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Classification of Human Balance Recovery Strategies Through
Kinematic Motor Synergy Analysis

Keli Shen1, Ahmed Chemori2 and Mitsuhiro Hayashibe1

Abstract— A key problem in human balance recovery lies
in understanding the mechanism of balance behavior with
redundant bio-mechanical motors. Motor synergy has been
known as an efficient tool to analyze characteristics of motion
behavior and reconstruct control command. In this paper, mo-
tor synergy analysis for different control strategies is proposed
to analyze different balance motion coordination for various
levels of pushing force, and understand the coordination of
human multiple joints regarding balance recovery. The spatial
synergy of specific joint angles for different pushing force levels
exerted on the subject’s back is computed with the principal
component analysis (PCA) to evaluate the adaptive balance
motion response patterns and illustrate the improvement of
balance robustness through the switch of joint coordination.
Therefore, the switch of postural coordination over multiple
joints in balance recovery movements was analyzed to better
understand the mechanism of balance strategy generation in
this study.

I. INTRODUCTION
The mechanism of human balance recovery has been stud-

ied in the literature where various balance control approaches
such as static and stepping strategies have been proposed
[1], [2]. Understanding balance strategy is crucial for the
elderly population rehabilitation training due to a decrease
in standing ability (motor impairment) after losing muscle
strength.

Many works related to this research topic have been
conducted regarding various aspects. Hip-ankle strategy for
balance maintenance was simulated with a double inverted
pendulum based on numerical model predictive control [3].
An improved balance strategy with arm usage based on
nonlinear model predictive control and its effectiveness was
studied in [4], [5]. Besides, another multi-link model includ-
ing ankle, hip, and neck was proposed in [6] to analyze
standing postural control and its motor coordination. How-
ever, the aforementioned works were more focused on the
human balance control strategy. Indeed, the relation between
balance strategies and postural coordination is very important
for understanding balance control mechanism [7]. Then, the
study in [8] indicates the ability of balance control can be
improved with strong coordination over multiple joints.

Synergy was defined as an effective tool to explain the
co-work of muscles and joint coordination [9]. A reasonable
assumption is that the movement control is simplified by
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the central nervous system (CNS) through a layered and
modular structure. At the lowest level of its hierarchy, muscle
employment may be controlled by several functional units,
thereby reducing the dimensionality of the output space.
Higher levels in the hierarchy may employ and combine
these output modules flexibly to control various movements.
Consequently, organizing muscle synergy is one way through
which the task of controlling a number of degrees of free-
dom (DoF) is simplified by the CNS. Indeed, two types
of synergies were introduced in [10] to describe different
structures of muscle patterns that can be shared in motions:
(i) muscle-related spatial synergy, (ii) muscle, and time-
related spatiotemporal synergy. In our study, since we only
focus on joint coordination across the simplified human
model, kinematic spatial motor synergy is employed.

Besides, patterns of coordinated multi-joint motion have
been studied in various tasks such as reaching, walking, sit to
stand and standing. Coordinating multiple joints in [11] for
producing a straight hand path saves a definite computational
resource through the multi-joint coordination. The motor
synergy of walking motion generated with deep learning has
been quantified in Chai’s work [12], in which it was con-
cluded that a good synergy level contributes for improving
energy efficiency. In sit to stand studies, two aspects have
been studied. Yang et al. [13] hava distinguished different
standing-up strategies based on recruitment of muscle group
and Yamasaki et al. [14] studied joint torques organization
and their correlation. The standing coordination has been
studied in [6] with a multi-link model including neck, hip,
and ankle. However, this work ignored the joint rotation of
arms and knees which are definitely useful in our daily life
for improving balance ability of quiet standing [4], [5] while
applying a pushing force on the back of a human. The main
contributions of this paper are summarized as follows.

• An eight-joint model for human balance recovery is
proposed and four-level of pushing forces are considered
to distinguish different balance strategies.

• Kinematic spatial motor synergy is extracted to classify
the organization of joints.

• The switch of balance strategies is discussed according
to the space of the extracted synergies.

