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EBBE-Text: Explaining Neural Networks
by Exploring Text Classification

Decision Boundaries
Alexis Delaforge, Jérôme Azé, Sandra Bringay, Caroline Mollevi, Arnaud Sallaberry, Maximilien Servajean

Abstract—While neural networks (NN) have been successfully applied to many NLP tasks, the way they function is often difficult to
interpret. In this article, we focus on binary text classification via NNs and propose a new tool, which includes a visualization of the
decision boundary and the distances of data elements to this boundary. This tool increases the interpretability of NN. Our approach
uses two innovative views: (1) an overview of the text representation space and (2) a local view allowing data exploration around the
decision boundary for various localities of this representation space. These views are integrated into a visual platform, EBBE-Text,
which also contains state-of-the-art visualizations of NN representation spaces and several kinds of information obtained from the
classification process. The various views are linked through numerous interactive functionalities that enable easy exploration of texts
and classification results via the various complementary views. A user study shows the effectiveness of the visual encoding and a case
study illustrates the benefits of using our tool for the analysis of the classifications obtained with several recent NNs and two datasets.

Index Terms—Visual Analytics, Deep learning, Neural networks, Interpretability, Representation space, Decision boundary, Binary text
classification.

✦

1 INTRODUCTION

IN the Natural Language Processing (NLP) field, re-
searchers aim to create computer programs to process and

analyze natural language data. There are various NLP tasks
(translation, named entity recognition, text classification,
next word prediction, etc.), and neural networks (NNs), i.e.
deep learning techniques, have become widespread because
of their efficiency in completing these tasks. In this article,
we focus on binary text classification.

In NLP, text classification is the most fundamental task.
It aims to assign tags or categories to texts according to
their contents. Contents could be abstracted by many dif-
ferent techniques, but the rise of representation learning of
words has allowed researchers to use various deep learning
techniques like recurrent NNs (RNNs) and transformers
to abstract text. Representation learning of words aims to
encode words in a high-dimensional space depending on
their meaning (e.g., words like ”car” and ”truck” would
be close to each other in the word representation space).
Usually, an NN takes word representations and uses them to
construct different levels of text representation before clas-
sifying them. These different representation levels are not
always meaningful to users, who still struggle to understand
model decisions. This lack of understanding is a barrier to
the interpretation of NN classification and does not encour-
age user trust. Therefore, some users do not use modern
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NLP models in high-stakes domains. The visualization of
the decision boundary can provide a path to greater trust in
NLP models for automatic classification of texts.

In this paper, we focus on binary classification. Distances
to the decision boundary between the two classes show how
certain or uncertain a model is of its prediction. Visualizing
data positioned around the decision boundary allows users
to see whether they would have classified the data elements
similarly, for example, from nearest to furthest from the
decision boundary. User trust can be encouraged by the
feeling that NLP models adopt human-like behavior.

In this context, the success of visual techniques to en-
hance trust in machine learning techniques illustrates the
value of this kind of approach [1]. In this paper, we propose
a new version of the system that we presented at the EGC
conference in France in 2021 [2]. We detail and evaluate the
new methodology, present new functionalities, illustrate the
application with new examples and offer a more in-depth
discussion. Our method constructs Explanations By Bound-
ary Exploration in the Text representation space (EBBE-Text)
for binary classification.1 The motivation behind EBBE-Text
is to provide NN users with meaningful explanations of
predictions by allowing a comparison of the predictions for
a text and for its close neighbors, and therefore a better
understanding of the rules learned by NNs. As NNs have
millions of parameters, it is impossible to visualize “rules”,
but the observation of regularities provides a user with
insights about these rules. We designed EBBE-Text to help
NN experts and NN beginners better interpret any type of
NN, as long as it embeds input data as vectors.

The main contribution of our approach, is a multi-scale
visual exploration of the text representation space with the

1. http://advanse.lirmm.fr/ebbe-text/
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classifier decision boundary. The first scale is an overview of
the entire data corpus divided into relevant localities show-
ing the data distribution around the decision boundary.
The second scale is a detailed view showing the localities
on demand. We define a locality as an area of the data
representation space in which data elements lie close to
each other. To produce these views, we propose a process
that creates data on the decision boundary and a proximity
graph including entry data and decision boundary data. For
the detailed view, we propose a specific visual encoding
and an interactive functionality to navigate through the
localities. This involves an algorithm for laying the local
proximity graphs. This view is combined with further in-
formation (such as the list of most relevant words, classical
visualizations of the representation space, attention scores of
words, and confusion matrices) to give more insights about
the data. Attention scores are the components of an NN that
manage and quantify the interdependence between input
and output elements and among input elements. These
visual features are connected through various interactive
functionalities enabling an exploration of NN classifications
from different, complementary perspectives.

This paper is organized as follows: we present related
work on visualization applied to NN interpretability in
Sec. 2, we characterize our domain problem in Sec. 3, and
we present how textual data is abstracted in Sec. 4. In Sec. 5,
we describe our visualization method, and we evaluate our
method in Sec. 6 with a visualization evaluation, a user
study, and three case studies. Sec. 7 discusses some design
choices and highlights the benefits of our approach with
respect to the closest related works. Finally, we conclude
and present our perspectives in Sec. 8.

2 RELATED WORK

Following the Hohman et al. survey of visual analytics in
deep learning [3], we identify five categories of information
that can be visualized: network architecture, learned model
parameters, individual computational units, aggregated in-
formation (on individual computational units or model met-
rics), and neurons in high-dimensional space. The visualiza-
tion of network architecture is used to provide transparency.
The other categories are mostly used to produce post-hoc
explanations. Our work lies in the two last categories.

In this context, many techniques use back-propagation
related methods [4], [5] to produce post-hoc explanations.
These techniques use heat maps to highlight the words (or
pixels for images) that influence predictions the most. They
focus on gradients [6], [7], [8], [9], gate units in RNNs [10]
or dimension removal from the representation space con-
structed by NNs [11]. The attention mechanisms [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22] present in
NN constructions can also explain predictions. Attention
mechanisms highlight words (or pixels for images) that are
useful to predictions with the same visualization mecha-
nisms as gradient-based methods (heat maps), or with bump
charts or tables of bump charts [17], [18], [19], [20], among
others [21], [22]. Techniques using heat maps or bump charts
belong to the second category of Lipton’s classification (see
Sec. 3.1) since they display indications as to the parts of the

input data that most contribute to the prediction. Our ap-
proach could be complemented by any of these techniques,
by presenting the paths from texts to the decision boundary.

Hohman et al. identify methods for exploring high-
dimensional spaces [16], [23], [24] that demonstrate one of
the ways visualization techniques are used in deep learn-
ing [3]. These methods belong to the fourth category of
Lipton’s classification (see Sec. 3.1). Our method completes
but does not replace classic dimension-reduction techniques
used for exploration and visualization (see Sec. 5.2.2). This
explains why we propose some of them [25], [26], [27] to
complement our way of representing the text representation
space, but it also explains why our boundary view method
uses blocks from the UMAP method [27].

