
HAL Id: lirmm-03666874
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03666874v1

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oscillatory Neural Networks for Obstacle Avoidance on
Mobile Surveillance Robot E4

Madeleine Abernot, Thierry Gil, Evgenii Kurylin, Tanguy Hardelin,
Alexandre Magueresse, Théophile Gonos, Manuel Jiménez Través, María José

Avedillo de Juan, Aida Todri-Sanial

To cite this version:
Madeleine Abernot, Thierry Gil, Evgenii Kurylin, Tanguy Hardelin, Alexandre Magueresse, et al..
Oscillatory Neural Networks for Obstacle Avoidance on Mobile Surveillance Robot E4. IJCNN
2022 - IEEE International Joint Conference on Neural Networks, Jul 2022, Padova, Italy. pp.1-8,
�10.1109/IJCNN55064.2022.9891923�. �lirmm-03666874�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03666874v1
https://hal.archives-ouvertes.fr


Oscillatory Neural Networks for Obstacle Avoidance on Mobile

Surveillance Robot E4 ∗

Anonymous Authors

Abstract

Neuromorphic computing aims to emulate biological neural functions to overcome the memory
bottleneck challenges with the current Von Neumann computing paradigm by enabling efficient and
low-power computations. In recent years, there has been a tremendous engineering effort to bring
neuromorphic computing for processing at the edge. Oscillatory Neural Networks (ONNs) are brain-
inspired neural networks made of oscillators to mimic neuronal brain waves, typically visible on
Electroencephalograms (EEG). ONNs provide massive parallelism using coupled oscillators and low
power computation using oscillator phase dynamics. In this paper, we present for the first time how to
use ONNs to perform obstacle avoidance on a mobile robot. Digitally implemented ONNs on FPGA
are used and configured for obstacle avoidance inside the industrial surveillance robot E4 from the
company, A.I.Mergence. We show that ONNs can perform real-time obstacle avoidance based on the
sensory data from proximity sensors embedded on the E4 robot. The highly parallel architecture of
ONNs not only allows fast real-time computation for obstacle avoidance applications but also opens
up a novel computing paradigm for edge AI to enable low power and real-time sensing to action
computing.

Keywords— A ssociative memory, Neuromorphic computing, Oscillatory Neural Networks, Obstacle avoid-

ance.

1 INTRODUCTION

Edge devices and autonomous robots are widely
spread and deployed to respond to various indus-
trial services, manufacturing, and even human ser-
vices [1]. Autonomous robots are of particular in-
terest for space applications [2], underwater treat-
ment and survey [3], household security monitoring
and maintenance [4], to mention a few. However,
autonomous robots must treat a large amount of
continuous data while operating with limited com-
putational resources and power as they are mainly
battery operated. Hence, in recent years, academic
and industrial communities have been investigat-
ing deploying Artificial Intelligence (AI) on edge
devices and robots to allow energy efficient com-
putation and autonomous decision making. But,
currently deployed AI on edge is mainly based on
Artificial Neural Networks (ANNs), such as Convo-
lutional Neural Networks (CNNs), implemented on
CPUs or GPUs which are power-hungry and mem-
ory restrained [5].

Neuromorphic computing presents an alterna-
tive computing paradigm to address these chal-
lenges. A well-known neuromorphic computing so-
lution is the Spiking Neural Network (SNN) [6–8].
SNNs use time between spikes to encode informa-

tion reproducing brain behavior where information
is sent through spikes. Using spikes reduces the
mean voltage amplitude, which ultimately reduces
the power consumption of systems. In addition, re-
searchers have adapted a biological concept to cre-
ate a spike-timing-dependent plasticity learning al-
gorithm [9,10], to enable online learning capability
on edge devices.

An alternative energy efficient neuromorphic
computing based on oscillatory neural networks
(ONNs) has been recently developed where the
main computing architecture is analog computing of
coupled oscillators phase dynamics [11–13]. ONNs
employ oscillators as neurons and analog compo-
nents, such as resistors or capacitors, as synapses
to couple oscillators and create physical interactions
between them. Phase dynamics of coupled oscilla-
tors have been shown to perform auto-associative-
memory applications [13]. In ONNs, information is
encoded in the phase difference between oscillators,
which also reduces signal voltage amplitude and,
consequently, reduces power consumption. Cur-
rently, ONNs are being explored from various as-
pects such as materials [14], devices [15–18], analog
circuit design [19,20] to implementation and appli-
cations [21–23].