In this paper, we take kinematic spatial motor synergy
analysis into account to classify human balance recovery
strategies. This helps us obtain a better understanding of
balance control mechanisms in quiet standing from a new
viewpoint. The rest of the paper is organized as follows.
In section II, the methods of the human experiments are



described. Data processing is shown in section III and spatial
motor synergy is demonstrated in section IV. Section V deals
with the obtained result analysis and discussion. Finally,
conclusions are made in section VI.

Fig. 1. Structure of the simplified eight-joint model including the joints
of right arm, left arm, right hip, left hip, right knee, left knee, right ankle,
left ankle. The proposed model setting is consistent with our protocols of
human experiments.

II. METHODS OF HUMAN EXPERIMENTS

The main purpose of the present study is to explore
the relationship between balance recovery strategies and the
characteristics of motor synergy for a simplified human body
structure as illustrated in Fig. 1. The participants were 6
healthy male subjects (mean age (25 ± 5) years, mean
height (175 ± 10) cm, mean weight (70 ± 10) kg) without
any known motor or neurological impairment. Following the
Declaration of Helsinki, the protocols of human experiments
approved by the Tohoku University ethics committee were
designed for measuring human postural coordination.

We instructed the subjects to stand upright keeping the two
feet on the force-plates (AMTI) [17] to measure the ground
reaction force (GrF). First, a static pose with 64 markers was
captured for model scaling in Opensim [18]. The marker set
of the running model in [19] without head markers was used
in our experiments. After completing the static pose, the 22
less important markers for inverse kinematics computation
were removed to simplify the process of marker labeling.
Then, we asked the subjects to maintain balance through the
y-axis rotation of the arm, hip, knee, and ankle joints after
a positive x-axis direction disturbing push applied on their
back with a stick. This means that human balance motion
happens in the sagittal plane. And each time push should be
expected with a nearly constant strength. Forty-two marker
positions were captured at a frequency of 100 Hz through
OptiTrack system [20] to measure body kinematics. Each
subject was disturbed with four-level pushing forces on the
marked position of the upper back: weak, small, medium, and

large for 4 trials separately, and the effect of these forces was
measured by inspecting the displacement of the ‘C7’ marker
attached on the neck of each subject. To make each time
reaction behavior complete, subjects were pushed the next
time after maintaining a balanced position without having
the obvious body swaying movements.

III. DATA PROCESSING

The conducted experiments include one trial for static pose
and 12 trials of balance recovery motion recorded for each
subject. Then, we labeled the markers with their names at the
beginning of the recording and checked if they were labeled
or not frame by frame. After finishing marker labeling, the
motion trajectory of each marker was checked, and smoothed
by a filter. Then, the recording of marker positions and two
force-plates were exported. In fact, the current extracted data
form can not be directly used for scaling, inverse kinematics
(IK), and inverse dynamics (ID). Therefore, we rearranged
data forms of static and dynamic motion, filtered ground
reaction forces, and removed force noises.

The converted forms of marker positions and GrF were
recruited in Opensim. The data processing in the software
Opensim was divided into three steps:

1) Scaling: the marker positions of static pose were
imported and the height and weight of the subject were
necessary for scaling process as well. after scaling, we get
a scaling model for the subject. This model can be used for
the computation of IK and ID.

2) Inverse kinematics: the marker positions of balance
recovery motion were imported and the temporal joint angles
(around y-axis) of the whole body were computed and
extracted.

3) Inverse dynamics: the converted forces from the two
force-plates were imported and filtered at 6 Hz. Based on
the obtained inverse kinematics results and GrF, the temporal
joint torques were computed and extracted.

Then, the extracted joint angles and torques of the both-
side arm, hip, knee, ankle were normalized between −1 to
+1 according to the time of the lowest position at z-axis of
the marker ’C7’. The time range 1.5 [s] before and 1.5 [s]
after the push was employed for the synergy analysis.

