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A New Augmented L1 Adaptive Control for Wheel-Legged Robots:
Design and Experiments

Fahad Raza1, Ahmed Chemori2 Senior Member, IEEE
and Mitsuhiro Hayashibe1 Senior Member, IEEE

Abstract— This paper proposes the augmentation of an L1

adaptive controller with a feedback Linear Quadratic Regulator
(LQR) to control a wheel-legged biped robot. The performance
of linearized model-based controllers, such as LQR, depends
on the accurate knowledge of model parameters, a priori
information about input and output disturbances, and other
unforeseen conditions. We propose a hybrid scheme where an
L1 adaptive controller is combined with LQR to compensate
for matched uncertainties and other disturbances related to
the environment change such as friction conditions of the floor.
The proposed control scheme is able to keep the robot stable
under model uncertainties and external disturbances through
a series of validation scenarios including simulations and real-
time experiments.

I. INTRODUCTION

The high maneuverability, speed, and agility of self-
balancing wheel-legged robots compared to the legged hu-
manoid robots come in exchange for instability and chal-
lenging control system design. Due to a small footprint and
a tall body, these robots are well suited and even desired for
indoor settings such as restaurants, banks, homes, hotels, etc.
However, the robust self-balancing of wheel-legged robots
remains the most challenging aspect for deploying these
robots in the real world. Most of these applications require
a robot that may carry an object from one place to other
for automated delivery, or the human guidance service by
moving on different floor conditions. These practical require-
ments further enhance the difficulty in the control problem
as the unknown payload incorporates model uncertainty,
and the unknown floor friction also creates the need for
environmental adaptation.
The safety-critical nature of these systems requires a robust
control system design for all practical purposes, and hence
gained a significant interest among the control and robotics
communities in recent years.

A. Background

In the literature, wheeled inverted pendulum (WIP) robots
are divided into two categories, namely with legs also known
as wheel-legged robots and without legs. Earlier works on
WIP robots were mostly focused on the version without legs.
Yuta et al. proposed pitch and trajectory control of a WIP
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(a) Real robot. (b) 3D model in ROS Rviz.

Fig. 1: View of the Igor wheel-legged robot.

robot called Yamabico Kurara and successfully separated its
steering control from balancing and translational motion [1]
[2]. Tani et al. attempted cooperative object transportation
using an unstable WIP robot and a human [3]. A control
system was built to estimate the external force and exert the
required force to maintain the robot in a balanced state.
A team from EPFL developed a WIP robot called JOE [4].
They implemented two decoupled schemes to control its
orientation and translational motion along with balancing.
In another important study, Agrawal and his team produced
partial feedback linearization of a WIP robot while consider-
ing its nonholonmic constraints [5] [6]. Takahashi et al. in-
troduced an assistant robot with wheeled inverted pendulum
mechanism capable of various tasks such as standing, sitting,
as well as object picking [7] [8]. A linear quadratic regulator
(LQR) was devised and applied for its motion control.
More recently, Boston Dynamics announced its first wheel-
legged robot named Handle that can be used as a pick and
place robot in industrial warehouses [9]. Also a team from
Harbin Institute of technology in China designed a hose-
less hydraulic wheel-legged robot able to improve the overall
reliability of the hydraulic actuator system [10].
A team from ETH, Zurich also developed a wheel-legged
robot called Ascento [11] [12]. The control scheme includes
a whole-body controller that incorporates rolling constraints
for better performance against curves and an LQR used for
the pitch control. Caporale et al. proposed a computed torque
control law to stabilize a wheeled humanoid robot [13].
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Fig. 2: Model of the robot with generalized coordinates.

Machine learning techniques are also getting attention re-
cently for balancing and control of wheel-legged robots. In
a very recent study, Jiang et al. proposed a novel data-
driven value iteration algorithm that generates a balancing
controller for a wheel-legged robot with a small amount
of data [14]. Model learning of a two-wheeled robot where
a simulation model is learned first and then the difference
model to reduce the sim-to-real gap has also been reported
[15]. Further studies also proposed nonlinear sliding-mode
controller, optimization based whole-body controller, and
nonlinear optimal control for WIP robots [16] [17] [18] [19].