The closest methods (applied to NNs) that can be com-
pared to ours are: Chae et al., which proposes various pieces
of information about multi-class classification in NLP [28];
Amershi et al. which proposes an axis with data plotted
according to the uncertainty of predictions [29]; Kahng et
al., which proposes a complete tool with misclassification
and a t-SNE projection [30]. However, none of these works
propose a decision boundary view or an exploration of the
data representation space through different localities. Our
boundary view method involves two of Lipton’s four ways
of producing post-hoc explanations (see Sec. 3.1): the explo-
ration of the data representation space and the explanation
of similar example predictions.

The vast majority of visualization techniques in deep
learning are aimed at interpretability. Some of them present
the representation space using dimension-reduction meth-
ods [11], sometimes at different representation levels [31].
Others present the decision boundary and distances to it
[32], [33], [34], [35]; however, they do not depict it as a line
and the distances are skewed.

Like EBBE-Text, some tools propose various views to
interpret the inner workings of an NN (or other classifier)
and its predictions. Seq2seq-vis [36] proposes the inspection
of inner workings of translation models with the help of
counterfactual scenarios. LSTMVis [37] is a visual analytic
tool for RNNs. It allows inspection of the hidden state
dynamics throughout the processing sequences. This kind
of tool helps users understand the rules learned by an RNN.
Visualization techniques are also used in machine learning
to help users improve a classifier. Seifert et al. [38] propose a
tool that helps users label precise data in a user-based active
learning strategy. Heimerl et al. [39] also include the visu-
alization of the decision boundary (here applied to SVM),
as part of active learning strategy in their learning methods.
Zhang et al. [40] do not interpret the inner workings of NNs,
but use prediction scores or input data to compare two
different models, with their respective decision boundary
and the distances to it. Ramamurthy et al. [41] compute
the complexity of the decision boundary for various models
to perform a model selection, while Ma et al. [42] propose
an SVM-generated decision boundary visualization tool to
study data close to the decision boundary.

The review by Vilone et al. [43] presents different ways
to produce local explanations of model decisions more
generally demonstrate how a model functions. Ribeiro et
al. [44] propose learning a simpler (and thus more trans-
parent) model locally around the prediction, while some
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others focus on the identification of the input dimensions
that are responsible for a prediction [13], [17], [45]. Finally,
the actions of users after having used an active learning
method involving post-hoc explanation tools could have a
positive [46] or negative [47] impact on model performance.
This is why using justifiable local explanations is prefer-
able [48], even if simply building user trust is already a
popular goal [49] of local explanations.

EBBE-Text provides an interpretation of text-
classification NNs through the visualization of, among
others, decision boundaries, high-dimensional spaces, and
contribution to predictions (e.g. attention).

3 DOMAIN PROBLEM CHARACTERIZATION

In this section, we define the main concepts in NN inter-
pretability, including explainability, transparency and post-
hoc explanation. Then, we analyze NN user needs with
regard to these concepts and propose a list of requirements
for a visual approach that meets these needs.

3.1 Definitions
There is no consensus on the definitions of transparency,
explainability, and interpretability. For example, Lipton de-
fines two concepts that together define interpretability:
transparency and post-hoc explanations [49]. Walt et al.
present transparency and interpretability as subcategories of
explainability [50], while Beaudouin et al. use interpretabil-
ity and explainability as synonyms [51]. Finally, the survey
by Chatzimparmpas et al. [52] uses the definitions of Gilpin
et al. [53], which present explainability as the possibility
for a model to summarize the reasons for a model’s be-
havior and interpretability as the science of comprehending
what a model did. In the following paragraphs, we define
explainability, which our work focuses on, before briefly
introducing the links between this and the other terms.

In deep learning, the decisions made by an NN are based
on the activation, or not, of millions of neurons. It is, there-
fore, impossible for humans to understand every nuance
of the decision. The explanation for a given prediction, or
post-hoc explanation, is produced using indicators that mar
or may not result from the functioning of a model. Post-
hoc explanations are also known as local explanations [51].
However, in this article, we use the term local explanation
for a slightly different concept (see the third category in the
classification below). The term post-hoc refers to the fact
that the explanations are generated after inference, without
retraining. If an explanation associated with a prediction
marginally facilitates the interpretation of a network, the
multiplication of explanations can give users insights into
how the model functions. We use Lipton’s [49] four-category
classification of post-hoc explanations: (1) verbal or writ-
ten explanations justifying the predictions; (2) visualization
techniques to explore the data representation space or dis-
play indications of which part of the input data contributes
to the prediction; (3) local explanations that can provide
access to simpler explanations concerning only a subset of
the data space [44]; (4) explanations of moderate complexity
that present the behavior for similar examples.

Visualization techniques allow the interpretation, expla-
nation and debugging of an NN [3]. Our work mainly

focuses on the last three classes of Lipton’s classification,
and more precisely on the visualization of NN decision
boundaries in the case of binary text classification. Explana-
tions are given in different localities, and we define a local
explanation as an explanation made in a specific locality. We
define these localities as zones of the data representation
space in which data elements lie close to each other. We
construct these localities to allow user interest to focus
on precise text structures determined by the meaning of
the text and/or the presence of certain words. This also
simplifies the exploration of the data representation space.
Explanations on a locality scale are important as they allow
fine comparison of similar inputs or data. Just like Ribeiro
et al. [44] propose a local model to explain predictions, we
propose a local comparison of data inside a locality.

Some classifier, such as those resulting from a decision
tree, are easily understandable. In these cases, the models
are said to be transparent. In the case of a deep NN (DNN),
predictions depend on the activation of millions of neurons
(parameters), and thus the model is not transparent. Since
interpretability depends on transparency and post-hoc ex-
planations [49], and DNNs are not transparent, post-hoc
explanations are the only way to increase interpretability.

3.2 Analysis of requirements

To produce post-hoc explanations of predictions, we have
identified several needs. Users explore a representation
space composed of different localities. Choosing a locality
allows them to inspect the text samples close to each other,
as well as the position thereof in relation to the decision
boundary. This helps the users understand the prediction
quality and how transformations in the data affect the
model’s predictions, i.e. provides them with explanations.
For instance, comparing a sample with a positive prediction
to a close-by sample predicted as negative would help the
user understand how the model made its predictions and
the associated certainty.

3.2.1 Need for explainability
Based on previously mentioned NN user needs, we have
identified six questions, the answers to which help interpret
the processes behind predictions: Q1. For a given text, is the
prediction correct, and what is the uncertainty associated
with it? Q2. For a given text in a given locality, are there
similar or slightly different texts in this locality, and if yes,
how are they classified? Q3. Are there differences in the
distribution of predictions between the corpus overall and
specific localities, and what localities should be inspected?
Q4. Which words characterize a locality and are texts con-
taining these words classified differently in this locality than
the rest of the corpus? Q5. Which words or co-occurrences
of words influence predictions the most? Q6. Is the network
working as expected, and are there any anomalies in the
labeled data?

Q1, Q2 and Q5 are directly related to the production
of post-hoc explanations; answering them allows users to
compare predictions and identify differences and/or simi-
larities between them. Q3, Q4 and Q5 reveal to what extent
a local explanation can be generalized to all the localities or
scenarios. Finally, Q6 is a conclusion about the operation of
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the neural network following post-hoc explanations and/or
observations about the predictions.

3.2.2 Requirements
Based on these questions, we have identified seven require-
ments for our tool:

• R1. Visualize the different localities in the repre-
sentation space and identify the effectiveness of the
classifier in each one (Q3 and Q6).

• R2. Visualize the decision boundary and distances to
it (Q1, Q2, Q3, Q5 and Q6).

