Camille Diou

Lionel Torres

Michel Robert
email: robert>@linnm.fr

A WAVELET CORE FOR VIDEO PROCESSING

Keywords: Image processing, lifting scheme, multi-resolution analysis, wavelet core, wavelet transform

The wavelet transform appears to be an efficient tool for image processing. However, the pyramid algorithm remains silicon area costly, essentially because of its memory needs, and depending on the size of filters used. This paper proposes a new implementation of the wavelet transform using the lifting scheme. Using an improved method of managing the data flow and the RAM, this method proposes many improvements such as in-place calculation, small memory needs, and easy inverse transform.

INTRODUCTION

In compression applications using the wavelet transform, in many image processing systems that rely on wavelet algorithms (segmentation, edge detection), the processing time is an important feature and a high speed (or real-time) treatment cannot ever be reached with software implementations. A good solution is to implement a complete system and its memory on a chip, within the data acquisition hardware (System on Chip).

This paper shows a comparison between the MALLAT'S pyramid algorithm (PA) [l] and the lifting scheme (LS), a new method for creating wavelets [START_REF] Wim | The Lifting Scheme: A Custom-design Construction of Biorthogonal Wavelets[END_REF][START_REF] Wim | The Lifting Scheme: A Construction of Second Generation Wavelets[END_REF]61. Next, we present the pyramid algorithm's implementation based on filter banks, and our architecture based on the lifting scheme. This architecture presents many advantages as a good integration, high frequency processing and low memory needs.

WAVELET TRANSFORM AND MULTI-RESOLUTION ANALYSIS

The multi-resolution analysis [11 uses two functions to project a signal on two spaces. The wavelet function extracts the details (high frequency signal) and the scaling function keeps the approximation (low frequency signal). By translating and dilating the wavelet, we can analyze the signal all over the time and at different resolution levels.

Filter banks and pyramid algorithm (PA)

Fig. 1. Wavelet transform image decomposition

The image is filtered by both high-pass and low-pass filters along horizontal direction, then subsampled to give two sub-images that contain, respectively, an approximation of the original image and its horizontal details. This scheme is re-applied on the two sub-images along the vertical direction, giving us the three horizontal, vertical and diagonal details sub-images, and the 2-D approximated sub-image.

Figure 1 shows the 2-D MALLAT wavelet transform.

To get a multi-resolution analysis, the approximation signal (low-pass band) is reintroduced into another filter banks set connected in a cascade way with the first one: this is the pyramid algorithm.

The lifting scheme (LS)

The lifting scheme algorithm [3,4,5, 61 presents many advantages compared to the filter banks [START_REF] Wim | Building your Own Wavelet at Home[END_REF]: 0 all calculations can be performed in-place for an im-0 the algorithm shows an inherent SIMD parallelism at 0 the inverse transform is obtained easily from the di-portant memory saving; all scales; rect transform.

Transform

The lifting scheme is composed of several elementary steps that when applied successively construct a predefined wavelet. When using the Cohen-Daubechies-Feauveau 2-2 biorthogonal wavelet [START_REF] Cohen | Bi-orthogonal bases of compactly supported wavelets[END_REF], the number of steps is reduced to the three following (see Figure 2): 395 0-7803-62~7-7/00/$10.00 0 2000 IEEE split: separates the signal into 2 parts. The more correlated the sub-signals are, the better the predict; predict: the first set is used to predict the second one, according to a defined function; the difference between the predicted set and the original one is kept as the detail signal; update: the detail signal is used to update the untouched set, in order to keep the average value of the signal.

-0 O (0 . 0 1

0 0 0 0 0 0 0 0 a 2.

Inverse transform

The inverse transform scheme contains the same steps (in this case: undo update, undo predict and merge) which are obtained by reversing the order of the operations and by changing the signs of the operators, as shown in Figure 2, right.

ARCHITECTURES

We have seen in the previous sections that the lifting scheme presents many advantages for the implementation of the WT.

In this sections, we will point out this advantages by presenting two architectures for the WT. The first one is a filter banks architecture which implementation isn't improved enough for performing the 2D WT. Readers can find more information on this implementation in [START_REF] Truchetet | Implementation of stillimage compression-decompression scheme on fpga circuits[END_REF]. The architecture we propose is based on the lifting scheme and allows some improvements for the 2D WT calculation.

Filter banks (FB) architecture

Fig. 3. Implementation of the PA: a: basic filtering cells, b: whole 2D structure An implementation of the 2-D wavelet transform using the CDF wavelet is shown in [7]. We see in Figure 3b that the 3 filter banks (Figure 3a) are present, and that an important memory is necessary between the filters to perform the transform. Furthermore, the size of the filters corresponds to those described in section 2.2.1, that is 5 coefficients for the fist filter (LP), and 3 coefficients for the second (HP), that implies a total of 6 adders per filter bank.

Lifting scheme architecture

1-D structure

We saw in the section 2.2 that the implementation of the lifting scheme requires few operators. We need, for each step (prediction and update), a total of four adders to perform the complete stage (Figure 4). We can see in Figure 4 that there is no need for memory during the 1-D transform: the transformed coefficients overwrite the original ones during the decomposition. Thus, the transform can be performed in real-time, at the pixel clock. We get the same conclusion for the reconstruction step. Furthermore, unlike the FB method, the subsampling is done before the computations, thus there is no lost of computational time.

Number of logic blocks

The lifting is very interesting for integrated systems because of little need for logic blocks. The table 1 shows the differ-ence between the lifting scheme and the filter banks. This table also shows the number of adders that we need to perform either the transform or the inverse transform, in the 1-D and 2-D cases.

adders (1 D) # adders (2D) Mem. need (dec.) Mem. need (rec.)