IV. KINEMATIC SPATIAL MOTOR SYNERGY
COMPUTATION

The definition of Spatial motor synergy has been in-
troduced in [10]. The basic idea is that instantaneous co-
variations can be shown by groups of degrees of free-
dom, indicating adaptive coordination of multiple joints or
muscles. This means the hypothesis that the proportion of
different control signals should be unchanged over time.
This fact be explained by the classical assumption that
a set of multiple joints or muscles of the body can be
controlled synchronously without specific time-delays by the
CNS through reducing the dimension of the DoFs. This can
be crucial for saving computational resources of the multiple
joint or muscle control, which implies reduced command that



Fig. 2. (a) Comparison of the extracted spatial synergies of joint angles for the four-level pushing forces, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7, and Ch8
represent the angles of the right arm, left arm, right hip, left hip, right knee, left knee, right ankle and left ankle, respectively. (b) Reconstruction accuracy
for the four-level pushing forces. (c) Synergy level computed by spatial surface area under curves of the reconstruction accuracy R2.

simplifies the complexity of body control. The formulation
of the spatial motor synergy is as follows:

xr
n(t) =

S

∑
s=1

ws · cr
s(t)+ residuals (1)

Where xr
n(t) denotes the values of n joint angles rotating

around y-axis (For our simplified body model, 1 ≤ n ≤ 8) as
source signals at time instant t (in our trials, 1 ≤ t ≤ 300) in
trial number r (in our protocol, r = 1, 2, 3, 4). The number
of spatial motor synergies is denoted by S. The spatial



Fig. 3. Corresponding activation weights of the extracted spatial synergies of joint angles for the four-level pushing forces, C1, C2, C3, represent time-
related activation where the balance recovery process can be observed.

motor synergy patterns ws are extracted as invariant column
vectors over trials. The time-dependent mixing weights of
the synergies cr

s(t) and the the residuals vary in each trial.
It is worth to note that the spatial decomposition indicates

the contribution of source signals in space. This may help
us to easily find which joint-segment might work a lot
and how the body joints coordinate according to different
pushing force levels in this study. The simplified matrix
form of Eq. (1) is derived in Eq. (2), where the term of
residuals is omitted. X , W , and C represent the matrix of the
source signals, the spatial synergies, and the corresponding
activation weights, respectively.

X =W ·C (2)

As one of the classical decomposition algorithms, prin-
cipal component analysis (PCA) [21] is used to solve Eq.
(2). The key role of PCA in this study is to minimize the
nonlinear least square problem defined as the reconstruction
error in Eq. (3) w. r. t W and C with the Frobenius Norm
∥ · ∥F .

E2 = ∥X −W ·C∥2
F (3)

The reconstruction accuracy metric R2 defined in Eq. (4)
is used to quantify how well original source signals can be
represented by the inner multiplication of the extracted W
and the corresponding C term. It is worth to note that R2

ranges from zero to one. Besides, R2 = 1 indicates the perfect
reconstruction of the source signals.

R2 = 1− ∥X −W ·C∥2
F

∥X − X̄∥2
F

(4)

In this study, the approach to evaluating joint angles are
more synergetic through observing the corresponding joint
angles can be reconstructed with fewer spatial synergy and
the higher reconstruction accuracy R2.

V. RESULT ANALYSIS AND DISCUSSION

To explore the mechanism of balance recovery after
pushing with four-level forces, the kinematic characteristics
obtained from the subjects are analyzed and discussed in this
section. We also study on the synergy structure alternation
regarding W depending on the different levels of push.

From the extraction of spatial synergies shown in Fig. 2,
the ratios of reconstruction accuracy, R2, and synergy level
are varying for the four-level pushing forces. The high ratio
of synergy W1 illustrates common balance recovery spatial
feature for all levels in Fig. 2 (a). For the pushing force level
1, its ratio of W1 is 0.96, which is almost equal to the total ra-
tio from W1 to W3 for the pushing force from level 2 to 4. The
eight joint angles can be reconstructed by the three synergies
with the high R2 =(0.965±0.005) shown in Fig. 2 (b), which
simplifies the kinematic motion modes. This illustrates that
the high synergy level of balance recovery movements for
the four-level pushing forces. Even though the reconstruction
accuracy by the recruitment of three synergies are almost the
same for level 2−4 pushing forces, the combinations of joint
angles and the ratio of R2 in Fig. 2 (a) are different respects
to the space of synergies W1, W2 and W3. The synergy level of
balance in Fig. 2 (c) is computed by the spatial surface area
under curves of the reconstruction accuracy R2. Although
the high reconstruction accuracy exists with the recruitment
of W1, W2 and W3 for all pushing forces in this study, the
synergy level seems depending on pushing force level. The
synergy level decreases as the pushing force increases. This
is reasonable as the limitation of joint capability caused by
external disturbance leads to the reduction of synergy level.