• R3. Visualize the neighborhood of a chosen text,
paths to the decision boundary, and the associated
text contents (Q2, Q4 and Q5).

• R4. Compute prediction score metrics and confusion
matrices (Q3, Q5 and Q6).

• R5. Extract relevant words from localities and texts,
locate them in the decision boundary visualization,
and examine their influence on predictions (Q4, Q5
and Q6).

• R6. Locate a chosen text in representation spaces con-
structed by different dimension-reduction methods
and its place in the decision boundary visualization
(Q2).

• R7. Compute the prediction score of user input text
(Q2, Q5 and Q6).

4 DATA ABSTRACTION

In this section, we present the data abstraction process,
which involves the following steps: (1) NN encoding
(Sec. 4.1); (2) creation of boundary data, which consists
of projections of the real data on the decision boundary
(Sec. 4.2); (3) creation of the proximity graph containing
both real and projected data (Sec. 4.3); (4) splitting the
proximity graph into components by erasing the weakest
edges (Sec. 4.4); (5) first connection between real data and
projections in the proximity graph (Sec. 4.5); (6) splitting
large components to create locality graphs (Sec. 4.6); (7) final
connection between real data and projections (Sec. 4.7) and
(8) simplification of the decision boundary (Sec. 4.8). Steps
(5) and (6) constitute an optimization that iterates until a
successful output is provided (see Sec. 4.5-4.6). The data
abstraction steps mainly ensure that EBBE-Text is capable of
proposing different meaningful and interpretable localities
(R1) with their decision boundary as a straight line (R2). To
achieve this, localities need boundary data, entry data and
a reasonable size. Fig. 1 gives an overview of our approach.
We detail these steps in the following subsections.

4.1 Neural network encoding
EBBE-Text allows exploration of classifications and the vi-
sualization of the decision boundary for any NN (or other
classifier), as long as it embeds each text. Depending on the
NN, embedded words (or tokens) of texts are used one after
the other (e.g. RNN) or all together at once (e.g. transformers)
to produce the text embedding. The text embedding is the
high-dimensional representation vector used to predict a
class in the classification task of the NN. In our method, the
last layer of the NN is considered as the classifier, and thus

the other layers are considered as the encoder. The encoder
outputs are the vectors used as texts embeddings. These
vectors belong to the text representation space. In Sec 6.3,
we use different NNs: a transformer model, a self-attentive
RNN, and an auto-encoder RNN.

4.2 Creation of boundary data
After the text encoding, to address requirements R1 and R2,
we create data located on the decision boundary by using
the linear structure of the classifier. This data are essential
to representing the decision boundary as a straight line in
a two dimensional space, whereas in the high-dimensional
text representation space, it is represented by a hyperplane.
The orientation of this hyperplane is controlled by a normal
vector β (i.e. orthogonal to the hyperplane), which also
defines the weights of the NN classifier. Each text embed-
ding, i.e. a vector z representing a data element, can be
decomposed as follows: z = u+ v, where u is a vector that
belongs to the hyperplane (i.e. ⟨β,u⟩ = 0) and v is a vector
either co-linear to β or null. We compute the representation
vectors of the projected data (on the decision boundary) by
orthogonally projecting the set of data representation vec-
tors on the hyperplane: u = projβ(z) = z − ⟨β, z⟩β/ ∥β∥22.

4.3 Graph creation
We construct a proximity graph, i.e. a graph in which
vertices represent data elements (initial data z and projected
data u, see Sec. 4.2) and edges represent proximity between
these elements, to abstract the data representation space.
This graph is necessary to address requirements R1, R2, R3
and R6. We use the technique used in UMAP [27] (with
the number of neighbors as a parameter; by default we use
4 neighbors). The UMAP proximity graph creation method
ensures the connectivity of vertices by constructing a fuzzy
simplicial complex for each of them. Each complex has a
radius based on the distance to each vertex’s n-th nearest
neighbors. By this process, each vertex is connected to its
closest neighbor (with an edge weighted at one) and to
its other nearest neighbors with decreasing weighted edges
according to distance. Weights can be seen as probabilities of
neighborliness. Finally, the union of all complexes produces
a unique edge between two vertices via the weight union
of the two corresponding edges. As a result, we obtain the
proximity graph G = (V,E).

4.4 Splitting
The higher the neighbors parameter in UMAP, the higher
the probability of a unique connected component in the
proximity graph G, or at least the probability of large con-
nected components. The smallest components are easier to
interpret because smaller distances between data elements
meaning that they are more similar. To construct the smallest
connected components, in G, we erase edges belonging to a
connected component that contains a number of vertices or
edges greater than the thresholds (by default, we use 800
vertices and 3,200 edges), from the edge with the lowest
weight to the one with the highest weight. From G, e
derive a set of locality graphs, each locality graph being a
connected component of G. LGi = (Vi, Ei) denotes the i-th
locality graph in this set.
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Fig. 1. Data abstraction steps. In pink, the various steps described in Sec. 4. First, each text is encoded by the NN (see Sec. 4.1). Then, each
embedding resulting from the encoding is projected onto the decision boundary (see Sec. 4.2) of the NN, meaning that each input has its projection
on the decision boundary. A proximity graph is constructed using the UMAP method (see Sec. 4.3). This graph is then divided into many connected
components (see Sec. 4.4). In the optimization steps, each connected component without enough boundary vertices (vertices of projection of
initial data) is linked to entry data vertices, according to distances between entry data and the corresponding projections (see Sec. 4.5). Then,
large connected components are divided if necessary (see Sec. 4.6). These two optimization steps reiterate as long as there are large connected
components or connected components without enough boundary vertices. Finally, for each connected component, vertices are linked to their
projection if they belong to the same connected component (see Sec. 4.7) and useless boundary vertices are removed from the connected
component (see Sec. 4.8). Each connected component thus represents a locality. Localities, distances to the decision boundary, and predictions
are used to produce the visualizations.

4.5 Boundary connection
The technique described in the previous sections does not
ensure that each initial data vertex is connected to its projec-
tion. As a result, there are some small locality graphs LGi

with few initial data vertices and none or few boundary
vertices (vertices of projection of initial data), which leads
to poor potential for analysis, since an initial data vertex
needs boundary vertices to be placed around the decision
boundary (see Sec. 5.2.1). To overcome this issue, we merge
locality graphs that do not contain a given number of
boundary vertices with other locality graphs by adding
edges between them, and more precisely by adding edges
between their initial data vertices and their vertices closest
to the boundary in G, i.e. their projections. To do this, for
each locality graph LGi = (Vi, Ei), we consider the sub-
graph LGi[Ri], where Ri is the set of initial data vertices of
Vi, and a threshold th(|Ri|) dependent on the size of Ri. The
iteration process starts with the locality graphs that contains
less initial data than others. If the number of boundary
data vertices in the locality graph (noted |Bi|, where Bi is
the set of boundary data vertices in LGi) is smaller than
the threshold th(|Ri|), we add an edge (weighted at one)
between the initial data vertex v of Ri that is the closest to
its projection p(v) ∈ G\LGi and its projection p(v).

