
HAL Id: lirmm-03687351
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03687351

Submitted on 3 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Constraint Acquisition
Nadjib Lazaar

To cite this version:
Nadjib Lazaar. Parallel Constraint Acquisition. AAAI 2021 - 35th Conference on Artificial Intelli-
gence, Sep 2021, virtually, Canada. pp.3860-3867, �10.1609/aaai.v35i5.16504�. �lirmm-03687351�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03687351
https://hal.archives-ouvertes.fr

Parallel Constraint Acquisition

Nadjib Lazaar
LIRMM, University of Montpellier, CNRS, Montpellier, France

lazaar@lirmm.fr

Abstract

Constraint acquisition systems assist the non-expert user in
modelling her problem as a constraint network. QUACQ is
a sequential constraint acquisition algorithm that generates
queries as (partial) examples to be classified as positive or
negative. The drawbacks are that the user may need to answer
a great number of such examples, within a significant waiting
time between two examples, to learn all the constraints. In
this paper, we propose PACQ, a portfolio-based parallel con-
straint acquisition system. The design of PACQ benefits from
having several users sharing the same target problem. More-
over, each user is involved in a particular acquisition session,
opened in parallel to improve the overall performance of the
whole system. We prove the correctness of PACQ and we give
an experimental evaluation that shows that our approach im-
proves on QUACQ.

Introduction
Constraint programming (CP) has made considerable
progress over the last forty years, becoming a powerful
paradigm for modelling and solving combinatorial prob-
lems. Several parallel algorithms have been proposed to
solve a problem as a constraint network and they are grouped
under categories: distributed CSPs; parallel propagation;
parallel search; portfolio algorithms; problem decomposi-
tion (Régin and Malapert 2018). However, modelling a prob-
lem as a constraint network still remains a challenging task
that requires some expertise in the field. Several constraint
acquisition systems have been introduced to support the up-
take of constraint technology by non-experts. Freuder and
Wallace proposed the matchmaker agent (Freuder and Wal-
lace 1998). This agent interacts with the user while solving
her problem. The user explains why she considers a pro-
posed solution as a wrong one. Lallouet et al. proposed a
system based on inductive logic programming with the use
of the structure of the problem as a background knowledge
(Lallouet et al. 2010). Beldiceanu and Simonis proposed
MODELSEEKER, a system devoted to problems with reg-
ular structures and based on the global constraint catalog
(Beldiceanu and Simonis 2012). Bessiere et al. proposed
CONACQ, which generates membership queries (i.e., com-
plete examples) to be classified by the user (Bessiere et al.

2017). Shchekotykhin and Friedrich extended CONACQ to
allow the user to provide arguments as constraints to speed-
up the convergence (Shchekotykhin and Friedrich 2009).

Bessiere et al. proposed QUACQ (for Quick Acquisition),
an active learning system that is able to ask the user to clas-
sify partial queries (Bessiere et al. 2020, 2013). QUACQ
iteratively computes membership queries. If the user says
yes, QUACQ reduces the search space by discarding all con-
straints violated by the positive example. When the answer is
no, QUACQ finds the scope of one of the violated constraints
of the target network in a number of queries logarithmic in
the size of the example. This key component of QUACQ al-
lows it to always converge on the target set of constraints in a
polynomial number of queries. However, even that good the-
oretical bound can be hard to put in practice. Generating a
complete example is NP-hard and the total number of exam-
ples to classify can be large. For instance, QUACQ can take
more than 20 minutes to generate a complete example dur-
ing the acquisition process of the Sudoku constraint network
and it requires the user to classify more than 9K examples.

In this paper, we introduce a first ever approach to com-
bine CP modelling through constraint acquisition with par-
allelism. We present PACQ, a portfolio-based parallel con-
straint acquisition system. PACQ learns constraint network
by exchanging with several users in different acquisition ses-
sions. Users have in mind the same target problem without
knowing how to model it as a constraint network. PACQ ben-
efits from the main limitations of the sequential QUACQ sys-
tem: (i) large number of examples to classify by the user;
and (ii) significant waiting time between two queries. We
experimentally evaluate the benefit of using parallelism in
constraint acquisition on several problems. The results show
that the number of queries increases under an upper-bound
using PACQ and that PACQ dramatically improves the se-
quential version of QUACQ in terms of queries asked per
user and in terms of CPU time needed to generate queries.

Background
The constraint acquisition process can be seen as an inter-
play between the user and the learner. In our context, we
have N users (U1 to UN) involved in N different acqui-
sition sessions (A1 to AN) with one user per session and
under a memory-shared model. The learner and the users
need to share some common knowledge to communicate.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

We suppose this common knowledge, called the vocabulary,
is a tuple of n variables X = (x1, . . . , xn) and a domain
D = {D(x1), . . . , D(xn)}, where D(xi) ⊂ Z is the finite
set of values for xi. A constraint cS is defined by the se-
quence of variables S, a sub-sequence of X (i.e. S � X),
called the constraint scope, and the relation c over Z specify-
ing which sequences of |S| values are allowed for the vari-
ables S. A constraint network is a set C of constraints on
the vocabulary (X,D). An assignment eY ∈ DY , where
DY = Πxi∈YD(xi), is called a partial assignment when
Y ≺ X and a complete assignment when Y = X . An as-
signment eY on a set of variables Y � X is rejected by a
constraint cS (or eY violates cS) if S � Y and the projec-
tion eY [S] of eY on the variables in S is not in c. If eY does
not violate cS , it satisfies it. An assignment eY on Y is ac-
cepted by C if and only if it satisfies all constraint in C. An
assignment on X that is accepted by C is a solution of C.
We write sol(C) for the set of solutions of C, and C[Y] for
the set of constraints from C whose scope is included in Y .