B. Motivation

It is clear from the previous discussion that both linear
and nonlinear motion controllers have been designed to bal-
ance and control WIP robots. Commonly used model-based
controllers depend on system parameters which may change
over time, and other assumptions to simplify the system
for modeling purposes. Moreover, linear motion controllers
such as LQR are mainly based on linearized models of the
system and hence relevant for only a small region around the
operating point. We believe an adaptive control mechanism is
essential for the wheel-legged system under the assumed cir-
cumstances. Accordingly, we propose a new control scheme
based on the combination of an LQR feedback controller and
an L1 adaptive controller to compensate for modeling errors,
external disturbances, and other eventual uncertainties. To
the best of the authors’ knowledge, it is the first time that
an adaptive control scheme has been proposed for a wheel-
legged robot with experimental validation on a real system.

II. MODEL OF THE WHEEL-LEGGED ROBOT

This section provides the mathematical modeling of the
wheel-legged robot named Igor illustrated in Fig. 1. The
robot has three degrees of freedom (DoF); including the
translational motion, the heading angle or orientation, and
the pitch angle. Three reference frames ΣI , ΣR, and ΣC

are considered to completely describe the robot in the world
frame as illustrated in Fig. 2. ΣI is the inertial frame attached
to the ground, ΣR is the robot base frame, and ΣC is the

Fig. 3: Structure of the proposed augmented L1 adaptive
controller.

Center of Mass (CoM) frame. Further, the origins of ΣR and
ΣC coincide.
The pitch angle (β) is defined as the angle between ZR and
ZC , representing Z-axes of ΣR and ΣC , respectively. The
heading angle (α) represents the angle between XR and XI

axes of ΣR and ΣI frames. Six parameters are used to derive
the dynamics of the robot in the inertial frame; Ixr and Iyr
define the robot base location, θr and θl denote the right
wheel and left wheel displacements, respectively, and α, β
are the yaw and pitch displacements of the robot.
The nonlinear dynamic model of the robot is then obtained
using Euler-Lagrange method as detailed in [20] [21]. The
renowned manipulator equation of the robot with nonholo-
nomic constraints due to its differential drive is as follows

M(q)q̈ + V q̇ +H(q, q̇) +G = Eτ + J(q)Tλ, (1)

where M(q) ∈ R6×6 is the inertia matrix, V ∈ R6×6 is
a matrix of viscous coefficients, H(q, q̇) ∈ R6 includes
centrifugal and coriolis terms, G ∈ R6 is the gravity vector,
E ∈ R6×2 is the torque selection matrix, τ ∈ R2 is the
control input torque vector, J(q) defines nonholonomic and
holonomic constraints of the robot, λ is Lagrange multiplier,
and vector q = [Ixr Iyr α β θr θl]

T represents the
generalized coordinates.
Finally, after removing the Lagrange multiplier λ and lin-
earizing the model around its equilibrium point β = 0, we
get the reduced-order linear model in the state-space form
as follows

Ẋ = AX +BU

Y = CX +DU,
(2)

where X = [p α β ṗ α̇ β̇]T is the state vector, and p =

Ixr cos(α) + Iyr sin(α) is the translational position of the
robot. Y ∈ R6 represents the output vector of the system, and
U ∈ R2 is the control input. The matrices A, B, C, and D
are respectively called state, input, output, and feedforward
matrices.

III. PROPOSED CONTROL SCHEME

This section introduces the proposed control method to
stabilize the wheel-legged robot which is inherently unstable
in nature. The proposed augmented L1 adaptive control

23



framework is represented in Fig. 3.

A. Linear Quadratic Regulator (LQR)

A linear quadratic regulator is a full state feedback optimal
controller that places the poles of the closed-loop system to
minimize the following quadratic cost function

Jlqr =

∫ ∞

0

[X(t)TQX(t) + U(t)TRU(t)] dt,

where Q and R define weights for the system states and the
control inputs, respectively.
The state feedback control law that minimizes the above cost
function is

U = ref −KlqrX, (3)

here ref represents the reference signal.
The state feedback gain Klqr is given by

Klqr = R−1BTP,

where P is obtained by solving the following algebraic
Riccati equation (ARE)

ATP + PA− PBR−1BTP +Q = 0 (4)

The matrices A and B are obtained using the parameters of
the wheel-legged robot summarized in TABLE I, while Q
and R are tuned with a trial-and-error method to get satisfy-
ing performance in the real-time system. After obtaining the
matrices, we obtained the following Klqr value by utilizing
the pole placement technique,

Klqr =

[
−2.8284 1.4142 −19.4797 −4.8849 0.4032 −4.7839
−2.8284 −1.4142 −19.4797 −4.8849 −0.4032 −4.7839

]
.