In this paper, we explore the benefits and costs

∗This work was supported by the European Union’s Horizon 2020 research and innovation program, EU H2020 NEU-
RONN (www.neuronn.eu) project under Grant 871501.

1



of the ONN computing paradigm for robotic appli-
cations. We investigate how ONNs can be used to
perform the obstacle avoidance (OAV) in a real in-
dustrial autonomous robot named E4, developed by
A.I.Mergence [24]. E4 is a mobile robot developed
for office security monitoring purposes. One of the
main challenges for autonomous mobile robots re-
mains navigation in their environment. For exam-
ple, avoiding obstacles is a common and important
feature to be ensured by robots to navigate correctly
in any environment [25].

E4 robot is equipped with multiple sensors and
cameras to navigate, monitor and report on the
room security such as fire, water, gas, or intruder.
It is equipped with fifteen proximity sensors to de-
tect obstacles and hollows and avoid them. In this
work, we propose a solution to use ONNs as Auto-
Associative Memory (AAM) to perform OAV based
on the proximity sensor values provided by the E4
robot. To do so, we implement two digital ONNs
configured for OAV on an FPGA board [26], and in-
tegrate it in the E4 robot. The main contributions
of this paper are:

1. development of a solution using two cascaded
ONNs to perform OAV based on proximity
sensor data measurements,

2. system implementation in an FPGA board us-
ing fully-digital ONNs, and

3. integration of the FPGA board inside the E4
industrial robot and real-time assessment of
ONN OAV versus equivalent software solu-
tions.

First, in Section 2, we detail the ONN comput-
ing paradigm, from the biological inspiration to the
application-level and learning algorithms. Second,
in Section 3 we describe the E4 robot with its archi-
tecture and features. In addition, we specify how
the OAV feature is implemented inside E4. Then
in Section 4, we present our ONN OAV solution
for the E4 robot. Finally, in Section 5, we describe
ONNs implementation inside the E4 robot, and we
report on the resources and timing performances of
the proposed solution.

2 OSCILLATORY NEURAL NETWORKS

ONNs are novel neuromorphic computing systems
based on coupled oscillators inspired by brain
wave oscillations visible on Electroencephalograms
(EEG). This section presents the biological inspira-
tion of ONN, its computing principle, applications,
and learning algorithm.

2.1 ONN Computing Principle and Biolog-
ical Inspiration

In ONNs, each neuron is an oscillator and cou-
pled by analog elements to represent synapses, such
as resistors or capacitors [27]. The information is
represented in the phase difference among oscilla-
tors, which reduces the voltage amplitude and ulti-
mately reduces the power consumption of the sys-
tem. For example, considering a reference oscillator
with phase 0o, if we compute only with binary in-
formation, an oscillator in-phase (0o) with the ref-
erence oscillator represents a logic ’0’, and an os-
cillator out-of-phase (180o) with respect to the ref-
erence oscillator represents a logic ’1’. ONNs use
the phase dynamics among coupled oscillators to
compute. Once oscillators are initialized with in-
put phase information, the coupling between os-
cillators allows them to dynamically interact and
oscillate until they reach stabilization. The phase
differences among oscillators once stabilized, repre-
sent the output information. Thus, coupling plays
an important role as the memory and steering the
interactions among oscillators.

2.2 Auto-Associative Memory Applications

In [12], authors showed that when oscillators are
fully coupled, they can perform Auto-Associative
Memory (AAM) type of tasks, like in Hopfield Neu-
ral Networks (HNNs) [28]. AAM tasks consist of
memorizing patterns and retrieving those memo-
rized patterns from corrupted ones. For example,
with images, we associate a pixel with each oscilla-
tor and the phase of each oscillator represents the
color of the pixel. The network is trained to mem-
orize images using specific learning algorithms de-
fined in 2.3. As the first step, the learning algorithm
computes the synaptic weights, which determines
the couplings among oscillators. Once couplings
are set then the next step is inference. During in-
ference, we initialize the network with a corrupted
image and let the network oscillate till it stabilizes
to one of the trained images, see Fig. 1.

