 1.135 m
Aoffset Distance between oNN and ψ 0.198375 m
mna Traveling plate mass 22.76 kg
mra Rear arm mass 17.6 kg
mfa Forearm mass 4.64 kg
Iarm Rear arm inertia 1.69 kgm2

Iact Inertia of principal actuators 0.00223 kgm2

ms Mass of spindle motor 3.2 kg
mψ ψ motor mass 5.1 kg
mφ φ motor mass 11.2 kg

derivatives of the elements of C(q, q̇) and f(q̇) with respect
to q̇ exist and are also bounded.

Assumption 2.1: The desired trajectory, qd, is continuously
differentiable with respect to time until the (n+ 2) derivative.

III. PROPOSED CONTROL SCHEME: RISE FEEDFORWARD
CONTROLLER WITH ADAPTIVE FEEDBACK GAINS

In this section, we address the main control contribution of
the present study: a RISE feedforward controller with adaptive
feedback gains. The nominal feedforward term includes the
described IDM of the delta-like positioning device of SPI-
DER4 evaluated with the desired joint trajectories and their
time derivatives. RISE is a robust feedback control strategy
developed for uncertain nonlinear systems integrating a unique
integral signum term that can ensure semi-global asymptotic
stability in the presence of general uncertain disturbances
[30]. This feature is of high importance when the dynamic
parameters of the system to be controlled are fully or partially
unknown. The model-based feedforward term partially cancels
some nonlinearities of the system, reducing the tracking errors.
As mentioned in the introduction, the adaptive gains of the
proposed control solution produce further corrective actions
when the tracking errors are considerably increased by the
contact forces involved in the machining process for instance.
Therefore, before presenting the mathematical formulation
of our proposed control strategy, the definitions of various
tracking errors are introduced. The first one is the tracking
error in the joint space, e1(t) ∈ Rn, which is defined as

e1(t) = qd(t)− q(t) (11)

where qd(t) ∈ Rn represents the vector of the desired
trajectories in the joint space and n represents the number of
actuators involved in the analysis, i.e. n = 4. The following
filtered tracking errors are useful for the subsequent Lyapunov-
based stability analysis [31]:

e2(t) = ė1(t) + Λ1e1(t) (12)

r(t) = ė2(t) + Λ2(t)e2(t) (13)

where Λ1 ∈ Rn×n is a positive-definite diagonal gain matrix
and Λ2(t) ∈ Rn×n is an adaptive gain matrix. Thus, the
proposed control law can be expressed as follows

Γ(t) = ΓARISE + ΓFF (14)

where ΓFF ∈ Rn corresponds to the nominal feedforward
term described in (15), and ΓARISE ∈ Rn is the RISE
controller with adaptive feedback gains, whose mathematical
expression is provided in (16)

ΓFF = M(qd)q̈d + C(qd, q̇d)q̇d + G(qd) (15)

ΓARISE(t) = (Ks(t) + I)e2(t)− (Ks(t) + I)e2(0)

+

∫ t

0

[(Ks(τ) + I)Λ2(τ)e2(τ) + βsgn(e2(τ))]dτ
(16)

In the ΓARISE(t) control term, β ∈ Rn×n is a positive-
definite diagonal gain matrix used to increase the controller
robustness, and Ks(t) and Λ2(t) ∈ Rn×n are the adaptive gain
matrices whose adjustments are inspired from the adaptation
algorithm presented in [32]. The adaptive rules for the gain
matrices are as follows:

Ks(t) = K̄s|η|+ K2 (17)

Λ2(t) = Λ̄2|η|+ K3 (18)

η̇ = tanh(e2)− η (19)

where K̄s and Λ̄2 ∈ Rn×n denote positive-definite constant
diagonal matrices used in the adaptation process of the control
feedback gains, and K2 and K3 ∈ Rn×n are other positive-
definite constant diagonal matrices that establish the minimum
possible value for each adaptive feedback gain. |.| is the
modulus vector function, and η ∈ Rn is a nonlinear function
depending on the combined tracking error, e2, which is a
function that combines both position and velocity errors.
Equation (19) represents the dynamics of the adaptive gains.
In (19), a hyperbolic tangent function is used to produce an
effect similar to the signum function, but without generating
prominent discontinuities for a better smoothness. The modu-
lus vector function in (18) is used to obtain only positive gain
values. Since η is directly related to the e2 error, by modifying
parameter Λ1, the amplitude of the signals of Ks and Λ2

will be affected. If Λ1 is increased, Ks and Λ2 will increase,
and if Λ1 decreases, they will also decrease. Consequently,
it is suggested to set Λ1 to one value in the gain tuning and
subsequently adjust the two other gains.