B. Background on L1 Adaptive Control

This section describes the design of an adaptive control
system for the pitch angle (β) stabilization of the wheel-
legged robot. For a safety-critical system like a self-balancing
robot, keeping it in the upright position is of utmost im-
portance to avoid any accident, and damage of the robot
and its environment. Accordingly, we introduce the method
where an L1 adaptive controller is augmented with an LQR
controller in order to keep the robot stable in unforeseen
circumstances.
The decoupling between adaptation and robustness ensured
by the L1 adaptive control architecture makes it an ideal
adaptive controller for real-time applications. High adapta-
tion gains for achieving fast convergence can be used without
introducing a high frequency signal in the control input.
The control scheme proposed in this section is based on the
L1 adaptive control theory for systems with time-varying
parameters and disturbances along with uncertain system
input gain [22].
The L1 adaptive control consists of an adaptation and a
prediction stage as illustrated in Fig. 4. The adaptation phase
is used to predict the unknown and/or time-varying parame-
ters and other uncertainties including external disturbances,
whereas the prediction stage is used to get the ideal required
performance of the system. Furthermore, a low pass filter is

Fig. 4: Block diagram of L1 Adaptive Control.

incorporated in the closed-loop to remove high frequencies
from the control signal that may occur due to high adaptation
gains.
Let us consider the inverted pendulum model that is extracted
from (1) in the form

ẋ(t) = Apx(t) +Bp(Ωuad(t) + θT (t)x(t) + σ(t)),

y(t) = Cpx(t)
(5)

where Ap is the known R2×2 matrix that describes the linear
dynamics of the inverted pendulum, x(t) = [β β̇]T ∈ R2 is
the state vector, Bp ∈ R2 and Cp ∈ R2×2 known matrices,
θ(t) ∈ R2 vector of time-varying unknown parameters,
σ(t) ∈ R models eventual disturbances and unmodeled
dynamics, Ω ∈ R is an unknown positive constant and
uad(t) ∈ R is the adaptive control input.

1) State Predictor: To develop a full-state feedback con-
troller so that the system output y(t) tracks the reference
signal r(t), we consider a state predictor of the form

ˆ̇x(t) = Amx̂(t) +Bp(Ω̂(t)uad(t) + θ̂Tx(t) + σ̂(t)),

ŷ(t) = Cpx̂(t)
(6)

here Am = Ap − BpKm ∈ R2×2 is a known Hurwitz
matrix, whereas θ̂, σ̂, and Ω̂ are the estimates of θ, σ, and
Ω, respectively.

2) Adaptation Law: The estimations of the parameters are
governed by the following projection-based adaptive laws

˙̂
θ(t) = Proj(θ̂(t),−Γθx̃

T (t)PaBpx(t)), θ̂(0) = θ̂0,

˙̂σ(t) = Proj(σ̂(t),−Γσx̃
T (t)PaBp), σ̂(0) = σ̂0,

˙̂
Ω(t) = Proj(Ω̂(t),−ΓΩx̃

T (t)PaBpuad(t)), Ω̂(0) = 1,
(7)

where ΓΩ > 0, Γσ > 0, and Γθ > 0 are the adaptation gains,
x̃(t) = x̂(t)−x(t) is the prediction error, and Pa = PT

a > 0
is the solution of Lyapunov equation AT

mPa+PaAm = −Qa

for an arbitrary symmetric matrix Qa = QT
a > 0.

3) Projection Operator: A projection operator is used for
updating the parameters θ̂, σ̂, and Ω̂ smoothly and confining
them within the required set [23]. The algorithm of the
projection operator Proj(z, ϕ), used in (7) for a parameter
z, is described as follows,
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Algorithm : Projection Operator

Inputs : ϵ, z, ϕ, zmax, zmin

1 : compute fd = (zmax − zmin)
2;

2 : compute fz = −4∗(zmin−z)∗(zmax−z)
ϵ∗fd ;

3 : compute fż = 4∗(zmin+zmax−2∗z)
ϵ∗fd ;

4 : define output = ϕ;
5 : if (fz <= 0 and fż ∗ ϕ < 0) then

output = ϕ ∗ (fz + 1);
6 : return output;

here, 0 < ϵ < 1 is a constant that sets the steepness of
the curve. zmax and zmin are respectively the maximum
and minimum values delimiting the admissible range of the
parameter z.