2.3 Learning

The main learning algorithm developed for AAM
tasks is the Hebbian learning rule [29]. It is an un-
supervised learning rule introduced by Hopfield for
HNNs and then adapted to ONNs [12]. Unlike su-
pervised learning algorithms, unsupervised learning
algorithms only use input data to compute weights
without additional interaction. To learn k patterns
Xk, the unsupervised Hebbian learning rule defines
the weight wij between neuron i and neuron j as:

wij =
1

k

∑
k

Xk
i X

k
j

T
(1)

2



Figure 1: ONN computing paradigm.

with wij = 0 ∀ i = j. Note, Hebbian presents
limitations in terms of training images capacity,
meaning the maximum number of patterns to be
trained while keeping high accuracy. There exist
other unsupervised learning rules to counter these
limitations [30,31], however, they use more compu-
tational resources than Hebbian, though Hebbian
capacity is sufficient for this application.

3 E4 ROBOT

E4 robot is developed by A.I.Mergence and it is a
surveillance robot developed to ensure office secu-
rity. It detects human intrusions and environmen-
tal risks, such as water, fire, and smoke. Here, we
present the E4 robot functionalities and details re-
lated to the obstacle avoidance application.

3.1 General Description of E4 Functionali-
ties

E4 robot is a 3-side triangle robot that is 35 cm
high, with a 36 cm front side and two 34 cm sides,
see Fig. 2. The robot can navigate smoothly in the
environment, avoiding obstacles in order to detect
anomalies, like water floods or intrusions. Addi-
tionally, the robot can interact non-verbally with
humans, using sound and luminosity interactions.
Available functionalities are:

• 360o wide human detection

• Sound detection and classification

• 3D environment mapping

• Environment navigation

• Obstacle avoidance

• Flood water detection

• Remote control

• Non verbal human interaction

All these functionalities are enabled by multiple
sensors and cameras placed all around the robot,
see Fig. 2. The robot analyses the surroundings,
sounds and images through sensors, microphones,
and smart cameras to detect intrusions. Smart cam-
eras are used to map the environment and ensure
good navigation. Fifteen additional Time of Flight
(ToF) proximity sensors placed all around the robot
ensure correct navigation by detecting obstacles and
hollows while avoiding them. Finally, the robot can
communicate with the outside world and alert users
of an anomaly via a speaker and a LED ring.

The robot’s global architecture is shown in
Fig. 3. The interface board drives all peripherals,
like sensors and cameras, through a CAN commu-
nication bus protocol. In addition, specific boards
are used for each peripheral. For example, to con-
trol LEDs, an additional LED control board is used
between the interface board through the CAN bus
and the LEDs themselves. In this work, we inte-
grate ONNs implemented on an FPGA board inside
the E4 robot to perform the obstacle avoidance ap-
plication. Thus, we modify the global architecture
by connecting an FPGA board to the OAV board
to compute the OAV application with ONNs. The
following section provides details on how ONN can
perform the OAV application in the E4 robot.

3.2 Obstacle Avoidance Application

OAV application uses 15 ToF proximity sensors con-
nected to the OAV board. The 15 ToF sensors are
referenced as [32] and can give the distance from
0m, up to 2m. They are positioned all around the
robot, as shown in Fig. 4. Nine sensors are di-
rected horizontally to detect front objects, and the
six others are directed to the ground to detect small
ground obstacles and hollows.

OAV board is a Nucleo board referenced as [33].

3



Figure 2: E4 robot functionalities and details on the OAV application.

Figure 3: E4 robot global architecture.

Figure 4: E4 robot components for OAV application.

4



It is equipped with an STM32 micro-controller. The
communication between the OAV board and the
proximity sensors is defined by the sensor’s man-
ufacturer as the Inter-Integrated Circuit (I2C) pro-
tocol. The I2C protocol is a serial communica-
tion protocol often used in embedded electronics be-
tween micro-controller and sensors. Only two wires
are necessary for communication, a clock wire to
synchronize both sides of the communication and a
data wire to transmit data.