A. Closed-loop system formulation

In this section the IDM of the delta-like positioning device
of SPIDER4 RA-PKM, as expressed in (9), is considered
together with the equations defining the proposed control law
in (16)-(19). To express the resulting closed-loop system by
starting from an open-loop formulation, both sides of (13) are
multiplied by M(q) and utilize (11) and (12), leading to the
following expression:

M(q)r = C(q, q̇)q̇ + G(q) + f(q, q̇)− ΓARISE(t)

+ M(q)(q̈d + Λ1ė1 + Λ2(t)e2(t))− ΓFF (t)
(20)
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For stability analysis purposes, the derivative of (20) with re-
spect to time is computed, leading to the following expression:

M(q)ṙ = −Ṁ(q)r + C(q, q̇)q̈ + Ċ(q, q̇)q̇ + Ġ(q) + ḟ(q, q̇)

+ M(q)
...
qd + Ṁ(q)q̈d + Λ1(M(q)ë1 + Ṁ(q)e1)

+ M(q)(Λ2(t)ė2(t) + Λ̇2(t)e2(t))

+ Ṁ(q)Λ2(t)e2(t)− Γ̇ARISE − Γ̇FF
(21)

where the time derivative of ΓARISE can be expressed as
follows:

Γ̇ARISE =(Ks(t) + I)ė2(t) + [(Ks(t) + I)Λ2(t)

+ K̇s(t)]e2(t) + βsgn(e2(t))
(22)

We can rewrite (21) in the following form:

M(q)ṙ = −1

2
Ṁ(q)r+N(e1, e2, r, t)−e2(t)−Γ̇ARISE−Γ̇FF

(23)
where the nonlinear term, N(e1, e2, r, t) ∈ Rn, is expressed
as follows:

N(e1, e2, r, t) = C(q, q̇)q̈ + Ċ(q, q̇)q̇ + Ġ(q) + ḟ(q, q̇)

+ M(q)
...
q d + Ṁ(q)q̈d + Λ1(M(q)ë1 + Ṁ(q)e1)

+ M(q)(Λ2(t)ė2(t) + Λ̇2(t)e2(t)) + Ṁ(q)Λ2(t)e2(t)

+ e2(t)− 1

2
Ṁ(q)r

(24)

Here, we define the auxiliary function, Nd(qd, q̇d, q̈d, t) ∈
Rn, used to facilitate the subsequent stability analysis of the
resulting closed-loop system.

Nd(qd, q̇d, q̈d, t) = M(qd)
...
qd + Ṁ(qd)q̈d + C(qd, q̇d)q̈d

+ Ċ(qd, q̇d)q̇d + Ġ(qd) + ḟ(qd, q̇d)
(25)

Substituting (25) in (23) leads to the following:

M(q)ṙ = −1

2
Ṁ(q)r + Nd + Ñ− e2(t)− Γ̇ARISE −NFF

(26)
where Ñ = N − Nd and NFF = Γ̇FF . Considering the
properties introduced in Section 2, we can deduce that Nd

and Ṅd exist and are bounded. The auxiliary vector, Ñ can be
upper bounded using the mean value theorem [33] as follows:

||Ñ|| ≤ ρ(||z||)||z|| (27)

where || · || represents the Euclidean norm and z(t) ∈ R3n is
an error vector defined as

z(t) = [e1 e2 r]T (28)

We can infer the following properties in the bounded function,
||Ñ||

Property 3.1: The bounded function, ||Ñ||, is non-
decreasing in ||z||.

1) Bounds of adaptive gains: Because nonlinear functions
Ks(t) and Λ2(t) are continuously differentiable, they can be
bounded in the following form:

K2 ≤ Ks(t) ≤ KsM (29)

K3 ≤ Λ2(t) ≤ Λ2M (30)

where KsM and Λ2M ∈ Rn×n represent the maximum ad-
missible values that Ks(t) and Λ2(t) may acquire. Moreover,
it is assumed that KsM and Λ2M exist but are unknown. K2

and K3 ∈ Rn×n are positive-definite diagonal matrices whose
elements denote the minimum possible values that Ks(t) and
Λ2(t) can achieve. The values of K2 and K3 are determined
in the tuning procedure of the controller.

2) Stability analysis: Before presenting the stability analy-
sis of the closed-loop system with the proposed control solu-
tion, we introduce the below lemma, which can be considered
as a modified version of Lemma 1 presented in [30].

Lemma 1: Let L(t) ∈ Rn be an auxiliary function defined
as:

L(t) = r(Nd(t)−NFF (t)− βsgn(e2)) (31)

If the controller gain, β, is chosen to satisfy the following
inequality:

β > ||Nd(t)||L∞ − ||NFF (t)||L∞

+
1

Λ2M

(
||Ṅd(t)||L∞ − ||ṄFF (t)||L∞

) (32)

then ∫ t

0

L(τ)dτ ≤ ζb (33)

where ζb is a positive constant defined as

ζb = β||e2(0)||+ e2(0)T (NFF(0)−Nd(0)) (34)

Proof 1: The integral with respect to time of both sides of
(31) leads to the following [31]:∫ t

0

L(τ)dτ =

∫ t

0

r(τ)(Nd(τ)−NFF (τ)− βsgn(e2(τ)))dτ

(35)
By substituting (13) into (35), we obtain∫ t

0

L(τ)dτ =∫ t

0

Λ2e2(τ)T (Nd(τ)−NFF (τ)− βsgn(e2(τ)))dτ

+

∫ t

0

de2(τ)T

dt
Nd(τ)dτ −

∫ t

0

de2(τ)T

dτ
NFF (τ)dτ

−
∫ t

0

de2(τ)T

dτ
βsgn(e2(τ)))dτ

(36)
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Conducting integration by parts of the right-hand side of (36),
the following is obtained:∫ t

0

L(τ)dτ =

∫ t

0

Λ2e2(τ)T
(
Nd(τ)−NFF (τ)