Memory

We saw that we don't need any memory during the transform, because the calculated values replace the original ones. Using the method described in section 4.1.1, we can reduce the memory need for the 2D transform, as shown in table 1.

.

Lifting scheme Filter banks

4 6 12 18 < 1 kB 84 kB < 1 kB 112kB !.
to the next incoming value (Fig. 7-5), and once the whole line is treated, we can reload the memories c and d with the incoming lines (Fig. 7-6) and repeat the scheme from the beginning.

We can figure out which type of memory we will use.

two FIFO of sizes N and ($ + l), to keep a constant data rate at the output of the two FIFO. For memories a and b we just have to use two delay lines of size N (where N is the size of the line)

0 0 0 8 0 8
Mem. need (dec.)

3kB 84kB
Mem. need (rec.)

3kB 112kB

Max. image size

x 2048 256x256

Can process video ?

Yes no

Unknown Unknown

Fig. 6. 2D implementation of the lifting scheme

Figure 6 shows the implementation of the 2-D lifting scheme. The input image is first decomposed horizontally. Then, using some improved techniques, we will decompose it along vertical axis using only 3.5 memory lines. There is no noticeable difficulty in implementing the first 1 -D horizontal decomposition block, thus, we'll point out the vertical decomposition.

Vertical decomposition of the sub-images : the linebufer method

Figure 7 shows the different steps of the 2-D transform using lifting. We consider that the memory a contains the previous already computed detail line. memory b contains the previous approximation. When the 1-D decomposed detail lines is computed, we store it in the memory c. We can then start the vertical decomposition when the approximation coefficient comes in (Fig. 7-l). Once the detail is computed, we can re-use it with the previous detail to compute the average (Fig. 7-2). Next, we extract the previous detail and average (Fig. 7-3) and replace them respectively with the computed detail and average (Fig. 7-4). We re-apply this scheme

Implementation results

The table 2 below shows the performances of our system compared to filter banks [START_REF] Truchetet | Implementation of stillimage compression-decompression scheme on fpga circuits[END_REF] and ADV 601. Notice that the needed memory in this table is extended to the maximum size of the images that the system can treat.

ARCHITECTURE FOR THE MULTI-RESOLUTION ANALYSIS

2D multi-resolution decomposition architectures

There are two easy-to-implement multi-resolution architectures: 0 the first one consists in using a picture memory used to store the whole approximation sub-image, as the Figure 3.b shows.

0 the second solution is to reproduce as many transform blocks as necessary (i.e. one block per level).

The first solution needs too many memory for an onchip implementation (several kilobytes of memory). The second solution increases the hardware resources needed (the transform blocks and their associated memory). Thus, we have to develop a method to perform the multi-resolution 2D analysis that will re-use the same wavelet transform block, and minimize the necessary memory.

The proposed architecture

output S1R8m -Fig. 8. Architecture for the multi-resolution analysis

The architecture we propose is based on the Recursive Pyramid Algorithm. The RPA consists of re-arranging the order of the N outputs such that an output is scheduled at the earliest possible instance [9, 101. Figure 9 shows how the recursive pyramid algorithm produces a regular data flow with samples from different resolutions.

To compute the multi-level WT, we have to store the low resolutions samples in memory cells until we can compute them, and interlace them with the original samples in the input data flow. Therefore, we use some small FIFO and a multiplexer at the input of the system. A context switching procedure will allow us to store this samples in the appropriate buffers (latches or FIFO). Each time the system will switch its working context, all the corresponding data will be loaded from the memory cells, and the previous ones stored. Figure 8 shows the modified architecture to perform the WT. The WT begins with the original input data flow. The computed 2D-coefficients are stored in their corresponding input FIFO memories. As soon as two samples from next resolution are ready in this FIFO, we can switch the working context to this level. This will save the current samples in their appropriate memory cells (latches) in the horizontal 1D transform block, and read the data in the latches corresponding to the current level. Thus, all the old data are stored and the new ones are read in one clock cycle. After the computations, the result is sent to the corresponding FIFO. The vertical ID transform block works in the same manner. The total memory of the modified architecture re-mains smaller than 7Nb, where b is the size of the samples in bits, and is equivalent to others architectures [9, lo].

In order to validate this method, we are currently working on the implementation of the architecture for the multiresolution in a Flex lOkl00 FPGA.

CONCLUSION

In this paper, we have shown a new way of implementing the wavelet transform. This method combines an efficient processing rate with low area cost and memory use. It can easily be adapted to perform the inverse transform.The described architecture provides a good integration and can be easily prototyped on a FPGA (Field Programmable Gate Array), due to the small memory and the few operators needed.

The system and its memory (latches or FIFO) are designed to allow an optimal working frequency and is not hardware dependent. The inherent SIMD parallelism and the pipeline techniques used allow the system to work at very high frequency. We intend to extend the architecture to allow different wavelet to be be implemented, by using programmable coefficients and user defined lifting steps number.

Fig. 2 .

 2 Fig. 2. Signal decomposition and recomposition with lifting

detailFig. 4 .

 4 Fig. 4. Structure of the lifting scheme transform block

Fig. 5 .

 5 Fig. 5. Vertical decomposition after computation of 3 lines 3.3. Comparisons

 banks [7] I 601 [8] I I ax. oixeI rate I 66 MHz I 1 MHz I 14.75 MHz I

Table 1 .

 1 Resources needed by lifting vs. pyramid algorithm

	768x288
	Yes

Table 2 .

 2 Performances of lifting vs. PA and ADV601