In addition to the vocabulary, the learner owns a language
Γ of bounded arity relations from which it can build con-
straints on specified sets of variables. Adapting terms from
machine learning, the constraint basis, denoted byB, is a set
of constraints built from the language Γ on the vocabulary
(X,D) from which the learner builds a constraint network.

Given a prefixed vocabulary (X,D), a concept is a
Boolean function f over DX , that is, a map that assigns to
each assignement e a value in {0, 1}. A representation of a
concept f is a constraint network C for which f−1(1) =
sol(C). A target concept is a concept fT that returns 1 for e
if and only if e is a solution of the problem that the N users
share and have in mind. The target network is a network T
such that T ⊆ B and T is a representation of fT . Then we
say that the target concept fT is representable by B.
A membership query ASKUi

(e) takes as input a complete
assignment e in DX and asks the user Ui to classify it. The
answer to ASKUi

(e) is yes if and only if e ∈ sol(T). A
partial query ASKUi

(eY), with Y ⊆ X , takes as input a
partial assignment eY in DY and asks the user Ui to clas-
sify it. The answer to ASKUi

(eY) is yes if and only if eY
does not violate any constraint in T . It is important to ob-
serve that ”ASKUi(eY)=yes ” does not mean that eY ex-
tends to a solution of T , which would put an NP-complete
problem on the shoulders of the user. For any assignment
eY on Y , κB(eY) denotes the set of all constraints in B
rejecting eY . A classified assignment eY is called positive
or negative example depending on whether ASKUi

(eY) is
yes or no. Knowing that (i) any extension of a negative ex-
ample is a negative example and any shortening of a positive
example is a positive example; and (ii) under a memory-
shared model: the ASK function checks first if the query is
not a redundant one w.r.t. another acquisition session where
the classification can be deduced.

We now define convergence, which is the constraint ac-
quisition problem we are interested in. Given a setE of (par-
tial) examples labelled by the user yes or no, we say that a
network C agrees with E if C accepts all examples labelled
yes in E and does not accept those labelled no. The learning
process has converged on the network L ⊆ B if (i) L agrees

with E and (ii) for every other network L′ ⊆ B agreeing
with E, we have sol(L′) = sol(L). We are thus guaran-
teed that sol(L) = sol(T). We say that the learning process
reached a premature convergence if only (i) is guaranteed.

PACQ: Portfolio-Based Parallel Constraint
Acquisition

We propose PACQ, a portfolio-based parallel constraint ac-
quisition system. PACQ takes as input a basis B on a vocab-
ulary (X,D) shared with N users. It asks (partial) queries
of theN users until it has converged on a constraint network
L equivalent to the target network T . The rationale behind
PACQ is to learn a constraint network using N parallel ac-
quisition sessions. That is, we have a portfolio of acquisition
sessions aiming to acquire simultaneously different parts of
the problem using a shared-memory model.

Description of PACQ

PACQ (see Algorithm 1) shares between acquisition ses-
sions the basis B and the network L (line 2). PACQ initial-
izes the network L it will learn to empty set (line 3). At
line 4, PACQ makes a set-partition of the basis B into N
subsets (B1 . . . BN) using split function (i.e., Bi 6= ∅,
Bi ∩ Bj = ∅, ∀i, j and

⋃N
i=1Bi = B). We will see later

that there are multiple ways to design the split function.
Then, PACQ opens in parallel N Acq session (line 6) and
it converges on L once all sessions closed (line 7).
Acq session starts by calling GenerateExample func-

tion that generates an example e on X satisfying the con-
straints of L, but violating at least one constraint from Bi

(line 2). Bear in mind that, from a session to another, gener-
ating an example on a differentBi allows us to have sessions
with different and complementary viewpoints on the acqui-
sition process as a whole. If there does not exist any example
e accepted by L and rejected by Bi, then all constraints in
Bi are implied by L and we can safely remove them from
B (line 3). Then, the current session is closed (line 3). If
an example e is returned by GenerateExample, e is clas-
sified as positive or negative by the user Ui (line 4). If the
answer is yes, we can remove from B the set κB(e) (line 5).
If the answer is no, we are sure that e violates at least one
constraint of the target network T . We then call the func-
tion FindScope to discover the scope scp of these violated
constraints (line 7), and the procedure FindC will learn (that
is, put in L) at least one constraint of T whose scope is in
scp (line 9). Function FindScope and procedure FindC ask
queries to the corresponding user Ui and they are used ex-
actly as they appear in, respectively, (Bessiere et al. 2013)
and (Bessiere et al. 2020). The unique portion of the algo-
rithm that cannot be parallelized is the call of FindC within
connected scopes. Here, the procedure FindC has a unique
permit access. For instance, if two Acq session Ai and Aj

return simultaneously at line 7 the scopes scp1 and scp2,
such that scp1∩scp2 6= ∅ (i.e., connected scopes), only one
session acquires an access to FindC on scp1 or scp2 (line
8) and the second one must wait for its release at line 10. In
case we have two sessions looking simultaneously for con-
straints on scp, only one session will have access to FindC

whereafter κB(e[scp]) = ∅.