)
dτ

−
∫ t

0

de2(τ)T

dτ
βsgn[e2(τ)]dτ

+ e2(τ)TNd|t0 −
∫ t

0

e2(τ)
dNd(τ)

dτ
− e2(τ)TNFF |t0

+

∫ t

0

e2(τ)
dNFF (τ)

dτ

(37)

By rearranging the terms of (37), we obtain∫ t

0

L(τ)dτ =

∫ t

0

Λ2e2(τ)T (Nd(τ)−NFF (τ)

+
1

Λ2

(
dNFF (τ)

dτ

dNd(τ)

dτ

)
− βsgn(e2(τ))

)
dτ

+ eT2 (t)(Nd(t)−NFF (t))− eT2 (0)(Nd(0)−NFF (0))

− β||e2(t)||+ β||e2(0)||
(38)

By upper bounding the right-hand side of (38), the following
is obtained:∫ t

0

L(τ)dτ ≤
∫ t

0

Λ2 ‖ e2(τ) ‖ (‖ Nd(τ) ‖ − ‖ NFF (τ) ‖

+
1

Λ2

(∥∥∥∥dNFF (τ)

dτ

∥∥∥∥− ∥∥∥∥dNd(τ)

dτ

∥∥∥∥)− β

)
dτ

+ ‖ e2(t) ‖ (‖ Nd(t) ‖ − ‖ NFF (t) ‖ −β) + β ‖ e2(0) ‖
+ eT2 (0)(NFF (0)−Nd(0))

(39)

We can infer from (39) that if β is selected according to (32),
then (33) is satisfied.

Theorem 1: The tracking error in the joint space, e1, of
the delta-like positioning device of SPIDER4, or any robotic
system whose dynamics is governed by (9), under the control
law in (14), converges semi-globally asymptotically to zero as
long as time approaches infinity if the design parameters are
selected such that

i) Λ1 >
1

2
ii) Λ2M > K3

iii) β > ||Nd(t)||L∞ − ||NFF (t)||L∞

+
1

Λ2M

(
||Ṅd(t)||L∞ − ||ṄFF (t)||L∞

)
Proof 2: Let D ⊂ R3n+1 be a domain containing

y(t) = [zT (t)
√

P(t)]T = 0 (40)

where P(t) ∈ Rn is a auxiliary function defined as

P(t) = β||e2(0)|| − e2(0)T (NFF (0)−Nd(0))−
∫ t

0

L(τ)dτ

(41)
The time-derivative of (41) can be written as follows:

Ṗ(t) = −rT (Nd(t)−NFF (t)− βsgn(e2)) = −L(t) (42)

Thus, we note that P(t) ≥ 0, ∀t ≥ 0, considering (32) and
(33).
Here, we define the Lyapunov candidate function, V(y, t) :
D × [0,∞) → R, as a continuously differentiable positive-
definite function as follows

V(y, t) =
1

2
rTM(q)r + eT1 e1 +

1

2
eT2 e2 + P (43)

Equation (43) can be bounded as follows:

λ1||y||2 ≤ V(y, t) ≤ λ2(||y||)||y||2 (44)

where

λ1 =
1

2
min{1,m}, λ2(||y||) = max{1

2
m(||y||), 1}

Because the gain matrices of the controller are diagonal-
square, we can utilize only one of their elements when
multiplying with vectors to simplify the stability analysis.
Taking the time derivative of (43) and utilizing (42), (23),
(22), (13), and (12), the following equation results:

V̇(y, t) = rT Ñ− (Ks(t) + 1)rT r− K̇s(t)r
Te2 + 2eT1 e2

− 2Λ1e
T
1 e1 − Λ2(t)eT2 e2

(45)

where the terms rT r, eT1 e1, eT2 e2, and eT2 e1 can be upper
bounded as follows:

rT r ≤ ||r||2, eT1 e1 ≤ ||e1||2, eT2 e2 ≤ ||e2||2,

eT2 e1 ≤
1

2
||e1||2 +

1

2
||e2||2

(46)

Considering the lower bounds of Ks(t) and Λ2(t) and the
relationships in (46), (45) can be bounded as follows:

V̇(y, t) ≤ ||r||ρ(‖ z ‖)||z|| − (K2 + 1)||r||2

−|Ksdm|
2
||r||2 − |Ksdm|

2
||e2||2 + ||e1||2 + ||e2||2

−2Λ1||e1||2 −K3||e2||2
(47)

where Ksdm denotes the lower bound of K̇s(t) as stated in
[20]. The previous equation can be rewritten in the following
form:

V̇(y, t) ≤ −λ3||z||2 −
(
K2||r||2 − ρ(‖ z ‖) ‖ r ‖ ||z||

)
(48)

where, z(t) ∈ R3n represents the vector containing the
different tracking errors of the system as expressed by (28),
and λ3 = min{η1, η2, η3}, where constants η1, η2, and η3 are
chosen as

η1 = 2Λ1 − 1, η2 =
|Ksdm|

2
+K3 − 1, η3 =

|Ksdm|
2

+ 1

(49)
From (49), one can infer that Λ1 must be chosen such that
Λ1 > 1/2. By completing the squares of the second and last
terms of (48), the following expression is obtained:

V̇(y, t) ≤ −λ3||z||2 +
ρ2(z)||z||2

4K2
= −c||z||2 (50)