Connections merge some locality graphs together, and
thus for each connection, we redefine the set LGi. Whenever
a connection is created, the iteration process restarts from
the beginning to ensure that the smallest locality graphs are
always processed before bigger ones. The threshold uses a
binary logarithm function in order to ensure a minimum
number of boundary data vertices in each locality graph,
depending on the number of initial data vertices. The loga-
rithm function also ensures that a small number of edges is
created in order to modify the proximity graph as little as
possible.

4.6 Splitting of large components
The boundary connection produces some very large com-
ponents that contain many vertices, which limits the in-
terpretability of the locality. For instance, the top words of
this kind of large component do not hold much information
and hide some important words that could be revealed in

smaller components. To deal with this phenomenon, we
split the biggest locality graphs.

The decision to split the large components is motivated
by the observation that sometimes, two different parts of a
locality graph are linked by few edges. These two parts of
a locality graph can relate to texts that are very different in
terms of structure and/or vocabulary while being linked by
just a few pairs of texts showing a certain degree of similar-
ity. These pairs of similar texts could either have the same
or similar words, or a very close structure, but do not justify
the grouping of the two parts of the component. We remove
these meaningless links to construct meaningful localities in
the representation space, and therefore a meaningful top-
word list. To perform this split, we set maximum thresholds
for the number of vertices and the number of edges (by
default, we use 800 vertices and 3,200 edges). Then, we try to
split the components that exceed one of the thresholds. The
setting of thresholds depends on the data and how close
the data elements are to each other. The splitting tries to
remove the edges with the highest betweenness centrality
value [54] that have a weight different than one in order to
guarantee the vertex connectivity provided by the UMAP
method. The betweenness centrality value is recomputed at
each edge removal.

Some of the newly created localities may exceed the
threshold th(|Ri|) defined by the binary logarithm function
in Sec. 4.5 which ensures a minimum number of boundary
data vertices in each locality graph. If this occurs, the
boundary connection is carried out once again, followed,
as always, by the splitting of large components. Together,
these two steps constitute the optimization. The optimiza-
tion ends when no thresholds are exceeded (number of
vertices or edges per locality and minimum number of
boundary data elements for each locality). At the end of the
optimization, each locality graph corresponds to a locality
in the EBBE-Text overview (see Fig. 2).

4.7 Final boundary connection
For the same reasons as for the first boundary connection,
once the optimization steps are completed, we connect each
initial data vertex to its projection, if its projection belongs to
the same locality graph. This step is similar to the boundary
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connection step (see Sec. 4.5) except that it considers the
boundary vertices of Bi instead of G\LGi and distances to
the decision boundary are not taken into account. This step
facilitates the visualization of the data around the decision
boundary since there is more separation between the data
elements.

4.8 Boundary simplification
As mentioned before, the boundary connection steps do not
ensure that all initial data vertices are connected to their
projections on the boundary. As a result, many boundary
vertices are not connected to the initial data vertices and
thus are not useful for the analysis. To remove them, we first
select the neighbors of the initial data vertices that are on
the boundary, and the vertices/edges lying on the shortest
paths between them. Then, we add to the selection all the
edges linking vertices already belonging to the selection.
Finally, we remove all the vertices and the edges of the
boundary that are not selected.

5 VISUAL ENCODING

We propose two main views in EBBE-Text: the overview
and the locality view. The overview, presented in Fig. 2,
addresses three requirements (R1, R2, R4). The locality view,
presented in Fig. 3, addresses all of the requirements except
the first one (R2-R7). In these views, we encode data with
three colors: orange, green and gray. We use a ColorBrewer
scheme [55] for qualitative data to choose our green and
orange colors. These two colors represent the ground truth
classes of the data and the gray represents the projected data
on the decision boundary. The left and the right positions
around the boundary represent the predicted classes.

5.1 Overview
The overview (see Fig. 2) allows the comparison of
the Matthews correlation coefficient (MCC) [56] between
ground truth classes and predicted classes for the whole-
corpus and for the various localities of the text representa-
tion space. The whole-corpus MCC and confusion matrix
are shown in Fig. 2 in the left pane.

Locality graphs, derived from the proximity graph (see
Sec. 4.3), are represented by streamgraphs on the right pane
in Fig. 2 and show the distribution of the associated subset
of data around the decision boundary. The x-axis represents
the distance d to the boundary returned by the classifier of
the NN. The y-axis represents the number of corresponding
data elements at this distance from the decision boundary.
Streamgraphs were chosen instead of stack charts because
the distance is a continuous measurement. For example, in
the top-left streamgraph in Fig. 2, the locality has no orange
data misclassified; it is all placed to the left side of the
decision boundary (gray line). There is, however, green data
on both sides of the decision boundary, indicating that much
green data is misclassified.

The streamgraphs are organized into a matrix with seven
columns and enough lines to represent all the localities.
Localities are assigned to columns depending on their class
distribution: the localities with the highest proportion of a
class are in the left columns, the localities with the highest

Fig. 2. Overview of the text representation space. In the right pane,
with a blue outline, a streamgraph representing the distribution of data
around the decision boundary for a locality. The position of the gray
line in each streamgraph shows the position of the decision boundary.
The streamgraphs are organized into a matrix and ordered according to
several measurements (locality size, number of misclassifications etc.).
In the left pane, with a pink outline, the confusion matrix for predictions,
with a green outline, the different types of sorting that are available.

proportion of the other class are in the right columns. A
column contains one-seventh of the localities. The localities
are ordered inside columns from the largest to the smallest.

We also propose four other criteria for ordering lo-
calities in both rows and columns of the matrix: the
MCC, the number of misclassifications, the mono-classified
score (which computes whether data is equally distributed
around the decision boundary or not), and the Shapiro-
Wilk test value [57]. The Shapiro-Wilk test value computes
whether or not the distribution of the distances to the
decision boundary follows a normal distribution. For ex-
ample, this is helpful in the case of unlabeled data. Also,
a normal distribution could indicate that the network is not
efficient into splitting data around the decision boundary for
a precise locality or shows ambiguity about inputted data.

5.2 Locality view
When selecting a streamgraph on the overview, the locality
view can be launched to display the corresponding locality
in detail (see Fig. 3). The locality view presents the decision
boundary sub-view in its left pane. Sec. 5.2.1 describes this
view in detail. The central pane of the locality view, a tree-
structured list of texts, shows paths from a selected data
element to boundary data elements, while the right pane
shows the top 10 word list, which contains the most rele-
vant words, representation spaces constructed with differ-
ent dimension-reduction methods, an interactive confusion
matrix with the locality MCC score, and a text input form
allowing users to classify their own text. All these features
are presented in Sec. 5.2.2.

5.2.1 Decision boundary sub-view
To address requirements R2, R3, R5 and R7, we propose the
decision boundary sub-view. First, we extract the boundary
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Fig. 3. Exploration of a locality with EBBE-Text. From left to right and top to bottom: boundary sub-view, path text list, top 10 word list (dimension-
reduction representations can be shown instead), confusion matrix for the locality, input text form, and classify command. Green paths show how
a modification in a text can lead to a great change in prediction. The yellow line shows where the new text would be positioned in the boundary
sub-view. The red box shows how the attention score for a prediction is displayed upon mouseover.

data subgraph from the locality graph. Then, we arrange
each connected component of this subgraph linearly before
stacking the resulting elements to represent the decision
boundary for the entire locality. The decision boundary is
thus drawn vertically in the center of the view and the
other data elements are drawn on the left or on the right
depending on the predicted class. The distance between a
data element and the boundary along the x-axis depicts
the certainty of the prediction (the output probability of the
NN). The further a data element is from the boundary, the
lower its prediction uncertainty. Data can be selected and
associated texts are shown in the central pane. Moreover,
paths from a selected data element to the decision boundary
are shown in the boundary sub-view. Links are colored in
three ways. Black links represent direct neighbors of the
selected data element, blue links represent links belonging
to paths to the decision boundary and pink links are similar
to blue, except that they cross the decision boundary. This
means that data elements belonging to the linked pair are
predicted differently from each other.