4) Adaptive Control Law: According to the block diagram
of Fig. 4, the adaptive control input uad for the inverted
pendulum system (5) is given in Laplace domain as follows;

uad(s) = −KfD(s)
(
η̂(s)−Kgr(s)

)
, (8)

where Kg is the feedforward gain, r(s) = [βd, β̇d]
T is the

reference signal, Kf > 0 is the feedback gain, and D(s) is
a strictly proper transfer function such that

C(s) =
ΩKfD(s)

1 + ΩKfD(s)
, (9)

is strictly proper stable transfer function and DC gain C(0) =
1. Furthermore,

η̂(t) = Ω̂uad(t) + θ̂T (t)x(t) + σ̂(t).

To ensure the stability of the resulting closed-loop system,
the design of the feedback gain Kf and the low-pass filter
D(s) should satisfy the following L1-norm condition

∥G(s)∥L1
L < 1, (10)

where G(s) = H(s)
(
1 − C(s)

)
, H(s) =

(
sI − Am

)−1
Bp,

and L = max
θ∈Θ

∥θ∥1, here Θ is a known convex compact set.
The reader is encouraged to refer to [22] for detailed proofs
of stability and performance analysis.

IV. SIMULATION RESULTS

This section provides an overview of the simulation setup
used in this study as well as the corresponding obtained
results. The wheel-legged robot Igor was defined in the Uni-
fied Robotic Description Format (URDF) and simulated in
Gazebo simulator using the Robotic Operatic System (ROS).
We used C++ programming language to implement the
proposed motion control algorithm for better portability and
efficiency. The control loop runs at a frequency of 500Hz.
The nominal parameters of the system are summarized in
TABLE I. To validate the proposed augmented adaptive
control scheme qualitatively as well as quantitatively, we
conducted two different tests and results are shown in Fig.
5. The main motivation behind these scenarios is to compare
the input torques of both controllers, and the pitch angle (β)

TABLE I: Dynamic parameters of the robot.

Parameters Description Value Units

mc Robot body mass. 7.5 Kg
mw Robot wheel mass. 0.35 Kg
l Distance of the CoM

from the origin of ΣR.
0.5914 m

rw Wheel radius. 0.1016 m
cr, cl Right wheel and left

wheel viscosity coeffi-
cients.

0.17 N.m
(rad/sec)

and pitch rate (β̇) subject to external disturbances and model
uncertainties.
In the first scenario, we used the nominal parameters of the
robot and compare the augmented control scheme against the
model-based LQR. The obtained results from this simulation
are depicted in Fig. 5a. We applied a linear force of 20N on
the robot body at t = 10s for a duration of 1s. The given
plots clearly indicate that the augmented controller keeps
the pitch angle (β) and rate (β̇) smaller than those of the
LQR. Furthermore, the settling time of the pitch angle for
the proposed controller is about 2.5s against 6s for LQR.
In the second scenario, to introduce a modeling uncertainty
we propose to change the value of the viscous friction
coefficient of the wheel actuators from its nominal value
cr = cl = 0.17 to cr = cl = 0.34 (i.e. +100%). We know
that determining these friction coefficients in the real world
is near impossible as they change over time due to abrasion
and other factors. In case of the model-based LQR as shown
in Fig. 5b, it is evident that the impact of inaccurate friction
coefficients can be highly risky for a self-balancing robot as it
could not recover from the translational push of 20N . On the
other hand, the proposed augmented controller successfully
kept the robot around its vertical upright position.
TABLE II summarizes the quantitative difference between
the LQR and the proposed augmented controller in different
settings. By integrating the torques over time, which is also
known as angular impulse, we found that in the nominal case,
it is 6.3441 N.m.s against 3.6355 N.m.s for the LQR and
the proposed augmented controller, respectively. It is clear
that the augmented controller uses upto 42.7% less torque
and hence less energy than the LQR in keeping the robot
balanced in the nominal case. Besides it is worth to note that
the proposed augmented control scheme can endure a linear
push of up to 30N i.e. 50% more force than the maximum
of 20N for the LQR.