In (50), the term, c||z||2, denotes a continuous positive semi-
definite function evolving in the following domain:

D =
{

y ≤ R3n+1| ‖ y ‖≤ ρ−1
(

2
√
λ3K2

)}
(51)
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We define S as a subset of D as follows:

S =

{
y(t) ⊂ D | c||z||2 < λ3

(
ρ−1

(
2
√
λ3K2

))2}
(52)

According to [19], c||z||2 is consistently continuous in D.
Thus, based on theorem 8.4 of [34], we can conclude that

c||z||2 → 0 as t→∞, ∀y(0) ∈ S (53)

Therefore, based on the definition of z(t), we can deduce that

||e1|| → 0 as t→∞, ∀y(0) ∈ S (54)

This concludes the stability proof of the proposed control
solution.

B. Actuation redundancy issue in SPIDER4

There are various challenges associated with the control
of PKMs. One of them lies in the actuation redundancy
present in some parallel robots having more actuators than the
degrees of freedom [35],[36]. This is the case for SPIDER4,
which has five-DOFs (3T–2T), where the positioning device
ensures the 3T DOFs using four actuators located at the
fixed base. RA-PKMs have some advantages compared to
their non-redundant counterparts, such as higher accuracy and
improved stiffness. Furthermore, the actuation redundancy can
also lead to singularity-free large workspaces. However, such
a configuration may lead to the generation of internal forces,
producing a pre-stress in the mechanism without operational
motions, which can damage the mechanical structure of a
robot. According to [3], internal forces can be caused by
geometric uncertainties, and their effect may be amplified by
decentralized control techniques. This decentralization may
lead to uncoordinated control of the individual actuators of the
robot because such control strategies do not consider kinematic
constraints. To avoid such an issue, the use of a projection
matrix can be considered, which is based on the pseudoinverse
Jacobian matrix evaluated in terms of the desired variables,
H(qd,

o NNd) ∈ Rm×n. The projection operator is expressed
as [3]

RH = (H+)THT (55)

The projection matrix, RH , eliminates the control inputs in
the null-space of HT . This null-space projection was used to
remove the controller effects that could produce antagonistic
forces in the PKM. Hence, all control inputs applied to
SPIDER4 have to be ”regularized” using this projection matrix
as follows:

Γ∗ = RHΓ (56)

where Γ denotes the torque vector generated by the proposed
control law in (14). Fig. 3 illustrates the block diagram of
the proposed controller for the delta-like positioning device of
SPIDER4, including the projection operator.

IV. REAL-TIME EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed RISE
feedforward control with adaptive feedback gains, we compare
its performance in two case studies as follows:

1) Case study 1: Nominal scenario. In this case study, the
performance of the proposed RISE feedforward with
adaptive feedback gains is compared to those of a PID
controller, and a PID feedfworward controller. In this
scenario, the controllers perform a free motion trajectory.

2) Case study 2: Machining scenario. In this case study,
the performance of the proposed RISE feedforward with
adaptive feedback gains is compared to those of a RISE
feedforward controller and a standard RISE feedback
controller. This case study is divided in three scenarios
of the machining process: low, medium, and high-speed.

To simplify the notation, the proposed RISE feedforward
with adaptive feedback gains is as denoted RISE FF AG, RISE
feedforward as RISE FF, PID feedforward as PID FF, and the
standard RISE control as only RISE.

A. Description of experimental setup

SPIDER4 uses different actuators to achieve linear motions
of the parallel positioning device and the serial wrist holding
the machining tool. Four WITTESTEIN TPMA110S-022M-
6KB1-220H-W6 actuators are responsible for performing the
movements along the axes x, y, and z. Each actuator includes a
gearhead with a gear ratio of 1:22, a peak torque of 3100 Nm,
and 189 rpm as the maximum rotation speed. These motors
are equipped with multiturn absolute encoders to measure in
real time the joint positions. Although the control scheme only
uses the motors of the SPIDER4 parallel structure, it is worth
mentioning the features of the traveling plate motors. On the
traveling plate, three actuators perform independent angular
motions φ and ψ as well as the movement of the spindle.
The motor responsible for the movement along the φ axis
is a STOBER EZH501USVC4P097 motor; this actuator can
generate a peak torque of 200 Nm. To perform the angular
motion along the ψ axis, a HARMONIC DRIVE CHA-20A-
30-H-M1024-B is used; this motor can provide a peak torque
of 27 Nm. Finally, the B&R 8JSA24.E4080D000-0 is used
for the actuation of the spindle machining tool. This motor
can provide a torque of 1.41 Nm and a rotation speed of
8000 Nm. The joint velocities of SPIDER4 are not measured
directly because the machine is not equipped with sensors to
measure the joint velocities. Nevertheless, such velocities are
calculated by numerical derivatives of the measurements of
the joint positions with a sampling time of 0.4 ms. Fig. 4
shows the experimental setup of SPIDER4 in its work cell,
including the tooling plate used to fix the material block
to be machined. The architecture of each control scheme is
created in Simulink software from MathWorks. The Simulink
project includes the kinematic algorithms, Jacobian matrices,
and control scheme for SPIDER4. However, all functionalities
of SPIDER4, including the motion control, are programmed
in a B&R Automation Studio project. Accordingly, a specific
library called B&R Automation studio target for Simulink is
used to convert the Simulink code into C code and transfer
it to the B&R Automation Studio Project. The program is
executed by a B&R Automation PC 910 with a programmed
sampling time of 0.4 ms. The industrial PC sends and receives
the control signals to the X20 system, which sends and
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Fig. 3. Block diagram of the proposed control solution for SPIDER4 RA-PKM.