We choose to depict the decision boundary as a line.
Distances of data elements to a straight line are easily
interpretable and comparable. To draw a line for the locality
decision boundary, we consider the boundary data sub-
graph LGi[Bi] from the locality graph LGi, where Bi is the
set of boundary data vertices. We first position the vertices
of each connected component of LGi[Bi] independently.
Then, we order the connected components along the y-axis.
Finally, we add the other vertices of LGi around the created
boundary (see Sec. 5.2.1).

Linear arrangement of projected data of a connected
component: the vertices of each connected component of
LGi[Bi] are positioned in a discrete one dimensional space.

Finding an order that minimizes the distances between
linked vertices is known as the minimum linear arrange-
ment problem, which is NP-complete. We use the TSSA-Φ
algorithm [58] to approximate the optimal solution for each
connected component.

Let Ci,j = (Vi,j , Ei,j) be the j-th connected component
of LGi[Bi] (see colored zones in Fig. 4a). For each Ci,j , we
compute a frontal increase minimization [59] to produce the
initial linear arrangement ϕi,j . Then, the TSSA-Φ algorithm
iterates through the data as long as the minimization of the
distances shows significant improvement. At each step, the
algorithm selects a random vertex u ∈ Vi,j from the graph
Ci,j and tries to swap it with others by two procedures,
executed in 10% and 90% of iterations, respectively:

• try all possible combinations u, v ∈ Vi,j s.t. u ̸= v and
choose the version that improves the cost function
the most;

• try all possible combinations u, v ∈ Vi,j s.t. v ∈ M(u)
and u ̸= v and choose the version that improves the
cost function the most.

In the second procedure, M(u) = {v : med(u) − 2 ≤
ϕi,j(v) ≤ med(u) + 2}, where ϕi,j(v) is the position of v in
ϕi,j and med(u) is the median position of adjacent vertices
of u (see Fig. 4b).

Stacking of linear arrangements: when the linear ar-
rangement ϕi,j has been made for each Ci,j of LGi, we
order these components (see Fig. 4c, 4d). Let sides(ϕ) = {v :
v = ϕ−1(1) ∨ v = ϕ−1(|V |), v ∈ V } be the set containing
the two extremities of a linear arrangement ϕ of a set of
vertices V . Let u ∈ sides(ϕi,j) and w ∈ sides(ϕi,k) be the
sides of two linear arrangements ϕi,j and ϕi,k. We define a
proximity measurement between u and w as follows:
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Fig. 4. Linear arrangement ϕi of a connected component LGi (locality). (a) Identification of projected-data connected components (here, four) in
a locality graph LGi. (b) TSSA-Φ linear arrangements ϕi,j for each connected component of boundary data Ci,j . (c) Matrix of proximity between
extremities of linear arrangements ϕi,j . L1, L2, L3 respectively represent the first, second and third choice of placement or stack. At each step, the
stacking to be carried out is only searched between unplaced linear arrangement extremities and actual extremities of the final linear arrangement.
New ineligible pairs of extremities are represented with south-west north-east strides for L1 and with south-east north-west strides for L2 (e.g. there
are only four different placement possibilities in the last step). (d) Final linear arrangement ϕi produced by stacking with directions and order of
placement. This final linear arrangement is necessary to depict the decision boundary as a straight line in a two dimensional space.

px(u,w) =
∑

v1∈Vi,k

1

SPi(v1, u)2
+

∑
v2∈Vi,j

1

SPi(v2, w)2
(1)

where SPi(p, q) is the shortest path length between p and
q with p, q ∈ Bi.

This proximity measurement tends to give a higher score
to components that are close to each other because the value
added to the score for each link is divided by the square
of the link’s length. It also tends to give a higher proximity
score between large components because the sums of links’
weights are not weighted. Finally, it tends to give a higher
proximity score between components that have vertices
close to the other component’s extremities. An example of
the proximity-score results are shown in Fig. 4c.

Based on this proximity measurement, we can now
compute the order ϕi of the vertices of the connected com-
ponents of LGi[Bi]. Let Pϕi

= {u : ∃ϕi(u), u ∈ Bi} be
the set of positioned vertices. Initially, Pϕi

= ∅. We start by
selecting the biggest connected component Ci,j ∈ LGi[Bi]
and define ϕi(v) = ϕi,j(v),∀v ∈ Vi,j . Then, we iteratively
select u and v such that:

• u ∈ sides(ϕi),
• v ∈ sides(ϕi,k), v /∈ Pϕi

,
• px(u, v) is the highest value for v among all the

candidates.

If u = ϕ−1
i (1), we invert the order of the linear arrangement

ϕi, so u = ϕ−1
i (|Pϕi|). Then, ∀w ∈ Vi,k, we set the position

of w in ϕi as follows:

ϕi(w) =

{
ϕi,k(w) + |Pϕi| if v = ϕ−1

i,k (1)

1− ϕi,k(w) + |Vi,k|+ |Pϕi| if v = ϕ−1
i,k (|Vi,k|)

(2)
The process ends when |Pϕi

| = |Bi|.
Final placement of data and projected data: to position

the vertices of Vi in the final two-dimensional boundary
sub-view βi of a locality LGi, we first select all the vertices

in Bi and set their x-position to zero and their y-position
to their order number in ϕi. Once all the boundary data is
positioned, we sort the vertices of Vi\Bi in ascending by
their distance dv to the decision boundary returned by the
NN. Then, we iterate through the ordered data and for each
u ∈ Vi\Bi, we set its x position to du and its y position
to the median position of its already positioned neighbors
(including the projected-data vertices of Bi). If a vertex u
has no neighbors that have already been positioned, we
skip it, e.g. a vertex without links to a vertex of Bi but with
links to other neighbors further from the decision boundary.
When the first iteration is completed, not all vertices are
positioned. We repeat the procedure using these vertices
until they are all positioned. This process of placement is
described in the algorithm in the supplemental material and
an example is given in Fig. 5.
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Fig. 5. Placement of data around the decision boundary. (a) Non-
projected data elements are labeled from 1 to 24 in order of their
proximity to the decision boundary. Each label has a minus (-) or a
plus (+): the classifier predicts either one class the other. (b) Placement
βi of the locality graph LGi. Data on the left side of the boundary
has one classification and data on the right side the other (e.g. three
misclassifications here). Data elements are positioned from closest to
farthest (labeled from 1 to 24).
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5.2.2 Other sub-views

In the next section, we present other sub-views of the
locality view. These sub-views provide insights into the
NN’s classification process inside the chosen locality. The
interactions between sub-views are described in Fig. 6.