Algorithm 1: PACQ

In : A basis B, Number of Users N
Out : A learned network L

1 begin
2 shared B;L;
3 L← ∅;
4 split (B,N); // split B into N parts

5 foreach i ∈ 1..N do in parallel
6 Acq session (Ui);
7 return “convergence on L”

Theoretical Analysis
We first show that a parallel acquisition using PACQ (algo-
rithm 1) is a correct algorithm to learn a constraint network
representing the target problem overB. We prove that PACQ
is sound, complete, and it terminates.

Proposition 1 (Soundness) Given a basis B, a target net-
work T ⊆ B and N users, the network L returned by PACQ
is such that sol(T) ⊆ sol(L).

Proof. Suppose there exists e ∈ sol(T) \ sol(L). Hence,
there exists at least a constraint cY ∈ L rejecting e and
learned by PACQ within a Acq session Ai of user Ui. The
only place where we can add cY to L is (algo:2-line:9) with
FindC on Y scope that is returned by FindScope at (algo:2-
line:7). FindC represents the portion of PACQ that is not
parallelized and the access is conditioned by the fact that
no previous call occurred on Y (i.e., κB(e[Y]) 6= ∅). We
know from (Bessiere et al. 2013, 2020) that FindScope and
FindC functions are sound. The learned constraint cY is one
of the target network T . Therefore, adding a constraint to L
cannot reject a tuple accepted by T . �

Proposition 2 (Completeness) Given a basis B, a target
network T ⊆ B and N users, the network L returned by
PACQ is such that sol(L) ⊆ sol(T).

Proof. Suppose there exists e ∈ sol(L) \ sol(T) when
PACQ terminates. Hence, there exists a constraint cY from
B that rejects e. Knowing that at (algo:1-line:4) we have

Algorithm 2: Acq session (Ui)

1 while true do
2 e←GenerateExample (L,Bi);
3 if e = nil then B ← B \Bi; break ;
4 if ASKUi

(e) = yes then
5 B ← B \ κB(e);
6 else
7 scp←FindScope Ui

(e,∅, X);
8 acquire(scp);
9 if κB(e[scp]) 6= ∅ then FindC Ui

(e, scp, L);
10 release(scp);

a set-partition of B, it exists a Acq session Ai where
cY ∈ Bi. The only way for PACQ to terminate is to have
all Acq session closed. This means that within Ai ses-
sion and at (algo:2-line:2), GenerateExample was not able
to generate an example e′ accepted by L and rejected by
Bi. cY was in Bi before starting PACQ (cY ∈ T) and it
is not in Bi when PACQ terminates. Constraints can be re-
moved in FindC/FindScope functions and at (algo:2-line:3
and 5). We know from (Bessiere et al. 2013, 2020) that
FindC/FindScope cannot remove a constraint that rejects
an example accepted by L. A constraint c removed from
(algo:2-line:3 and 5) cannot be cY because e violtates cY
and is accepted by L. Therefore, cY cannot reject an exam-
ple accepted by L, which proves that sol(L) ⊆ sol(T). �

Proposition 3 (Termination) Given a basisB, a target net-
work T ⊆ B and N users, PACQ terminates.

Proof. The termination of PACQ immediately follows the
closure of the N Acq session. Let us consider a given
Ai session. An example is generated such that it satisfies
L and violates Bi. If no such example exists, Bi is reduced
to empty and Ai session is closed. Otherwise, Generate-
Example at (algo:2-line:2) returns an example e to submit
to the user Ui. B decreases in size by removing κB(e) when
user Ui says yes (algo:2-line:5). If the user Ui says no, B
also decreases in size by learning at least one constraint from
B (algo:2-line:9). Let us suppose now that the user Ui says
no on e because of a unique constraint to learn cY that is
rejected by e. Suppose that the same example is generated at
the same time in k − 1 sessions. Then Y scope is returned
by the FindScope calls in the k Acq session. We know
that for connected scopes, FindC has a single permit access.
Thus, we have only one user Uj calling FindC Uj , adding cY
to L and removing cY from B. Afterwards, the other k − 1
sessions will not have access to FindC on Y as κB(e[Y])
is reduced to empty after the first call. Therefore, at each
execution of the loop, we have at least one Bi that strictly
decreases in size. As Bi represent finite-size subsets coming
from a set-partition of B, we have termination. �

Theorem 1 (Correctness) Given a basis B, a target net-
work T ⊆ B and N users, PACQ returns a network L such
that sol(L) = sol(T).