Fig. 4. Side view of experimental setup of SPIDER4 RA-PKM.

receives signals to the inverter modules called ACOPOS multi
system, which produces the motion of each actuator. The
SPIDER4 project is executed by a Graphic User Interface
(GUI) developed by Tecnalia Company, programmed also in
B&R Automation Studio.

B. Tuning gains procedure

The feedback gains of the controllers tested on SPIDER4
are tuned by a trial and error method, where particular focus
should be paid to the existence of noise, which can be
considerably amplified if the gains are not selected well, which
may deteriorate the performance of the system. However, it
is difficult for real-time experiments to realize gain tuning
analytically when the dynamics is highly nonlinear, complex
and the measurements are noisy. Consequently the best solu-
tion is the trial and error method until a good performance
is achieved. For the proposed RISE FF AG controller, first,
we set a sufficiently large value for Λ1; subsequently, gains
K2 and K3 are set as the minimum values that Ks(t) and
Λ2(t) could obtain, respectively. Gains Ks and Λ2 are tuned
according to the desired sensitivity to the changes in the

TABLE II
SUMMARY OF CONTROL DESIGN GAINS

PID/PID FF RISE/RISE FF RISE FF AG

KP = 160 Λ1 = 110 Λ1 = 110
KD = 20 Λ2 = 1 Λ̄2 = 3500
KI = 80 Ks = 33 K̄s = 3500

β = 0.5 β = 0.5
K2 = 33
K3 = 1

tracking error in the joint space to increase the output values
of Ks(t) and Λ2(t). The value of gain β can increase the
robustness of the controller. However, this value must be set
very small at the beginning and gradually increased, to avoid
the phenomenon of chattering. For PID/ PID FF controllers,
we first set the KP gain to be sufficiently large to produce
motion in the robot while keeping the KD and KI gains as
zero. Subsequently, we performed the KD gain adjustment to
decrease the oscillations, and finally, we adjusted the KI gain
value to reduce the transient state error.

It is worth mentioning that due to the existence of un-
known/unmodelled phenomena such as friction in the real
system, it is not recommended to tune the gains in a simulation
procedure since the control design is based on a simplified
dynamic model. The gains values of the proposed controllers
implemented and validated in the experiments are summarized
in Table II.

C. Reference trajectories generation

The B&R automation studio project of SPIDER4 incorpo-
rates a computer numerical control function, allowing define
a desired trajectory using G-Code instructions.

1) Case study 1: The trajectory proposed for this scenario is
shown in Fig. 5; it is worth mentioning that this trajectory can
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Fig. 5. Desired trajectory used for case study 1.
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Fig. 6. Illustration of desired piece to be machined with its dimensions in
mm and degrees.

be used for a milling task. However, in this case, the spindle is
kept deactivated and we do not place the material to fabricate
a part. The established forward speed for this experiment is
F=2400 mm/min. The left side of Fig. 5 depicts a 3D view of
the desired path, whereas the right side of the figure illustrates
the evolution of the evolution of the trajectories for x, y, and
z with respect to time.

2) Case study 2: The desired trajectory for this case study
describes a milling machining process on a flat piece of
styrofoam with a thickness of 1 in. The G-Code for this milling
machining task was first simulated in WinUnisoft software
from Alecop, to ensure safety of implementation on SPIDER4.
The cutting depth established for the intended experiments was
5 mm, and the cutting speed established for the spindle, S,
was 7000 rpm. One can modify the speed, S, from the G-
Code; however, it is impossible to change it in real time with
architecture and control. Fig. 7 illustrates the flat piece to be
machined with its dimensions in millimeters. The machining
trajectory generated by the G-Code is shown in 3D in Fig. 7.
In the figure, the lines in red describe the part of the trajectory
where the PKM is not cutting the material (free motion),
whereas blue lines represent the sections of the trajectory
where the spindle is cutting the piece (constrained motion).

To validate the effectiveness of the proposed control scheme,
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Fig. 7. Three-dimensional view of desired trajectory for intended machining
task.

we executed the desired trajectory with the following three
forward speeds (F):

• F=1200 mm/min (low speed)
• F=2400 mm/min (medium speed)
• F=24000 mm/min (high speed)

The desired trajectories in the Cartesian space (for x, y, and z)
versus time for these forward speeds respectively are depicted
in Fig. 8.
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Fig. 8. Evolution of desired Cartesian trajectories versus time for different
forward speeds F.