Fig. 6. Interactions between the visualization components. From left
to right and top to bottom: boundary sub-view, path text list, top 10
word list, text representation spaces resulting from dimension reduction,
confusion matrix (with no interaction), input text form, classify command.
Blue links: a data element selected in this component is selected in
other views too. Hovering over data in the view shows neighborhood
links in other views. Neighborhood links are always shown in the paths
texts list due to its tree structure. Pink links: hovering over a word in the
top 10 word list highlights text descriptors and circles data containing the
word in other views. Green links: hovering over a text descriptor shows
the position of the associated data element in other components. Gray
link: clicking on a text in the path text list fills the input text form of the
classifier component. Yellow link: clicking on the button computes the
prediction for the user input text and shows its position in the boundary
sub-view. Red links: hovering over a word in a text shows the position of
the associated data elements containing this word in other components.

List of texts and descriptors: to address requirements
R3, R4, R5 and R6, when a data element is selected in
the decision boundary sub-view, its text, the texts of its
neighbors and the texts lying on paths from it to the decision
boundary are displayed on a tree structure. We choose
to use a tree structure list as it allows users to directly
identify which data elements are closer to the decision
boundary than others and visualize the path to the decision
boundary. This addresses requirement R3. For each text, a
descriptor (described in Fig. 7) gives information about the
associated prediction produced by the NN. Double-clicking
the descriptor selects the associated data element. Hovering
the mouse over the descriptor circles the associated data
element in the decision boundary sub-view and in the
dimension-reduction space views (see below) with a faded
circle, the color of which depend on the data element class.
Finally, clicking on a descriptor hides or shows paths from
the associated data element to the decision boundary in the
tree-structure list, allowing easier exploration of paths.

If the NN used has attention vector(s), the attention
scores for each word in a text can be visualized. The scores
are represented by a heat map in two modes, depending
on the NN: (1) If the attention score is a square matrix
that gives the attention scores for words with respect to
others, then attention scores are shown with respect to the
hovered-over word; (2) If not, hovering over the text shows
the attention score for each word. In addition, texts contain-
ing the hovered-over word are highlighted in the decision
boundary sub-view and in the dimension-reduction space
sub-views. Since we wanted to easily visualize the attention
scores for various data, we chose to use heat maps instead of
bump charts or other representation to facilitate the viewing

of the various data elements and compare attention scores
between them. This addresses requirement R5.

17

-4 1

|

-4 3

|

.2⨯▼

|

-2 ⨯▼

|

.1

Fig. 7. Descriptors of data elements placed in the text list. The second
descriptor is currently selected here. The descriptors to its left and to
its right respectively relate to its neighbors farther from the decision
boundary and closer to the decision boundary. Blue boxes show ground
truth class of the data element by coloring it. The position of the dot
shows users the classification (left for one class and right for the other).
The pink box shows users the number of paths from the selected data
element to the decision boundary. Yellow boxes show to what extent
the NN was uncertain of a prediction. A value preceded by a minus
symbol means an order of 10−value, while a dot means the value
itself (e.g. ”-4” means an uncertainty of order 10−4, ”.4” means an
uncertainty close to .4). The red box shows the number of neighbors
of the selected data element farther from the decision boundary than
the selected data element (× means none). The green boxes show the
number of neighbors closer to the decision boundary (× means none).

Top 10 word list: to address requirement R5, we create
a list containing the 10 most relevant words (top 10 words)
for a locality [60]. We chose to ignore English stop words
like ”a”, ”to” and ”the” and we define the relevance of a
word w to the locality l given a weight parameter λ (where
0 ≤ λ ≤ 1) as follows:

r(w, l|λ) = λ log(pw,l) + (1− λ) log(
pw,l

pw
) (3)

λ determines the weight given to the frequency of the
word w in the locality l relative to its lift (measuring both
on the log scale). The lift of a word is defined as the ratio
of its frequency within a locality to its marginal frequency
across the corpus. Setting λ = 1 results in the familiar rank-
ing of words in decreasing order of their locality-specific
frequency, and setting λ = 0 ranks words solely by their
lift. The whole-corpus marginal frequency of the word w
is noted pw, and pw,l denotes the marginal frequency of
the word w in the locality l. The list of stop words can be
modified by users. It allows user to ignore words that are
not important depending on their corpus.

To further address requirement R5, we propose three
different modes of prediction and ground truth comparison
using locality data and/or whole-corpus data (see Fig. 8).
We chose to use distribution bars stacked on each other since
they allow a comparison of words’ influence on predictions
according to the chosen mode. The switch from one mode
to another is carried out by clicking on the top-left button
of the top 10 word table. The first mode features two
distribution bars: the top one shows the class distribution
of texts containing the associated word in the whole-corpus,
while the bottom one shows the class distribution of texts
containing the associated word in the locality. Similarly, the
second mode relates to prediction distributions instead of
class distributions. Finally, in the third mode, the top bar
represents the prediction distribution of locality data and
the bottom bar represents the class distribution of locality
data for the texts containing the associated word.

The number of occurrences for each word is given in the
locality mode. Word p-values are shown in the predictions
and classes modes. These p-values, obtained by χ2 tests [61],
represent the probability that the observed frequencies of
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mode Cl

mode Pr

mode Lc

Fig. 8. Distributions bars. In pink, we can see the class distributions
of texts containing the associated word. Bars are on the same scale
to allow comparisons. In gray, we can see the prediction distributions.
Bars can be re-scaled to be compared, as shown in the classes mode. In
blue, we can see the locality mode, which is used to see to what extent
the classifier predicts a class more often that it should, by comparing
frequencies in the class bar and the prediction bar (shown here in red).

classes or predictions follow the same distribution rule for
the locality and for the whole-corpus. In other words, they
give the probability that the NN adopts the same behavior
within the locality as in the whole-corpus. Therefore, a low
p-value means that the probability that the NN has a specific
behavior with a word and texts containing this word in
this locality is high. This allows users to suppose synergies
between words and meanings of words.

Dimension-reduction spaces: the dimension-reduction
views address requirement R6 by allowing users to compare
distances between data elements in alternative spaces to the
one constructed to visualize the decision boundary. We use
UMAP [27], t-SNE [26] and PCA [25] reduction methods
since they are the most popular ones. Dimension-reduction
methods are essential to really understanding the closeness
of neighbors and observing to what extent neighbors can
be classified differently. When a data element is selected
in the decision boundary sub-view, links between this data
element and its direct neighbors are also displayed in the
dimension-reduction space views. Data is also selectable
in the dimension-reduction views. Hovering over a text
descriptor circles the data element with a faded circle, the
color of which depends on the class of the data element
(see Fig. 6). Finally, Voronoı̈ diagrams [62] based on classi-
fications are proposed for each of these reduction methods.
They allow users to identify whether a group of close neigh-
bors are classified differently, directly in the dimension-
reduction spaces [32]. The use of these diagrams confirms
the need for a boundary visualization technique that shows
meaningful distances from the decision boundary.

Confusion matrices and MCC: to address requirement
R4, our method proposes two confusion matrices, one for
the whole-corpus and the other for the selected locality. The
locality’s MCC for predictions and ground truth classes is
also displayed. Confusion matrices provide marginal sums
and the distribution of classifications and ground truth
classes for each modality. This information is available either
by default or on mouse-over.

Input text classifier: our method proposes the prediction
of a text inputted by the user to address requirement R7.
This text is classified by the NN and a yellow line depicts
the position of this text’s prediction in the decision bound-
ary sub-view. We chose a line instead of a dot because it
facilitates the comparison between the inputted data and
any other data in the locality. Clicking on a text fills the
input text form with the clicked text (see Fig. 6). A user can
edit the text present in the input text form.