Proof. Correctness immediately follows from Propositions
1, 2, and 3. �

Strategies and Settings
PACQ can be improved by making the use of Generate-
Example and split functions less brute-force, and by
adapting it to a particular context (e.g., distributed CSPs).

GenerateExample. We can speed up the example gener-
ation by using well-known variable heuristic selectors (e.g.,
minDom, domOverWdeg, impact,...), or by using a dedicated
one like bdeg heuristic (Tsouros and Stergiou 2020). bdeg
selects the variable involved in a maximum number of con-
straints present in Bi \ L. Knowing that each session is rea-
soning on a particular Bi and based on preliminary compar-
isons, bdeg heuristic provides a good diversification.

split. In our study, we have investigated five set-
partitions of B based on different background knowledge:
• Scope: put in the same Bi all constraints of a given scope;
• Negation: put in Bi a constraint and its negation;
• Language: put in Bi constraints of the same relation;
• Graph: Bi’s are connected components;
• Rule: put in Bi constraints satisfying a set of rules.

The preliminary tests show that a B partition using back-
ground knowledge boosts the acquisition process and that
the same findings are observed with the five set-partitions.
We focus our analysis on the Rule based set-partition.

The split function based on Rule groups in the same
Bi’s constraints satisfying a set of rules adapted to constraint
acquisition. For instance, if we know that c1∧ c2 → c3, then
putting the three constraints c1, c2, c3 in the same Bi can
speed up the generation of examples. Building a complete
set of rules is often too expensive, both in time and space
as it requires generating a set of rules potentially exponen-
tial in space (all combinations of constraints that imply an-
other one). However, it is possible to compute approxima-
tions by bounding the number of constraints in the body of a
rule. Here, we only considered the rule that contain two con-
straints in the body rule : ci∧ cj → ck. That is, split per-
forms a random partition of triplets (ci, cj , ck) ∈ B3 where
(ci, cj , ck) satisfies rule. The rationale behind Rule parti-
tion is to group in the same session a certain percentage of
redundancies that B contains. “ Doing so, (i) we facilitate
the task of GenerateExample to find an assignment satis-
fying L and rejecting at least one constraint in B, and (ii)
avoiding parallel sessions to learn redundancies.

PACQ for Distributed CSPs. In some cases, parallel ac-
quisition can be subject to privacy and/or security require-
ments with information that should not be shared between
sessions. PACQ can easily be adapted to act in a distributed
context by (i) taking into account the visibility of each agent
(i.e., set of variables) in the split function (algo:1-line:4);
and (ii) for a given session, generating examples on its own
learned network Li (algo:2-line:2).

PACQ versions. With the different strategies and settings
in hand, we evaluate the four following versions of PACQ:
• PACQ.0 using a random variable ordering and a random
set-partition of B into N subsets.
• PACQ.1 using bdeg heuristic;
• PACQ.2 using bdeg heuristic and Rule based split;
• PACQ.3 a revised version of PACQ.2 for distributed CSPs.

Experimental Evaluation
In this section, we experimentally evaluate our portfolio-
based parallel constraint acquisition system. As finding an
assignment satisfying the constraints of L and violating at
least one constraint from B is an NP-complete problem, we
use a time limit, denoted by TL, once reached, the acqui-
sition process returns a premature convergence on L. The
only parameter we will keep fixed in all our experiments is
TL, that we set to 5 seconds as it corresponds to an accept-
able waiting time for a human user (Lallemand and Gronier

2012). The implementation of PACQ were carried out in Java
using Choco solver 4.10.2.1 The code is publicly available
at (gite.lirmm.fr/constraint-acquisition-team). All tests were
conducted on an HPC node of 28 CPU cores and 128Gb of
RAM. Each core is an Intel(R) Xeon(R) CPU E5-2640 v4
@2.40GHz. Our evaluation aims to answer the following
five research questions:

• RQ1: How effective is an acquisition in a parallel con-
figuration?

• RQ2: How to make PACQ more effective?

• RQ3: Is PACQ achieving a good level of load balancing
between sessions?

• RQ4: How does PACQ scale with the number of sessions?

• RQ5: How effective is PACQ on distributed CSPs?

Benchmark Problems
Random. We generated binary random target networks with
50 variables, domains of size 10, and 122 binary arithmetic
constraints, denoted by rand 122. PACQ is initialized with
the basis B containing the complete graph of 12, 250 binary
arithmetic constraints.

Purdey. The problem has a single solution. Four families
have stopped by Purdey’s general store, each to buy a
different item and paying differently. The problem is how
can we match each family with the item they bought and
how they paid for it. The target network has 12 variables
with domains of size 4 and 27 binary arithmetic constraints.
We initialized PACQ with a basis of 950 binary constraints.

Zebra. Lewis Carroll’s zebra problem has a single solution.
The target network is formulated using 25 variables of 5
values with 5 cliques of 6= constraints and 14 additional
constraints given in the description of the problem. PACQ
is initialized with a basis B of 4, 950 unary and binary
(arithmetic and distance) constraints.