We can also notice that there is synergy structure alterna-
tion regarding W depending on the different levels of push.
Ankle angle variation in the space of W1 is the strongest for
the pushing force level 1 as Ch7 and Ch8 show the strongest
intensity. This indicates that the ankle strategy exists for the



pushing force level 1 for small disturbance. The relative joint
angle phase between ankle and hip in the space of W1 is
in-phase. Additionaly, there is only 1 motion mode for this
level.

Secondly, from level 2, we observe there are 2 motion
modes combined. The strong coordination of hip joints can
be observed through the space of synergy W1 for the pushing
forces from level 2 to 4 as Ch3 and Ch4 show the strongest
intensity. This should indicate the employment of hip strategy
from small level of push. The 1st mode W1 reflects hip
strategy. Then, we still observe the ankle strategy at the 2nd
motion mode at W2, as as Ch7 and Ch8 show the strongest
intensity for W2. Between level 2 and level 3, it demonstrates
similar motion mode for W1 and W2. However, we can notice
the anti-phase between ankle and hip joint angles in synergies
W2 is observed more clearly for level 3. The larger anti-phase
of ankle and hip exists for balance recovery reflecting ankle-
hip strategy. This opposite flexion of ankle joints relative
to hip joints is a well-known balance strategy, for higher
disturbing forces.

Then, for further strong push for level 4, arm usage can
be noticed as as Ch1 and Ch2 show stronger intensity for W2,
and efforts of active arm swing increase as the pushing force
increases, where arm strategy is applied for improving the
ability of balance recovery. This result is in accordance with
our previously obtained conclusion in reproduced balance
recovery movements through nonlinear model predictive
control (NMPC) [4], [5] that arm usage helps balance control.
Second, the in-phase and anti-phase of the ankle and hip joint
illustrates the switch of ankle strategy and hip-ankle strategy.
This kind of joint recruitment improves the ability of balance
recovery based on the previous conclusion stated in [2].

The evolution of the corresponding activation weights of
the extracted spatial synergies of joint angles for the four-
level pushing forces is illustrated in Fig. 3. C1, C2, C3
represent time-related activation where the balance recovery
process can be observed. As described in our human exper-
iment protocols, for each level pushing force, each subject
performs four trials. For each trial, the time of motion is
limited to 3 seconds. There are twenty-four trials that can be
observed for each level of pushing force. In C1, the balance
behavior can be well understood. Before the pick value of
activation, subjects are pushed, and then they behave in the
balance recovery process. Even though the pushing forces are
divided into four levels, the balance recovery time is almost
the same. This is because humans have the predictive ability
and can adjust their standing postures very fast under the
cooperation of CNS and body muscles.

VI. CONCLUSIONS

In this paper, various balance recovery motions for four
different levels of pushing forces are classified as balance
recovery approaches like arm strategy, ankle strategy and
hip-ankle strategy based on the extracted spatial synergy.
The common patterns and the high synergy level of balance
recovery motions are confirmed as well, which indicates
the strong coordination between joint angles based on the

switch of balance recovery strategies. The proposed method
in this paper implements a quantitative classification of
balance control strategies through the extracted kinematic
spatial synergy metric. Therefore, our method is different
from the traditional analysis of joint angle trajectories for
classifying balance strategies. The synergy level is computed
to further study the performance of human joint capability for
the different pushing forces. In future studies, we study the
coordinated motion patterns for more subjects and with more
different conditions to further understand the relationship
between the extracted spatial synergies and balance postural
control strategies.
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