Digital Oscillatory Neural Networks for AI Edge Applications
Madeleine Abernot, Corentin Delacour, Gabriele Boschetto, Stefania Carapezzi, Thierry Gil, Nadine Azemard, Aida Todri-Sanial

To cite this version:
Madeleine Abernot, Corentin Delacour, Gabriele Boschetto, Stefania Carapezzi, Thierry Gil, et al.. Digital Oscillatory Neural Networks for AI Edge Applications. 16ème Colloque National du GDR SoC², Jun 2022, Strasbourg, France. lirmm-03737606

HAL Id: lirmm-03737606
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03737606
Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Digital Oscillatory Neural Networks for AI Edge Applications

Madeleine Abernot, Corentin Delacour, Gabriele Boschetti, Stefania Carapezzi, Thierry Gil, Nadine Azemard, Aida Todri-Sanial
Microelectronics Department, LIRMM, University of Montpellier, CNRS, Montpellier, France

ARTIFICIAL INTELLIGENCE AT THE EDGE
- Constraints:
 - Bandwidth (inference/second)
 - Latency (frames/second)
 - Privacy concerns
 - Power consumption

NEUROMORPHIC COMPUTING
- Support online learning
- Fast and efficient inference
- Low power consumption
- Scalability
- Low cost

OSCILLATORY NEURAL NETWORKS

PHASE COMPUTING PARADIGM [1]
- Brain-inspired computing paradigm
- Neurons are oscillators
- Synapses are coupling elements between oscillators
- Information encoded in oscillators’ phases

ASSOCIATIVE MEMORY
- Learn patterns
- Associate corrupted input with correct output

APPLICATIONS AND USE CASES

Digits recognition (AAM) [2]

Camera stream to HDMI screen

- ONN 10x16
- LUTs 117
- Flip-Flops 2.6%
- Accuracy 100%

Obstacle avoidance (AAM) [3]

with an Arduino robot

- ONN Frequency 488 MHz
- LUTs (33 280) 11.5%
- Flip-Flops (41 000) 5.0%
- Accuracy 100% 74%

Obstacle avoidance (AAM) [4]

with the industrial robot €4 from A.I.Mergence

- ONN Frequency 12 MHz
- LUTs (33 280) 20.07%
- Flip-Flops (41 000) 7.36%
- Accuracy 100% 100%

Image edge detection (HAM) [5]

Camera stream to HDMI screen (10x6 ONN)

- ONN Frequency 2.7 MHz
- LUTs 104
- Flip-Flops (41 000) 60.9%

CONCLUSION

- Development of a proof of concept of the ONN computing paradigm with a digitally implemented ONN on FPGA
- Development of various demonstrators using the digital ONN on FPGA
- Digits recognition from a camera stream
- Obstacle avoidance on mobile robots from sensory data measurements
- Image edge detection using ONN as HAM

REFERENCES

ACKNOWLEDGEMENTS AND FUNDING

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871501.