Queens. (prob054 in CSPLib2) The problem is to place n
queens on an n × n chessboard such that the placement
of no queen constitutes an attack on any other. The target
network is formulated using n variables of n values and
3n∗ (n−1)/2 binary constraints with 3 constraints between
each pair of variables (6=, out diag1 and out diag2). We
take the instance of 30 queens. PACQ is initialized with a
basis B of 4, 350 binary constraints.

Sudoku. The Sudoku logic puzzle is a 9 × 9 grid. It must
be filled in such a way that all the rows, all the columns and
the 9 non overlapping 3 × 3 squares contain the numbers
1 to 9. We run experiments also on a variant of Sudoku
problem, the Jigsaw Sudoku (jsudoku) displayed in
figure 1. Instead of having 3 × 3 squares, we have irregular
shapes. The two target networks of sudoku and jsudoku
have 81 variables of 9 values and, respectively, 810 and 811

1github.com/chocoteam/choco-solver
2www.csplib.org/Problems/prob054/

binary 6= constraints on rows, columns and shapes. PACQ
is initialized withB of 19, 440 binary arithmetic constraints.

Figure 1: Jigsaw Sudoku logic puzzle instance.

Latin Square. The Latin square problem consists of an
n× n table in which each element occurs once in every row
and column. For this problem, we use 100 variables with do-
mains of size 10 and 900 binary 6= constraints on rows and
columns. PACQ is initialized with |B| = 29, 700 constraints.

Meeting Scheduling. (prob046 in CSPLib3) The Meeting
Scheduling problem (msp) consists of n meetings and m
attendees. Each meeting is of a given duration and loca-
tion, and has a set of attendees. Thus, each attendee has a
set of meetings that must attend. We take the instances of
40 meetings, presented in the CSPLib (msp 19 to msp 27).
The target networks contain from 75 to 125 constraints (at-
tendee and time-arrival constraints). PACQ is initialized with
|B| = 4, 680 constraints.

Results
Table 1 reports the performance of PACQ.0 averaged over
ten runs on each instance. We report the number of users
#U; the size of the learned network |L|; the total number
of asked queries #Q in all sessions; the averaged, min and
max number of queries asked per session (#q, min, max);
time TA needed to learn L; time of the learning process until
convergence TC; the acquisition rate %A = |T | − |L′|/|T |,
where L′ are the constraints that have to be added to L to
make it equivalent to T ; and the convergence rate %C =
(Binit − Bfinal)/Binit, where Binit and Bfinal are, respec-
tively, the initial and the final size of the the basis B. TA and
TC are CPU times of the last closed session. That is, we re-
port the maximum (TA, TC) times needed for a given session.
We report results with 1, n/10 and n users, where n cor-
responds to the number of variables of the given instance.
We denote by PACQ.x[n] the call of PACQ with n users. Note
that PACQ.0[1] is equivalent to a sequential acquisition under
QUACQ.

[RQ1]: PACQ.0 effectiveness. From table 1, we observe
that parallel acquisition under PACQ reduces the number of
asked queries per user #q and increases the total number of
queries #Q. The number of queries per user #q is reduced
by a factor ranging between 2 and 60. However, the total

3www.csplib.org/Problems/prob046/

number of queries #Q is increased by a factor ranging be-
tween 2 and 4, which is far below the theoretical bound rep-
resented by the factor #U (Amdahl’s Law (Amdahl 1967)).
For instance, on latin QUACQ asks more than 11K queries
to a unique user, where PACQ.0[100] asks 192 queries per
user (reduction factor of 60) with a total number of queries
of 19K (growth factor of 2). Two reasons explain the growth
of #Q. The first reason is related to the cost of learning a
constraint (i.e., learning-ratio) that increases in a parallel
configuration. For instance, we need 5 queries on average to
learn a constraint of queens using QUACQ, where we need
12 queries under PACQ.0[30]. The increase of the learning-
ratio is due to the fact that several sessions can visit simul-
taneously the same part of the search space looking for the
same constraint to learn where only one session succeeds at
the end. The second reason that explains the growth of #Q
is learning implied constraints. If c1 ∧ c2 ⇒ c3, parallel ses-
sions can learn c1, c2 and the implied constraint c3, where in
a sequential configuration, c3 can be removed. For instance,
QUACQ converges on zebra with a constraint network of
size 50. Within 25 parallel sessions, we learn a constraint
network of size 70 including 20 implied constraints.

The second observation that we can draw is that a par-
allel acquisition speeds up the convergence. For instance,
QUACQ is not able to learn the whole constraint network of
the queens instance and it returns a premature convergence
state. Here, generating e ∈ sol(L ∧ ¬B) is hard enough
that it requires more than a TL of 5s. Whereas, PACQ.0[3]
converges in 6.15s with B split between 3 sessions, which
makes example generation much easier. Let us take another
example with sudoku instance. QUACQ asks more than 8K
queries to learn 76% of the target network. Than it reaches a
state where finding an example in sol(L ∧ ¬B) is too hard
to be returned in less than 5s. Within 8 sessions, PACQ.0
asks 1, 378 queries per user to reach an acquisition rate of
94% (min, max sessions of, resp., 1, 123 and 2, 043 queries).
Whereas, PACQ.0[81] asks less than 200 queries per user to
learn the whole target network and reaches a convergence
rate of 99% ([min,max] = [107, 346]).