6.43
5.50
6.00
6.00
6.00
5.43
5.57
6.17
6.00
6.00
5.86
6.14
6.43
4.86
5.29
5.14
5.14
6.14
5.86
5.00
4.67

0.24
2.58
0.29
0.57
0.86
2.24
2.53
0.14
0.57
0.86
1.84
0.41
0.53
3.27
1.63
0.41
1.27
0.41
0.12
1.43
1.89

The visualization facilitates answering
questions about the data

The visualization provides a new or
better understanding of the data

The visualization provides opportunities
for serendipitous discoveries
The visualization affords rapid parallel
comprehension for efficient browsing

The visualization provides mechanisms for
quickly seeking specific information

The visualization provides a big picture
perspective of the data
The visualization provides an understanding
of the data beyond individual data cases
The visualization helps avoid making
incorrect inferences
The visualization facilitates broadly learning
The visualization helps understand data qual.

Question
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

µ σ

Confidence

Essence

Time

Insight

µ = 5.89

µ = 6.09

µ = 5.11

µ = 5.44

TABLE 1
Result obtained from the ICE-T survey on EBBE-Text. Results are on a

scale from one to seven.

6 EVALUATION

Our evaluation is split into three parts. First, we conducted
an evaluation of the visualization in which participants were
seen as experts. Then, we carried out a user study that
showed that EBBE-Text visual encodings are accessible to
beginners. Finally, we used a case study to highlight how
our method provides new knowledge and insights about
the classification.

6.1 Visualization evaluation

To evaluate EBBE-Text, we carried out an evaluation fol-
lowing the ICE-T methodology [63]. Seven participants (re-
searchers in data science seen as experts) with knowledge
about classification tasks, deep learning, and visualizations
filled out the ICE-T survey.2 Four of them were visualization
specialists and the other were specialists in NN applications
in NLP. The results are presented in Tab. 1. The overall
results of the evaluation are satisfactory. As expected, the
”Insight” evaluation is very positive. The tree structure
list of texts and the visualization of data positions in the
representation space and around the decision boundary
allow users to explore and discover knowledge about data.
The ”Time” evaluation shows the efficiency of EBBE-Text for
exploring data or even finding particular data elements (e.g.
misclassifications are easily discovered by using the sorting
options in the overview). The ”Essence” evaluation is the
least satisfactory; however, it is difficult to get a real sense of
the ”big picture” for data when the goal is to produce local
explanations. EBBE-text does propose a confusion matrix
and MCC, which provide information on the overall quality
of the classifier. Finally, the ”Confidence” component of the
survey is also satisfactory and is key to increasing trust in
NNs. In the case of a misleading design and low confidence
in the visualization tool, it would have been difficult, if not
impossible, to increase users trust in NNs.

2. http://visvalue.org/
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6.2 User study

The user study used the AmazonReview dataset [64], which
contains reviews of products sold by Amazon labeled from
1 to 5 depending on their rating. We kept only the best and
worst reviews (1 and 5) containing no more than 64 words.
The training dataset contained 4 million entries and this
user study used the first 50,000 entries. In the following,
orange nodes represent negative reviews and green nodes
represent positive reviews. Similarly, being on the left side
of the decision boundary means that the classifier gives a
negative prediction for the text, while being on the right
means that the classifier prediction output is positive.

We evaluated our visual encodings with Multiple Choice
Question(s) (MCQs), with four possible responses for each
question (see supplemental material) and 23 questions. Each
question relates to one or more requirements. Twenty-one
participants completed our user study. They were MSc
students in mathematics and computer science applied to
human and social sciences. These students were seen as
beginner users because they do not manipulate NLP NNs
on a day-to-day basis but have a clear sense of what a
classification task is and how an NN works.

The study results, presented in Tab. 2, show the number
of questions per requirement. The majority of participant
answers were correct for all requirement-related encodings.

R7R6R5R4R3R2R1
1252693

0.710.640.770.760.700.850.90
Number of questions

Frequency of correct answers

TABLE 2
Result obtained from the beginner user study.

We evaluated the effectiveness of the visual encoding
with a χ2 test [61]. The confidence level according to our test
results was 0.05 and all of the answers’ distributions were
significantly different than the uniform distribution. The
results validated our encoding with regard to the require-
ments; we observed a significant difference for each of them.
However, one of the questions, concerning the number of
direct neighbors closer to the decision boundary than the
one selected (R3), showed that one of the encodings was
not effective. Indeed, it appears that when the selected data
element had a neighbor farther from the decision boundary,
users confused the selected data element with its farther
neighbor in the decision boundary sub-view. We fixed this
in the version presented here by circling the selected data
element with a black circle, and chose to do the same for the
dimension-reduction space view.

In the questions for R6 and R7, users had to evaluate
distances between data. The closeness of data elements
could be subject to subjective appreciations: this explains
why the frequency of correct answers was lower than for the
other requirements. However, in the case of wrong answers,
they were less wrong than for others questions.

6.3 Case studies

In order to demonstrate the genericity of EBBE-Text, we
present three cases studies based on three different NNs.
The first classifies and reconstructs input and the others

two only classify the data. The first case study shows
how we can inspect classifications and how we can extract
knowledge about the quality of the NN. The second case
study illustrates how we can inspect wrong predictions and
how we can find what is relevant in the text for predictions.
It also shows how to test an inputted text to confirm or
infirm our hypothesis about the inner workings of an NN.
The third case study illustrates how to interpret distances
to the decision boundary and uncertainty. It also shows that
knowledge about the quality of the training and the NN can
be extracted by inspecting these distances, which depend on
the predictions.

6.3.1 Multi-task RNN
In the first case study, the dataset was the same as that
presented in Sec. 6.2. We inspected the prediction on a
dataset including training and test data (the first 50,000
entries). The NN trained was an auto-encoder RNN [2] used
for text classification and input reconstruction.

We focused on a locality and observed that its MCC
was higher than that for the whole-corpus (0.75 vs. 0.71),
meaning that the classifier was better in this locality than
in the whole-corpus (Q3). Then, by exploring the locality,
we observed the capacity of the NN to detect nuances
as follows: we discovered a group of sentences with a
very close meaning, since they were close to each other
in the representation space created using UMAP and in
the boundary sub-view (Q2), and we compared three of
these sentences (see Fig. 9). These sentences related to
the condition of a book that arrived quickly. All of these
sentences were classified correctly. However, the nuances
in each sentence led to classification disparities visible in
the boundary sub-view. Prediction uncertainties were small
(of the order 10−2 or less) (Q1). When we looked at the
contents of the sentences, arriving ”in a short amount of
time” seemed better than arriving in ”a few days”. Similarly,
being in ”great condition” seemed better than being in the
”condition that was listed”. These observations suggest that
the nuances detected by the NN seem correct and led it
to classifying these sentences with certainty and coherence
according to the presence of words and their meaning, the
co-occurrence of words, etc. (Q5, Q6).

6.3.2 Single task RNN with attention
In the second case study, the dataset was the same as that
used in the first case study [64], with the first 100,000 entries,
and the text-classification NN3 trained was a structured self-
attentive RNN [65] (SSA).