D. Performance evaluation criteria

We propose to use the RMSE, and the mean square error
(MSE) formulas [37] to quantify the tracking performance of
the control schemes. These formulas enable quantifying the de-
gree of accuracy achieved by the tested controller numerically.
The RMSE expressions for the SPIDER4 positioning device
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TABLE III
PERFORMANCE COMPARISON OF CONTROLLERS USING RMSE AND MSE

Controller RMSE MSE

PID 0.0579 0.0848
PID FF 0.0570 0.0792
RISE FF AG 0.04721 0.0739

in the Cartesian (RMSEC) and joint (RMSEJ ) spaces are
as follows:

RMSEC =

√√√√ 1

N

N∑
k=1

(e2xn(k) + e2yn(k) + e2zn(k)) (57)

RMSEJ =

√√√√ 1

N

N∑
k=1

(e211(k) + e212(k) + e213(k) + e214(k))

(58)
The MSE expressions in the Cartesian (MSEC) and joint
(MSEJ ) spaces for SPIDER4 are denoted as follows:

MSEC =
1

N

N∑
k=1

(|exn(k)|+ |eyn(k)|+ |ezn(k)|) (59)

MSEJ =
1

N

N∑
k=1

|(e11(k)|+ |e12(k)|+ |e13(k)|+ |e14(k)|)

(60)
where exn, eyn, and ezn denote the Cartesian position tracking
errors of the traveling plate along x, y, and z axes, respectively,
whereas e11, e12, e13, and e14 are the corresponding tracking
errors in the joint space, and N is the total number of samples
of the entire trajectory.

E. Obtained experimental results for case study 1

The obtained results of this case study are shown in Fig.
9, where the curves represent the tracking errors in the joint
space of the three control schemes. We infer from the figure
that our control proposal outperforms the PID and PID FF
controllers in terms of the smaller tracking errors. We confirm
this observation using the RMSE and MSE formulas, whose
results are summarized in Table III. Using these data, we can
calculate that for this case study, the proposed control scheme
obtained improvements over the PID and PID FF control of
18.48% and 7.5%, respectively, using the RMSE formula. The
corresponding obtained improvements using the MSE fomula
are 12.85% and 6.4%.

Considering these results, we perform the experiments of
the second case study. Owing to the good performance of
our control scheme compared with those of the two previous
controllers, we herein compare our proposed controller to other
variants of the RISE control schemes (RISE and RISE FF).
Moreover, the second case study presents different scenarios
where the forward speed is increased.

F. Obtained experimental results for case study 2

The obtained results for the three controllers when the
desired trajectory is executed at a low speed are shown in Figs.
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Fig. 9. Evolution of tracking errors versus time in joint space of case study
1.

8–12. Fig. 10 shows the comparison of the tracking errors in
the joint space, from which we observe that the execution
takes approximately 154 s when F = 1200mm/min. It can
also be seen in all graphs that the tracking errors of the
standard RISE controller are the worst. The tracking errors
of the RISE FF and RISE FF AG controllers on motors 2
and 3 present relatively similar behavior. However, in the
graph of motor 4, it can be seen that the tracking error of
the RISE FF AG control is noticeably better than those of
the other controllers. The variations observed in the behavior
of the tracking errors of each motor may be due to the fact
that although the dynamic parameters of each set of links are
considered the same, in reality, they are different. To confirm
our observations, we utilize of Fig. 11, which is a zoom of
the graphs shown in Fig. 10 in the interval between 75 and
80 s. The evolution of adaptive gains Ks(t) and Λ2(t) with
respect to time are displayed in Figs. 12 and 13, respectively.
In the graphs of Fig. 12, it can be seen that the minimum
value of Ks(t) is 33, as is established for K2; similarly, in
Fig. 13, we observe that the minimum value taken by Λ2(t) is
as established in matrix K3. In addition, it can be seen from
these figures that owing to this execution speed, Ks(t) can
reach values of up to 36, whereas Λ2(t) can reach 4. The
torques generated by the proposed RISE FF AG controller are
depicted in the graphs of Fig. 14. It can be seen from the
graphs of motors 1 and 2 that their values range from 100 to
270 Nm, whereas for motors 3 and 4, their values are varying
between -100 and -350 Nm. This behavior is due to the
horizontal orientation of the robot kinematic chains, where the
acceleration of gravity affects the lower linkages (kinematic
chains 1 and 2) differently than the upper linkages (kinematic
chains 3 and 4). From the results shown in Figs. 10 and 11, we
can conclude that our proposed control scheme outperforms
the other two schemes under this operating condition with a
low forward speed. However, we must utilize the criteria of
the RMSEs in (57) and (58) to confirm the observations from
these figures. The results of the RMSEs in the Cartesian and
joint spaces are summarized in Tables IV and V, respectively.
Based on the RMSEs provided in Tables IV and V, we
can compute the improvement in the proposed RISE FF AG
controller with respect to the two other approaches. These



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 12

0 50 100 150

e 1
1
[D
eg
]

-0.04

-0.02

0

0.02

0.04

0.06

RISE RISE FF RISE AG

0 50 100 150

e 1
2
[D
eg
]

-0.05

0

0.05

Time[s]
0 50 100 150

e 1
3
[D
eg
]

-0.04

-0.02

0

0.02

0.04

0.06

Time[s]
0 50 100 150

e 1
4
[D
eg
]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

FF

Fig. 10. Evolution of tracking errors versus time in joint space at low forward
speed.
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Fig. 11. Zoomed views of evolution of tracking errors versus time in joint
space at low forward speed.

improvements are summarized in Table VI. Based on these
results, we note that the RISE FF AG controller outperforms
the standard RISE controller by 24% in the joint space and by
19% in the Cartesian space. Moreover, our control solution
outperforms the RISE FF controller by 17% and 15% in
the joint and Cartesian space, respectively. Considering these
results, we notice a significant enhancement in the system
performance when RISE FF AG is used. The piece resulting
from this machining experiment using the proposed RISE FF
AG controller is shown in Fig. 25a. A demonstration video is
available at: https : //youtu.be/t1HaWEBy6LY
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Fig. 12. Evolution of Ks gains versus time at low forward speed.
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Fig. 14. Evolution versus time of control inputs generated by proposed RISE
FF AG controller at low forward speed.