The OAV algorithm inside the OAV board first
reads the distance measured by each fifteen sen-
sors values using the I2C protocol. Then, it uses
a Braitenberg algorithm [34] to detect if there is an
obstacle or a hollow in front of each sensor. From
this information, the OAV algorithm deduces direc-
tions that are free of obstacles. Finally, one of the
available directions is chosen and sent to the wheel
control system to avoid any possible obstacles. In
this original OAV algorithm version, no information
from the previous robot direction is used to define
the final direction, however, it can be included to
improve the moving flow.

4 ONN FOR OBSTACLE AVOIDANCE AP-
PLICATION

OAV application performs two main functions: 1)
detect the obstacles, and 2) avoid them by finding
free directions and choosing one. We propose to
utilize an ONN for each of these functions, thus in
total, two cascaded ONNs to perform the OAV ap-
plication. The first ONN detects obstacles based on
the information gathered from ToF proximity sen-
sors, while the second ONN determines available
angle directions from the detected obstacles. This
section explains how we encode sensory data into
a compatible image for ONN input. Then, we de-
scribe the two cascaded ONNs for solving the OAV
problem.

4.1 Sensory data encoding

The ToF proximity sensors measure distances be-
tween 0cm and 2m and use the I2C communica-
tion protocol to transmit measured distances to the
OAV micro-controller board. We use a thermome-
ter encoding technique to encode each sensor value
into a 5x1 column image. The thermometer encod-
ing is adjusted depending on the orientation of the
sensor, see Fig. 5. If the sensor is horizontally di-
rected, we directly encode the measured value in
a 6-state column (from 0 to 5). However, if the
sensor is downward directed (i.e., directed to the
ground), we define a default ground value and en-
code the difference between the measured and the
ground value.

Based on these encoded data, we create a 5x9
image by considering the 9 front-directed sensors,

one for each column of the image. Also, we add the
ground-directed sensor values from sensors closed
to each front-directed sensor, see Fig. 5. We fix the
maximum value to 5 as each column only has 5 pix-
els. If the sum is greater than 5, we round it to
5. This method allows us to create areas for each
front-directed sensor that take into account values
from both front- and ground-directed sensors.

Finally, we obtain an image representing a 360o

map of the environment around the robot. Each
column represents an area around the robot, and
the number of black pixels in each column corre-
sponds to distance with possible obstacles for each
area, see Fig. 5. This sensory data encoding is done
on the OAV micro-controller board, and the final
map image is then sent to the FPGA. It allows us
to represent an all-around environment of the robot
in terms of obstacles and hollows.

4.2 ONN Definition

As aforementioned, the first ONN detects obstacles
and hollows, while the second ONN defines free di-
rections (angles) that the robot can take. The first
ONN gives as output the black pixels on each col-
umn depending on the proximity of the obstacle or
hollow. To do so, we train the first ONN with 512
images corresponding to all possible combinations
of full-column images representing a wide range of
obstacles and hollows. For example, if an obstacle
is close enough to be avoided, the ONN will out-
put a black column in the corresponding area of
the obstacle. However, if there is no obstacle or if
the obstacle is far enough to be avoided later, the
ONN will output a white column in the correspond-
ing area. So, ONN identifies if there are obstacles
or hollows in the different defined areas, see Fig. 6.

The output of the first ONN contains an im-
age of black and white columns and each row is
identical. Thus, the second ONN uses one row as
input from the first ONN and outputs patterns cor-
responding to free directions. We define six pos-
sible directions corresponding to the three triangle
phases in addition to the three triangle angles. We
combine columns corresponding to those six areas
and train the second ONN with all possible combi-
nations of those six areas, see Fig. 6. There are 64
possible outputs for the second ONN. These out-
puts are then sent back to the OAV board, which
decides the direction to follow. We define the best
direction as the middle of the larger available area.

5 ONN IMPLEMENTATION ON E4 ROBOT

We test our solution with the two cascaded ONNs
implemented on an FPGA board integrated into
the E4 robot. In Sec. 5.1, we detail how we imple-
ment the ONNs on FPGA and how we integrate the
FPGA board inside the E4 robot. Then, in Sec. 5.2,

5



Figure 5: Encoding data from sensors into images, using one sensor per column encoding.