[RQ2]: Strategies and Settings. Table 2 reports the per-
formance of PACQ.0, 1 and 2 averaged on ten runs on each
instance. As table 1, we report the size of the learned net-
work |L|; total number of queries #Q; queries per user, min
and max (#q, min, max); acquisition time TA; convergence
time TC; acquisition rate %A; convergence rate %C. We re-
port results of 10n users, where n is the number of variables
of the given instance.
In terms of queries, we observe a slight difference between
the three versions. However, PACQ.1 and 2 outperform the
basic setting of PACQ in terms of time and convergence with
the use of a dedicated heuristic bdeg and the Rule split. For
instance, we need 11 seconds to acquire the jsudoku in-
stance, where PACQ.1 and 2 acquire it in one second. On the
same instance, PACQ.0 reaches (%C = 98%), where PACQ.1
and PACQ.2 slightly improve it by both reaching 99%.

[RQ3]: Workload Balancing. From table 1 and 2, we
observe that PACQ.2 provides well-balanced sessions in
terms of queries with values close to the mean comparing

#U |L| #Q (#q, min, max) (TA, TC) %A %C
rand 122:

1 116 1K 1K (4, 9) 100 100
5 116 4K (898, 781, 973) (4, 5) 100 100

50 117 4K (90, 18, 475) (0, 2) 100 100
purdey:

1 17 159 159 (0, 0) 100 100
2 15 154 (77, 70, 84) (0, 0) 100 100

12 30 372 (31, 20, 44) (0, 0) 100 100
zebra:

1 50 601 601 (1, 1) 100 100
3 61 852 (284,276 , 340) (0, 0) 100 100

25 70 1K (53, 41, 108) (0, 0) 100 100
queens:

1 1295 6K 6K (-, -) 99 99
3 1305 8K (2K, 2K, 2K) (4, 6) 100 100

30 1305 16K (534, 470, 577) (2, 5) 100 100
sudoku:

1 621 8K 8K (-, -) 76 96
8 769 11K (1K, 1K, 2K) (-, -) 94 99

81 801 15K (195,100 , 346) (2, -) 100 99
jsudoku:

1 586 7K 7K (-, -) 72 95
8 746 9K (1K, 1K, 1K) (-, -) 92 98

81 791 12K (155, 107 , 188) (10, -) 100 99
latin:

1 818 11K 11K (-, -) 90 98
10 879 13K (1K, 820, 1K) (-, -) 97 99

100 898 19K (192, 65, 1K) (10, -) 100 99
msp 27:

1 92 1K 1K (-, -) 36 63
4 134 1K (390, 202, 410) (-, -) 53 77

40 223 2K (71, 20, 79) (-, -) 89 89

Table 1: PACQ.0 results

#q

Figure 2: PACQ acting on 30-queens with 10 users

to PACQ.0 and 1. Thanks to the dedicated background
knowledge partition based on Rule making sessions homo-
geneous comparing to a random partition used in PACQ.0
and 1. Let us take a closer look at latin instance. PACQ.0
and 1 with 1K users asks less than 30 queries per user with a
minimum session of 7 queries and ≈ 10 sessions exceeding

P. |L| #Q (#q, min, max) (TA, TC) %A %C
rand 122:
0 116 9K (18, 8, 115) (0, 1) 100 100
1 116 8K (17, 9, 117) (0, 0) 100 100
2 115 9K (18, 8, 114) (0, 0) 100 100
purdey:
0 41 1K (9,4, 25) (0, 0) 100 100
1 48 1K (10, 4, 21) (0, 0) 100 100
2 47 1K (11, 4, 20) (0, 0) 100 100
zebra:
0 94 3K (14, 5, 41) (0, 2) 100 100
1 88 3K (14, 5, 27) (0, 0) 100 100
2 88 3K (14, 5, 27) (0, 0) 100 100
queens:
0 1305 61K (204, 23, 275) (9, 9) 100 100
1 1305 63K (210, 144, 272) (7, 8) 100 100
2 1305 61K (206, 146, 294) (5, 8) 100 100
sudoku:
0 798 18K (23, 6, 143) (10, -) 100 98
1 805 22K (28, 6, 142) (5, -) 100 99
2 806 21K (27, 6, 67) (3, -) 100 99
jsudoku:
0 794 15K (19, 9, 194) (11, -) 100 98
1 817 22K (28, 9, 182) (1, -) 100 99
2 816 22K (28, 9, 62) (1, -) 100 99
latin:
0 899 23K (23, 7, 326) (4, -) 100 98
1 900 27K (27, 7, 254) (1, -) 100 99
2 900 29K (29, 7, 66) (1, -) 100 99
msp 27:
0 197 5K (13, 5, 76) (0, -) 78 97
1 168 10K (27, 5, 69) (0, -) 67 99
2 170 11K (29, 5, 43) (0, -) 67 99

Table 2: PACQ (P.) 0, 1 and 2 results with 10n users.

200 queries. However, PACQ.2 asks queries per user in a
tight interval of [7, 66] with a standard deviation of 13.