2) Results at medium-speed: By increasing the forward
machining speed from 1200 to 2400 mm/min, the follow-
ing results are obtained. At this medium speed, SPIDER4
completes the task in approximately 69 s. We note from
the graphs of Fig. 15 that the joint tracking errors of the
three control schemes increase with respect to the low-speed
scenario. Despite this, the tracking error signals resulting from
the proposed RISE FF AG controller are the closest to zero,
followed by those resulting from the RISE FF controller. In
addition, the performance of the standard RISE controller is
the worst, presenting noticeable overshoots compared to the
previous two controllers. We present zoom parts the curves of
Fig. 15 in the interval between 35 and 40 in Fig. 16. From
this figure, it is noticeable that the behavior of each tracking
error signal confirms the above. The increase in the speed
also slightly modifies the behavior of adaptive gains Ks(t)
and Λ2(t), as can be seen from Figs. 17 and 18. Furthermore,
it can be seen that in some portions of the trajectory, Ks(t)
manages to reach values close to 37, whereas Λ2(t) manages
to reach peak values up to 5. In addition, we can see in Fig.
19 that this speed change also increases the output torque of
the motors. We notice from Fig. 19 that the torque values for
motors 1 and 2 oscillate between 100 to 400 Nm, whereas
those of motors 3 and 4 oscillate between -100 and -400
Nm. Similar to the task at low speed, in this case, we use
the RMSE formula to quantify the tracking performance of
the controllers at medium speed. The obtained results are

https://youtu.be/t1HaWEBy6LY
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Fig. 15. Evolution versus time of tracking errors in joint space at medium
forward speed.
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Fig. 16. Zoomed view of evolution versus time of tracking errors in joint
space at medium forward speed.

listed in the third column of Tables IV and V. Based on
these data, we calculate the enhancements achieved by the
proposed RISE FF AG controller with respect to the two other
controllers. Based on Table VI, we observe that our proposed
controller has 21% and 25% improvements of in RMSEs for
the Cartesian and joint space motions, respectively, whereas
the improvements obtained by the RISE FF controller are 16%
and 18%, respectively. The obtained piece using the RISE
FF AG controller is shown in Fig. 25b, which presents that
the machining quality is decreased compared to that of the
previous case. This can be explained by the cutting spindle
speed not increasing as the forward speed, and also by the
soft nature of the machined material.

3) Results at high speed: The objective of conducting this
experiment at speed F = 24000 mm/min is to determine the
deterioration of the performance of each controller. It should
be mentioned here that this speed is inadequate to perform
machining tasks with materials more rigid than styrofoam
because the cutting tool can be broken easily. In the following,
we discuss the obtained results. The graphs of the tracking
errors are depicted in Fig. 20, which show that under these
conditions, the performance of the standard RISE controller
is significantly degraded, whereas those of the RISE FF and
RISE FF AG controllers are similar. Fig. 21 shows zoomed
views of the graphs of Fig. 20 between 6 and 8 s. This figure
suggests that the performance of the proposed RISE FF AG
controller is slightly better than that of the RISE FF controller.
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Fig. 17. Evolution versus time of Ks gains at medium forward speed.
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Fig. 18. Evolution versus time of Λ2 gains at medium forward speed.

Figs. 22 and 23 shows that the values of adaptive gains Ks(t)
and Λ2(t) continue to increase with the forward speed. Ks(t)
manages to reach a peak values of 44, whereas Λ2(t) exceeds
10. Despite this behavior on the adaptive gains, it is insufficient
to further reduce the tracking errors. Therefore, this execution
represents the breaking point of our control proposal. The
produced torques also increase, as can be seen in Fig. 24.
The torque values for motors 1 and 2 range from -200 to
600 Nm, whereas those of motors 3 and 4 evolve within the
range of -600 to 20 Nm. Similar to the previous scenarios,
the RMSEs obtained in this experiment were registered and
are summarized in Tables IV and V. In Table VI, we infer

0 20 40 60

Γ
1

[N
m

]

0

100

200

300

400

0 20 40 60

Γ
2

[N
m

]

0

100

200

300

400

Time [s]
0 20 40 60

Γ
3

[N
m

]

-400

-300

-200

-100

0

Time [s]
0 20 40 60

Γ
4

[N
m

]

-400

-300

-200

-100

0

Fig. 19. Evolution versus time of control inputs generated by proposed RISE
FF AG controller at medium forward speed.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 14

(a) F=1200 (b) F=2400 (c) F=24000

Fig. 25. View of the machining results using the proposed RISE FF AG controller with different Forward speeds (low, medium and high respectively).
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Fig. 20. Evolution versus time of tracking errors in joint space at high forward
speed.