Figure 6: ONNs flow for the obstacle avoidance application.

6



we present the results obtained with our ONN solu-
tion and compare them with existing OAV software
algorithms.

5.1 Methods

ONNs are implemented on the CMOD A7 devel-
opment board from Digilent [35], which contains
an Artix-7 FPGA, following the ONN digital de-
sign from [26]. Sensory data measurements and
their encoding to ONN are performed via the micro-
controller on the OAV board. We connect the
OAV board with the FPGA board using a Universal
Asynchronous Receiver Transmitter (UART) com-
munication protocol, see Fig. 7.

The UART communication is a well-known se-
rial communication protocol used in embedded elec-
tronics. It is a particular serial communication as it
is asynchronous. It uses only two wires, which is an
attractive solution for embedded devices. One wire
allows communication from device A to B, while
the other wire communicates between device B to
A. Its main drawback is the communication latency
as each bit is sent serially. We choose UART as the
communication protocol, first for its simple imple-
mentation, and then because in this OAV applica-
tion, the latency of sensor measurements is higher
than UART latency, see in Section 5.2.

A fully digital ONN design was proposed in [26]
for pattern recognition application. It uses digi-
tal phase-controlled oscillators as neurons and 5-bit
memory registers as synapses to store weights. In
this application, we use two cascaded digital ONNs.
We initialize the first ONN with sensory data infor-
mation from the OAV board. Then, we let it com-
pute and wait until ONN stabilizes and its output
initializes the second ONN. After, we let the sec-
ond ONN compute and stabilize, and we send its
output to the OAV board. We repeat this process
every time new sensory data are available.

The entire process starts with the OAV board,
which reads the distance information from the 15
ToF proximity sensors using the I2C communica-
tion bus. The OAV board micro-controller encodes
the information into a 5x9 image as described in
Section 4.1 and sends the image to the FPGA board
through the UART communication interface. The
computation of both ONNs, one by one, is done
inside the FPGA board. Then, the output of the
second ONN, corresponding to obstacle-free areas
around the robot, is sent back to the OAV board
through the UART communication interface. The
OAV board finally chooses one of the best directions
from all obstacle-free directions and sends the final
direction to the wheel control system to move the
robot in the corresponding direction.

To compare our ONN OAV solution with clas-
sical software solutions, we develop and implement
equivalent algorithms in the micro-controller of the

OAV board. We create a first algorithm to detect
obstacles from sensory data measurements and a
second algorithm to reproduce the behavior of the
second ONN and define available directions. We
measure the computation time of each algorithm
using an oscilloscope and compare it with the com-
putation time of each ONN. Results are presented
in Section 5.2.

5.2 Results

Here, we report on our ONN OAV solution’s tim-
ing and computational resources implemented on
the FPGA. In addition, we compare with classical
software solutions implemented on the OAV board
micro-controller. Performance results are shown in
Table 1, and computation time comparisons be-
tween ONN and software algorithms are shown in
Table. 2.

First, we observe that our ONN OAV solution
uses a small number of resources, up to 20% of
LUTs, and up to 8% of Flip-Flops of the Artix-7
FPGA. We note that Artix-7 FPGA is a small size
and low-power FPGA [36], meaning that the dig-
ital ONN can easily be integrated into industrial
systems without a significant power overhead. The
total initialization and computation time of both
ONNs is about 40 µs, which is much shorter than
the time needed to read the 15 distance values from
the ToF proximity sensors. The measurement time
for the 15 sensors has also been optimized by using
the continuous reading method.

It is important to point out that the ONN ini-
tialization time is higher than the computation time
for the second ONN. This is because the ONN
initialization process is serial (one bit at a time),
thus, the initialization time increases linearly with
the number of neurons while the computation time
stays constant due to parallel computation. This
application shows that only two oscillation cycles
are necessary for ONN to stabilize, reaching around
10 µs computation time for both ONNs. Thus,
our ONN solution satisfies the real-time constraints
given by sensors measurements. ONN computation
time is irrelevant in this application as the sensor’s
measurement limits timing performances. However,
ONN can be advantageous for other robotic appli-
cations treating sensory data with real-time con-
straints.