In order to strengthen our previous observations, we run
PACQ.0, 1 and 2 on queens with 10 sessions A1 to A10.
For each session, we report in figure 2 the number of queries
(#q), the number of redundant queries (#RQ), the number of
connected scopes (#CS) and time in seconds of each session
Ai. Note that RQ and CS allow us to estimate the degree of
diversification between the different sessions.

The instance of queens has a target network of 1, 305 bi-
nary constraints. For the three versions, the averaged number
of constraints acquired by each session is 130 with a stan-
dard deviation of 15 constraints for PACQ.0 and less than 8
constraints for PACQ.1 and 2. That is, PACQ provides a well-
balanced workload of sessions. It follows that the same ob-
servation can be made on #Q, #RQ and #CS. Comparing the
three versions, we observe that PACQ.1 (using bdeg heuris-
tic) outperforms PACQ.0 by reducing the number of redun-
dant queries to 50% and the number of connected scopes
to 90%. We also observe that using Rule based split in
PACQ.2 further improves the performance. In terms of CPU
time, we observe an overload for A4 session under PACQ.0
and PACQ.1. That is, the acquisition process terminates after

the close of session A4 (7s for PACQ.0 and 7s for PACQ.1).
Whereas, PACQ.2 is ensuring an excellent level of load bal-
ancing with sessions of ≈ 1s.

[RQ4]: Scalability. From table 1, we selected the three
instances where QUACQ needs to ask more than 7K queries
to acquire the corresponding target network (i.e., sudoku,
jsudoku and latin). We run PACQ.2 on the three instances
by varying the number of users up to 1K. Figure 3 reports
the total number of queries (#Q), the number of queries
asked per user (#q), the learning-ratio R (i.e., the number
of queries needed to learn a constraint R = #Q/|T|), the
number of redundant queries (#RQ) and the number of
connected scopes (#CS). Figure 3 shows that when the
number of users grows, #Q follows an (a − bx−c) scale
with a = 25K, b = 18K and c = 0.74, which means that
when we get more and more users, the total number of
queries gets closer and closer to the bound a = 25K, which
is far below the Amdahl’s Law theoretical bound (Amdahl
1967) represented by number of queries asked by QUACQ
(> 8K) multiplied by #U. The second observation is that
when the number of users grows, the number of queries
asked per user #q follows a negative power function scale
(a x−b) with a = 11K and b = 0.85, which means that
when we get more and more users, number of queries asked
per user gets closer and closer to 0 (horizontal asymptotes
of negative power functions). This is very good news as it
means that learning problems in parallel will scale well. For
instance, QUACQ asks more than 8K to one user to learn
sudoku instance. PACQ with, respectively, 2, 10, 100 and
1000 parallel sessions, asks to the same user, respectively,
3K, 1K, 163 and 13. Also, the learning-ratio R scales well
when the number of users grows. The number of queries
asked to learn one constraint follows a logarithmic scale
bounded above by 35 queries per constraint (c log(x) + d
with c = 3 and d = 8). Following the conclusions drawn in
RQ3 and thanks to bdeg heuristic and Rule based split,
we observe that #RQ and #CS per user decreases when the
number of users grows. That is, PACQ.2 ensures an excellent
level of workload balancing between sessions up to 1K.

[RQ5]: PACQ for distributed CSP. For our last exper-
iment, we illustrate the use of PACQ on distributed CSP
with msp problem. In msp, each attendee comes with her
own constraints and shares meetings (i.e., variables) with
the other attendees. This means that the problem can be
acquired in a fully-distributed scheme by having a ses-
sion per attendee. Figure 4 reports %A and %C rates per-
formed by QUACQ, PACQ.2[v] and PACQ.3[v] (where v ∈
{9, 13, 14, 17} is the number of attendees) on the 9 msp in-
stances. Darker color indicates higher convergence rate. The
number in each cell indicates the acquisition rate. The se-
quential version using QUACQ is not able to learn and to
converge on the 9 instances. PACQ.2 is not converging. How-
ever, PACQ.3 learns and converges on the 9 instances. For in-
stance, on msp 21 QUACQ learns 58% of the target network
and returns a premature convergence of 62% in 10 seconds.
PACQ.2 learns the instance without converging (%C = 84%)
in 8s. Then, the distributed version with PACQ.3 converges

Figure 3: Scalability of PACQ.2 up to 1K users

Figure 4: %A and %C comparison (QUACQ, PACQ.2 and 3)

in 0.38s. This is explained by the fact that in PACQ.3 we
have sessions of small size in terms of variables. Again on
msp 21, PACQ.3 opens 13 sessions of 5 variables, where
PACQ.2 opens 13 sessions of 40 variables. That is, generat-
ing examples on 5 variables is easier than generating exam-
ples on 40 variables and thus, avoid premature convergence.

Conclusion
In this paper we proposed a parallel constraint acquisi-
tion system PACQ, where numerous users answer in paral-
lel queries in order to learn all the constraints. PACQ is a
parallel extension of QUACQ and preserves the fundamen-
tals of its active learning system and its soudness, correct-
ness and completeness properties. Performed experiments
showed that (i) PACQ ensures an excellent level of load bal-
ancing; (ii) the total number of queries increases under an
upper-bound; (iii) when the number of users grows, the num-
ber of queries asked per user gets closer and closer to zero.