that the RISE FF AG controller outperforms the standard
RISE controller by 45% and 43% in the joint and Cartesian
spaces, respectively, whereas the corresponding improvements
relative to the RISE FF controller are only of 4% and 1.47%.
These results imply that at high speeds, the performance of
the proposed RISE FF AG controller is practically equivalent
to that of the RISE FF controller. The same tables show that
the MSEs have similar relationships as RMSEs The resulting
piece is shown in Fig. 25c, where the final result is not good
owing to the excessive forward speed and the soft nature of
the machined material.
It is worth mentioning that the tuning of the gains is performed
at the low speed defined in the experiments. Subsequently, the
obtained gains are kept unchanged for the other experimental
scenarios with medium and high forward speeds to demon-
strate the robustness of the proposed control scheme. Indeed,
based on the graphs at low speed, the performance of the RISE
controller does not differ much from those of the other two
controllers, even if it is the one with the lowest performance.
However, as the speed increases, the performance of the other
two control schemes is less affected by the presence of more
control actions. As demonstrated by the obtained real-time
experimental results, our controller offers robustness towards
forward speed variations as well as unexpected uncertainties,
including friction effects and unmodelled dynamics.
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Fig. 21. Zoomed views of evolution of tracking errors in joint space at high
forward speed.

Fig. 22. Evolution versus time of Ks gains at high forward speed.

Fig. 23. Evolution versus time of Λ2 gains at high forward speed.
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Fig. 24. Evolution versus time of control inputs generated by proposed RISE
FF AG controller at high forward speed.

TABLE IV
CONTROLLERS PERFORMANCE EVALUATION USING RMSE AND MSE

CRITERIA FOR JOINT SPACE TRACKING ERRORS (DEG).

Controller Forward speed (F)
1200 mm/min 2400 mm/min 24000 mm/min

RMSE

RISE 0.0592 0.0618 0.1796
RISE FF 0.0546 0.0566 0.1051
RISE FF AG 0.0449 0.0461 0.1007

MSE

RISE 0.0826 0.0889 0.2598
RISE FF 0.0773 0.0827 0.1714
RISE FF AG 0.0606 0.0645 0.1612

V. CONCLUSIONS AND FUTURE STUDIES

In this paper, we proposed a new adaptive extension of the
RISE feedforward control. The proposed control solution aims
at improving the trajectory tracking performance of PKMs for
high-precision tasks, such as machining. The proposed control
scheme was tested on the RA-PKM, SPIDER4, designed to
perform machining operations, such as milling or drilling. Be-
fore introducing the main contribution of the paper, we briefly
described the IKM and IDM of the delta-like positioning
device of the SPIDER4 robot. Before to conducting the ma-
chining case study, the proposed control solution was validated
against a PID controller and a PID feedforward controller.

TABLE V
CONTROLLERS PERFORMANCE EVALUATION USING RMSE AND MSE

CRITERIA FOR CARTESIAN SPACE TRACKING ERRORS (CM).

Controller Forward speed (F)
1200 mm/min 2400 mm/min 24000 mm/min

RMSE

RISE 0.0383 0.0405 0.1425
RISE FF 0.0367 0.0380 0.0794
RISE FF AG 0.0309 0.0319 0.0782

MSE

RISE 0.0534 0.0582 0.2061
RISE FF 0.0519 0.0555 0.1294
RISE FF AG 0.0417 0.0446 0.1242

TABLE VI
ENHANCEMENT IN PROPOSED RISE FF AG W.R.T STANDARD RISE AND
RISE FF USING RMSE AND MSE FOR TRACKING ERRORS IN CARTESIAN

AND JOINT SPACES.

Cartesian Space Joint Space

Forward speed RISE RISE FF RISE RISE FF

RMSE

Low 19.27 % 15.73 % 24.155 % 17.75 %
Medium 21.36 % 16.06 % 25.40 % 18.55 %
High 45.12 % 1.47 % 43.93 % 4.18 %

MSE

Low 21.91 % 19.66 % 26.59 % 21.55 %
Medium 23.32 % 19.63 % 27.51 % 22.51 %
High 39.73 % 4.01 % 34.03 % 6.34 %

For case study 2, we proposed a milling process conducted at
three forward speeds (low, medium, and high) on styrofoam
blocks to validate the effectiveness of the proposed control
scheme. The performance of the proposed control scheme was
evaluated with respect to those of the RISE feedforward and
standard RISE controllers. The obtained results showed 19%,
21% and 45% improvements in the RMSEs at low, medium,
and high speeds, respectively, with respect to the standard
RISE controller results in the Cartesian space. Compared to
the RISE feedforward controller, there were 15%, 16%, and
1.5% improvements in the RMSE at low, medium, and high
speeds, respectively, in the Cartesian space. Additionally to the
RMSE, we used the MSE formula to verify the effectiveness
of our control solution. We inferred from Tables IV, V, and VI
that the MSEs has similar percentages to the RMSEs.
Before sending the control signals to the actuators, a null space
operator based on the pseudo inverse Jacobian matrix was used
to remove antagonistic internal forces. As a future direction,
we can investigate the effect of such null-space projection
operator as a potential further improvement.
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industrielle pour le pick-and-place,” Ph.D. dissertation, Montpellier 2,
2007.

[27] J. M. Escorcia-Hernández, H. Aguilar-Sierra, O. Aguilar-Mejı́a,
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