Comparing the ONN computation time with
classical software solutions shows that ONNs are as
fast as using software algorithms implemented on
a micro-controller, see Table 2. We compare only
computation times to have a meaningful compar-
ison. It is also important to state that the OAV
micro-controller runs at 80 MHz while ONN only
oscillates at 187.5 kHz. This indicates that accel-
erating FPGA frequency for ONNs can surpass the

7



Figure 7: System architecture inside E4 of the ONN on FPGA.

Table 1: Performance of the obstacle avoidance function on the E4 industrial robot.

Demonstrator characteristics 2-ONN solution
ONNs Performances ONN 5x9 ONN 1x9
FPGA - Artix 7: xc7a35

#Training patterns 512 64
LUTs - 100%: 33 280 (%) 20.07
Flip-Flops - 100%: 41 600 (%) 7.74
ONN frequency Fosc(KHz) 187.5
ONN Initialization 15 us 4 us
Computation time 10 us (2 Tosc) 10 us (2 Tosc)
Accuracy (%) 100 100

Full system performances
(FPGA frequency: 12 MHz)

15-sensor measurement 27 ms
UART sensor value transmission 8 ms
UART direction reception 500 us
FPS 30
ONNs Init and Comp. time 44 us (ONN 5x9 + ONN 1x9)
Robot life time estimation 2h/3h

8



micro-controller timing performances for OAV ap-
plications.

In addition, timing performances of software so-
lutions implemented on micro-controllers grow lin-
early with the number of data to treat, while the
computing time of ONN remains constant (i.e., only
a few cycles to stabilize) when increasing its size.
So, if there are many data to treat, ONN computa-
tion will be faster than a software solution. Another
solution to improve timing performances in case of
a large number of sensory data is to use multiple
ONNs to compute in parallel. As ONN FPGA re-
sources are low, we can easily duplicate them to
reach a fast computation time.

Finally, we show in Table 1 that the global
timing performance of our ONN solution is slowed
down by the UART serial communication between
the OAV board and the FPGA. Another solution for
applications with higher real-time requirements will
be to consider an complete FPGA implementation
with programmable logic for sensor reads. However,
such integration inside a complete industrial robot
requires anticipation during the system design and
development.

6 CONCLUSION

In this paper, we presented a solution to solve
the obstacle avoidance (OAV) problem from ToF
proximity sensor measurements using two cascaded
ONNs configured as an auto-associative memory.
We implemented this solution on an FPGA board
and integrated it on the industrial E4 robot de-
veloped by A.I.Mergence, equipped with 15 prox-
imity sensors. We demonstrate our solution using
two cascaded ONNs performing obstacle avoidance
on a mobile robot that respects real-time require-
ments [A video link will be provided after paper ac-
ceptance]. Only 40 µs are needed to initialize and
compute both ONNs, while 27 ms are required to
measure the 15 sensor values. We compare the
computation time of our two ONNs with equivalent
software solutions implemented on the OAV micro-
controller and obtain similar performances. How-
ever, suppose the software algorithm implemented
on the micro-controller needs to treat more sensory
data. In that case, the computation time will in-
crease linearly, while with ONN parallel computa-
tion, the computation time stays constant. Another
advantage of ONN is that it can be easily inte-
grated on edge devices like robots due to its low
computational resources, making it easy to dupli-
cate for more parallel computation. To conclude,
ONN implementation and integration in an indus-
trial robot to perform obstacle avoidance provides
accurate, fast while being a low power solution and
requiring little computational resources. This work
opens new perspectives to explore ONNs in embed-

ded systems for real-time sensory data treatment.

REFERENCES

[1] Elena Garcia, Maria Antonia Jimenez,
Pablo Gonzalez De Santos, and Manuel
Armada. The evolution of robotics re-
search. IEEE Robotics Automation Magazine,
14(1):90–103, 2007.

[2] Fesq L.M. Volpe R.A. Nesnas, I.A. Auton-
omy for space robots: Past, present, and fu-
ture. 2:251–263, 2021.