Acknowledgments
This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 952215. This work also received sup-
port from University of Montpellier and I-Site MUSE under
CAR-UM2020/2021 project. We thank Nassim Belmecheri
and Yahia Lebbah who provided insight and expertise that
greatly assisted the work. We would also like to show our
gratitude to the ”anonymous” reviewers for their insightful
suggestions and careful reading.

References
Amdahl, G. M. 1967. Validity of the single processor
approach to achieving large scale computing capabilities.
In American Federation of Information Processing Soci-
eties: Proceedings of the AFIPS ’67 Spring Joint Computer
Conference, April 18-20, 1967, Atlantic City, New Jersey,
USA, volume 30 of AFIPS Conference Proceedings, 483–
485. AFIPS / ACM / Thomson Book Company, Washington
D.C. doi:10.1145/1465482.1465560. URL https://doi.org/
10.1145/1465482.1465560.

Beldiceanu, N.; and Simonis, H. 2012. A Model Seeker: Ex-
tracting Global Constraint Models from Positive Examples.
In Milano, M., ed., Principles and Practice of Constraint
Programming - 18th International Conference, CP 2012,
Québec City, QC, Canada, October 8-12, 2012. Proceed-
ings, volume 7514 of Lecture Notes in Computer Science,
141–157. Springer. doi:10.1007/978-3-642-33558-7\ 13.
URL https://doi.org/10.1007/978-3-642-33558-7\ 13.

Bessiere, C.; Carbonnel, C.; Dries, A.; Hebrard, E.; Katsire-
los, G.; Lazaar, N.; Narodytska, N.; Quimper, C.; Stergiou,
K.; Tsouros, D. C.; and Walsh, T. 2020. Partial Queries
for Constraint Acquisition. CoRR abs/2003.06649. URL
https://arxiv.org/abs/2003.06649.

Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.; Lazaar,
N.; Narodytska, N.; Quimper, C.; and Walsh, T. 2013. Con-
straint Acquisition via Partial Queries. In IJCAI 2013, Pro-
ceedings of the 23rd International Joint Conference on Ar-
tificial Intelligence, Beijing, China, August 3-9, 2013, 475–
481.

Bessiere, C.; Koriche, F.; Lazaar, N.; and O’Sullivan, B.
2017. Constraint acquisition. Artif. Intell. 244: 315–342.
doi:10.1016/j.artint.2015.08.001. URL https://doi.org/10.
1016/j.artint.2015.08.001.

Freuder, E. C.; and Wallace, R. J. 1998. Suggestion Strate-
gies for Constraint-Based Matchmaker Agents. In Maher,
M. J.; and Puget, J., eds., Principles and Practice of Con-
straint Programming - CP98, 4th International Conference,
Pisa, Italy, October 26-30, 1998, Proceedings, volume 1520
of Lecture Notes in Computer Science, 192–204. Springer.
doi:10.1007/3-540-49481-2\ 15. URL https://doi.org/10.
1007/3-540-49481-2\ 15.

Lallemand, C.; and Gronier, G. 2012. Enhancing User eX-
perience During Waiting Time in HCI: Contributions of
Cognitive Psychology. In Proceedings of the Designing
Interactive Systems Conference, DIS ’12, 751–760. New

York, NY, USA: ACM. ISBN 978-1-4503-1210-3. doi:10.
1145/2317956.2318069. URL http://doi.acm.org/10.1145/
2317956.2318069.
Lallouet, A.; Lopez, M.; Martin, L.; and Vrain, C. 2010.
On Learning Constraint Problems. In 22nd IEEE Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI 2010, Arras, France, 27-29 October 2010 - Volume 1,
45–52. IEEE Computer Society. doi:10.1109/ICTAI.2010.
16. URL https://doi.org/10.1109/ICTAI.2010.16.
Régin, J.; and Malapert, A. 2018. Parallel Constraint Pro-
gramming. In Hamadi, Y.; and Sais, L., eds., Handbook
of Parallel Constraint Reasoning, 337–379. Springer. doi:
10.1007/978-3-319-63516-3\ 9. URL https://doi.org/10.
1007/978-3-319-63516-3\ 9.
Shchekotykhin, K. M.; and Friedrich, G. 2009. Argumen-
tation Based Constraint Acquisition. In Wang, W.; Kar-
gupta, H.; Ranka, S.; Yu, P. S.; and Wu, X., eds., ICDM
2009, The Ninth IEEE International Conference on Data
Mining, Miami, Florida, USA, 6-9 December 2009, 476–
482. IEEE Computer Society. doi:10.1109/ICDM.2009.62.
URL https://doi.org/10.1109/ICDM.2009.62.
Tsouros, D. C.; and Stergiou, K. 2020. Efficient multi-
ple constraint acquisition. Constraints doi:10.1007/s10601-
020-09311-4. URL https://doi.org/10.1007/s10601-020-
09311-4.