V. REAL-TIME EXPERIMENTS AND RESULTS

For the real-time control of the Igor robot, we used ROS
with C++ to run the motion control algorithms. The control
loop runs on an intel core i7 microprocessor at a frequency
of 500Hz and the torque commands are transmitted to the
robot actuators through a wifi connection. Besides, for the
robot localization we used an extended kalman filter (EKF)
to filter and fuse the data from multiple IMUs and the wheel
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20N

(a) Nominal case.

20N

(b) Uncertain case, ∆cr = ∆cl = +100%.

Fig. 5: Validation in simulation: Temporal evolution of pitch angle, pitch rate, wheel torque, and the estimated parameters
of the augmented L1 adaptive controller during a push of 20N force.

odometry.
We performed a couple of experiments on the real Igor robot
to compare the stability performance and energy efficiency
of the two controllers in different operating conditions.
The controllers have the regulation task to keep the robot
balanced β ≈ 0 in the presence of the external pushes. Since
the real robot lacks a force sensor, we applied manual pushes
repeated three times to take the average result. The first
experiment is performed on a normal tiled floor with less
friction between the floor and the wheels of the robot, while
the second experiment is performed on a carpet floor with a
better friction between the robot wheels and the ground. Also
a lidar sensor of mass 1Kg is attached to the bottom of the
Igor body for emulating modeling uncertainties. This extra

TABLE II: We use area under the curve of the pitch angle
and the wheel torque to quantify the performance of the
given controllers. The smaller these values are the better the
corresponding controller performs in terms of settling time,
overshoot, and energy consumption. The percent change
indicates the percentage reduction of these areas in the case
of augmented controller w.r.t the LQR.

Simulations

LQR Augmented Controller Percent Improved

Nominal
case

∫
|β|dt 0.6157 0.3070 50.1%∫
|τ |dt 6.3441 3.6355 42.7%

Uncertain
case

∫
|β|dt 11.5773 0.5006 95.7%∫
|τ |dt 18.0505 16.2275 10.0%

Real-time Experiments

LQR Augmented Controller Percent Improved

Tile
floor

∫
|β|dt 0.6624 0.2700 59.2%∫
|τ |dt 13.5188 8.8440 34.6%

Carpet
floor

∫
|β|dt 0.5160 0.3283 36.3%∫
|τ |dt 10.9857 10.9037 0.75%

mass is not included in the dynamic model of the robot and
the LQR controller. The obtained results of these real-time
experiments are displayed in Fig. 6 and further summarized
quantitatively in TABLE II.
Fig. 6a provides the evolution of the pitch angle β, pitch
rate β̇, wheel torque τ , and the estimated parameters of
the augmented L1 adaptive controller versus time for the
tiled floor test. It is clear that the pitch angle remains sig-
nificantly smaller (about 59%) for the proposed augmented
controller case compared to the LQR case. Furthermore, this
enhancement in the robot stability in case of the proposed
controller also comes with the benefit of a reduced wheel
torque of about 34.6%. However, it is worth to note that
even with model uncertainties, the LQR feedback controller
successfully achieves the nominal performance by balancing
the robot.
For comparison, we repeated the same tests on a carpet
surface in the second experiment as shown in Fig. 6b. It
is noted that with similar pushes, the deviation of the pitch
angle from the given reference point stays smaller for the
proposed augmented controller than for the LQR. However,
this difference is reduced from 59.2% to 36.3% in the case
of carpet floor. Furthermore, due to high friction between the
carpet floor and the robot wheels, both controllers give the
similar torque profiles to keep the robot balanced against the
applied external pushes.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed and implemented a linear
quadratic regulator augmented with an L1 adaptive controller
to stabilize a wheel-legged robot. It is shown through differ-
ent simulations and real-time experiments that the proposed
augmented controller was successfully able to compensate
for the model uncertainties and external disturbances and
clearly outperforms the model-based LQR controller.
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(a) Tile floor case. (b) Carpet floor case.

Fig. 6: Validation in real-time experiments: Temporal evolution of pitch angle, pitch rate, wheel torque, and the estimated
parameters of the augmented L1 adaptive controller subject to external pushes.

In the future work, we may focus on design and implementa-
tion of an L1 adaptive controller for the underactuated wheel-
legged robot to control its further DoFs such as translational
position, pitch angle, and the yaw angle.
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