[3] L. V. Kiselev, A. V. Medvedev, V. B. Kos-
tousov, and A. E. Tarkhanov. Autonomous un-
derwater robot as an ideal platform for marine
gravity surveys. In 2017 24th Saint Petersburg
International Conference on Integrated Navi-
gation Systems (ICINS), pages 1–4, 2017.

[4] Chanin Joochim. Autonomous security robot
base on slam. In 2021 18th International Con-
ference on Electrical Engineering/Electronics,
Computer, Telecommunications and Informa-
tion Technology (ECTI-CON), pages 959–962,
2021.

[5] Hoang-The Pham, Minh-Anh Nguyen, and
Chi-Chia Sun. Aiot solution survey and com-
parison in machine learning on low-cost micro-
controller. In 2019 International Symposium
on Intelligent Signal Processing and Commu-
nication Systems (ISPACS), pages 1–2, 2019.

[6] Wolfgang Maass. Networks of spiking neurons:
The third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

[7] Hélène Paugam-Moisy and Sander Bohte.
Computing with Spiking Neuron Networks,
pages 335–376. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[8] Friedemann Zenke and Surya Ganguli. Su-
perSpike: Supervised Learning in Multilayer
Spiking Neural Networks. Neural Computa-
tion, 30(6):1514–1541, 06 2018.

[9] Guo-qiang Bi and Mu-ming Poo. Synaptic
modifications in cultured hippocampal neu-
rons: dependence on spike timing, synaptic
strength, and postsynaptic cell type. J Neu-
rosci., pages 10464–72, Dec 1998.

[10] Rajesh P. N. Rao and Terrence J. Sejnowski.
Spike-timing-dependent hebbian plasticity as
temporal difference learning. Neural Comput.,
pages 2221–37, Oct 2001.

9



Table 2: Computation time comparison between sofware solutions and ONN solution

Software solution ONNs solution
(STM32 @80MHz) (@187.5 KHz)

Detect obstacles 15 us 10 us (2 osc cycles)
Define direction 5 us 10 us (2 osc cycles)
Full system 20 us 20 us

[11] Tetsuro Endo and Kazuhiro Takeyama. Neu-
ral network using oscillators. Electronics and
Communications in Japan (Part III: Funda-
mental Electronic Science), 75(5):51–59, 1992.

[12] F.C. Hoppensteadt and E.M. Izhikevich. Pat-
tern recognition via synchronization in phase-
locked loop neural networks. IEEE Transac-
tions on Neural Networks, 11(3):734–738, May
2000.

[13] Gyorgy Csaba and Wolfgang Porod. Coupled
oscillators for computing: A review and per-
spective. Applied Physics Reviews, 7(1), March
2020.

[14] Gabriele Boschetto, Stefania Carapezzi, and
Aida Todri-Sanial. Quantum Mechanical Sim-
ulations of 2D Materials for Unconventional
Computing and Biosensing Applications. In
15th International Conference on Materials
Chemistry, Online Event, Ireland, July 2021.

[15] Stefania Carapezzi, Gabriele Boschetto,
Corentin Delacour, Elisabetta Corti, Andrew
Plews, Ahmed Nejim, Siegfried Karg, and
Aida Todri-Sanial. Advanced design methods
from materials and devices to circuits for
brain-inspired oscillatory neural networks for
edge computing. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems,
11(4):586–596, 2021.

[16] Jiadi Zhu, Teng Zhang, Yuchao Yang, and
Ru Huang. A comprehensive review on emerg-
ing artificial neuromorphic devices. Applied
Physics Reviews, 7(1), March 2020.

[17] Juan Núñez, Maŕıa J. Avedillo, Manuel
Jiménez, José M. Quintana, Aida Todri-Sanial,
Elisabetta Corti, Siegfried Karg, and Bernabé
Linares-Barranco. Oscillatory neural networks
using vo2 based phase encoded logic. Frontiers
in Neuroscience, 15, 2021.

[18] Jafar Shamsi, Maŕıa José Avedillo, Bernabé
Linares-Barranco, and Teresa Serrano-
Gotarredona. Hardware implementation of
differential oscillatory neural networks using
vo 2-based oscillators and memristor-bridge
circuits. Frontiers in Neuroscience, 15, 2021.

[19] Aida Todri-Sanial, Stefania Carapezzi,
Corentin Delacour, Madeleine Abernot,
Thierry Gil, Elisabetta Corti, Siegfried F.
Karg, Juan Núñez, Manuel Jimenez, Maŕıa J.
Avedillo, and Bernabé Linares-Barranco.
How frequency injection locking can train
oscillatory neural networks to compute in
phase. IEEE transactions on neural networks
and learning systems, 2021.

[20] Corentin Delacour, Stefania Carapezzi,
Madeleine Abernot, Gabriele Boschetto,
Nadine Azemard, Jeremie Salles, Thierry Gil,
and Aida Todri-Sanial. Oscillatory neural
networks for edge ai computing. In 2021
IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 326–331, 2021.

[21] Dmitri E. Nikonov, Gyorgy Csaba, Wolfgang
Porod, Tadashi Shibata, Danny Voils, Dan
Hammerstrom, Ian A. Young, and George I.
Bourianoff. Coupled-Oscillator Associative
Memory Array Operation for Pattern Recogni-
tion. IEEE Journal on Exploratory Solid-State
Computational Devices and Circuits, 1:85–93,
December 2015.

[22] Thomas Jackson, Samuel Pagliarini, and
Lawrence Pileggi. An Oscillatory Neural Net-
work with Programmable Resistive Synapses
in 28 Nm CMOS. In 2018 IEEE International
Conference on Rebooting Computing (ICRC),
pages 1–7, McLean, VA, USA, November 2018.
IEEE.

[23] Gyorgy Csaba, Arijit Raychowdhury, Suman
Datta, and Wolfgang Porod. Computing with
Coupled Oscillators: Theory, Devices, and Ap-
plications. In 2018 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages
1–5. IEEE, 2018.

[24] A.I.Mergence. E4 robot.

[25] K. Yojitha, B. Bindu Priya, N. Hari Krishna,
D. Yashwanth, and G. Anuradha. A survey on
obstacle avoidance and traffic light detection
approaches for autonomous vehicle. In 2021
International Conference on Intelligent Tech-
nologies (CONIT), pages 1–4, 2021.

10



[26] Madeleine Abernot, Thierry Gil, Manuel
Jiménez, Juan Núñez, Maŕıa J. Avellido,
Bernabé Linares-Barranco, Théophile Gonos,
Tanguy Hardelin, and Aida Todri-Sanial. Dig-
ital implementation of oscillatory neural net-
work for image recognition applications. Fron-
tiers in Neuroscience, 15:1095, 2021.

[27] Corentin Delacour and Aida Todri-Sanial.
Mapping hebbian learning rules to coupling re-
sistances for oscillatory neural networks. Fron-
tiers in Neuroscience, 15:1489, 2021.

[28] J. J. Hopfield. Neurons with graded response
have collective computational properties like
those of two-state neurons. Proceedings of the
National Academy of Sciences, 81(10):3088–
3092, May 1984.

[29] R. G. M. Morris. D.O. Hebb: The Organi-
zation of Behavior, Wiley: New York; 1949.
Brain Research Bulletin, 50(5):437, 1999.

[30] Yue Wu, Jianqing Hu, Wei Wu, Yong Zhou,
and K.L. Du. Storage capacity of the hopfield
network associative memory. In 2012 Fifth In-
ternational Conference on Intelligent Compu-
tation Technology and Automation, pages 330–
336, 2012.

[31] Pavel Tolmachev and Jonathan H. Manton.
New insights on learning rules for hopfield net-
works: Memory and objective function minimi-
sation. In 2020 International Joint Conference
on Neural Networks (IJCNN), pages 1–8, 2020.

[32] STMicroelectronics. Vl53l0x proximity sen-
sors.

[33] STMicroelectronics. Nucleo l432-kc.

[34] Valentino Braitenberg. Vehicles: Experiments
in synthetic psychology. 1984.

[35] Digilent. Cmod a7 development board.

[36] Xilinx. 7 series fpgas data sheet: Overview.

11