In Fig. 3, we observe that the selected data is wrongly
classified (Q1): the NN classified it as ”negative” whereas
its label is ”positive”. When we look at the text, we can
see that the review actually seems to be quite ”negative”.
We observe this phenomenon in several localities of this
dataset: there are a lot of misclassified texts that are actually
falsely labeled data (Q6). In this precise locality, half of the
misclassified texts were falsely labeled or difficult to label,
even for humans (Q6). In Fig. 3, the closest text belonging
to paths to the decision boundary seems positive, except
for the last part, in which the customer states that they did

3. https://github.com/kaushalshetty/Structured-Self-Attention
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Fig. 9. Differences in classification depending on nuances. In blue: The
book came in a short amount of time, and was in great condition. In pink:
The book came in after just a few days and it was in great condition. In
green: The book came in the condition that was listed and I received the
book within a few days.

not receive the product (see the third sentence in the list
of texts). During our exploration, we observed that the NN
was really effective into predicting text as negative when
the customer did not receive the product (Q5). The attention
score displayed in Fig. 3 (see red box) also shows that the
network focused on the part of the text dealing with the non-
reception of the book. To verify whether this part actually
determines the classification, we used the input text classi-
fier form (see Sec. 5.2.2) and re-classified the sentence after
removing the non-reception part. The yellow line shows that
the sentence is now predicted as ”positive” (Q5).

We now focus on the most relevant words of the locality.
One of them is ”disappointed”. Unsurprisingly, sentences
containing this word were classified negatively (Q4). How-
ever, we found another locality where this word was treated
very differently (see Fig. 10), meaning that the presence of a
word is not sufficient, and the NN has a more complex way
of treating texts (Q6). As another example, we found two
sentences (see Fig. 11) that shared two words with a high
attention score: ”nowhere” (two sentences in the locality)
and ”boring” (three sentences in the locality). In each of
the two sentences in question, one of these words had the
highest attention score. This shows that the NN considers
the same words differently depending on the overall context
of a text (Q4-6).

6.3.3 Single-task GPT-2 for text classification
In the dataset [66], [67] proposed in the third case study, the
data contained new titles labeled as ”fake news” (orange
should be on the left side of the decision boundary) or ”real
news” (green should be on the right side of the decision
boundary). We inspected the predictions only for the test
set only (8,972 entries). The NN trained was a variant of
GPT-2 [68] used for text classification.4

We first inspected the confusion matrix (see Fig. 12a): it
showed us that 2 fake news were wrongly predicted and

4. https://huggingface.co/transformers/model doc/gpt2.html

Fig. 10. Identification of a word that is treated differently in a locality and
in the corpus overall. In blue, the modification of the visualization when
we click on the word.

Fig. 11. Attention score for two texts.

that 702 real news were wrongly predicted. After ordering
the streamgraph matrix rows of the overview to have lo-
calities with the greatest number of misclassification (see
Fig. 12b) and data equally distributed around the decision
boundary (see Fig. 12c), we inspected locality N°200 because
it was at the top of the localities on both axes (Q3). Since
only green data appears in this locality, all entries should
be labeled as ”real”. However, we observed that almost half
of the data was wrongly predicted (Q3). We then chose to
inspect the dimension-reduction techniques (see Fig. 12d).
In this case, t-SNE then the easiest solution for finding a
data element that was close to many neighbors, including
falsely and correctly labeled data (Q2). We chose this data
element and inspected the associated texts (see Fig. 12f). It
is difficult here to understand why the network classified
these texts as ”fake news”, but we can see that the high
uncertainty associated with the predictions (Q1). Most of
the data (e.g. the element on the left in Fig. 12e) had an
uncertainty close to 0.1, which is high. When we compare
the overviews in Fig. 12b and in Fig. 12c, the distances to
the decision boundary for ”fake news” predicted as ”fake
news” and ”real news” predicted as ”fake news” range
from at most (−)2 for this locality to at least (−)12 for
localities 640, 648 and 650 (Q3). To confirm this observation
for the whole dataset, we explored localities in the overview
and observed that the localities containing misclassification
classified the examples at a distance of at most (−)4 from
the decision boundary. However, localities containing no
misclassifications rarely went under a distance of (−)6. This
means that the decision boundary should be moved closer
to the ”fake news” side during the training. The test set may
not be representative of the real distribution of the dataset,
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Views and sub-views used in the third case study. (a) Confusion matrix and ordering chosen to explore localities. We observed that the
NN was better at predicting ”fake news” correctly. (b) An overview showing localities with the greatest number of misclassifications. (c) An overview
showing localities having the data most equally distributed around the decision boundary. (d) t-SNE projection in 2D space of the texts belonging
to locality N°200. (e) Visualization of the decision boundary of locality N°200. (f) List of texts that are neighbors of the selected data element (here
all texts displayed are direct neighbors or the associated text itself). The pink boxes show localities N°640, N°648 and N°650. The green boxes
show locality N°200.

or the network should train more to better place the decision
boundary (Q6).

7 DISCUSSION

7.1 Execution times
In Tab. 3, we present the execution times of various steps of
our approach. The size of the text embedding matters little.
One of the steps that is time-consuming is the splitting of
the proximity graph as it erases a lot of edges. Setting the
number of neighbors to 3 instead of 4 reduces the computing
time. Another time-consuming step is the simplification
of the boundary, which computes a lot of shortest paths.
Finally, the two visualization steps can be time-consuming,
especially the linear arrangements based on the TSSA-Φ
algorithm [58]. The steps were executed on an ASUS, Intel
Xeon processor with 40 cores at 2.4 GHz, 126 GB of DDR4
RAM at 2400 MHz.

7.2 Data abstraction steps
The data abstraction steps aim to construct a meaningful
and useful set of locality graphs for any possible output of

SSA GPT-2 AE RNN
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3 min.
6 sec.
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54 min.
4 min.
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TABLE 3
Execution times of the various steps of our approach with a dataset of

10,000 entries.

the NN. We chose to construct our proximity graph with the
UMAP method instead of KNN or other methods because
UMAP captures the topology of the manifold underlying
the data and thus constructs meaningful localities. Using the
UMAP proximity graph also ensures that weights of edges
can be used to modify the proximity graph without losing
the property of connectivity of vertices. Setting the number
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of neighbors to 3 or more (4 by default in our experiment) in
the UMAP method ensures a unique connected component
or some large connected components (see Sec. 4.3). The view
of the localities that are very different to others will be as
global as the number of neighbors is high. This means that
if a locality is very isolated in space, it will have more linked
neighbors, because only a few edges will be erased in the
splitting step (see Sec. 4.4). On the contrary, setting the num-
ber of neighbors too high pushes the splitting step to execute
longer. The five steps that follow graph creation (see Sec. 4.4-
4.8) ensure that even if the proximity graph created with
UMAP has a very particular topology, a set of usable locality
graphs will be provided. The first boundary connection step
connects only initial data to its own projected data. This
means that even if initial data elements that did not belong
to the same connected component now do belong to the
same connected component, they will not be linked together
and will not therefore influence each other’s visualization
in the final layout. The boundary connection step uses a
logarithm function in base 2. We could use a lower base or
even connect each real data element to its projection. Our
choice is motivated by the fact that we wanted to keep the
proximity graph as close as possible to the initial graph cre-
ated with UMAP. In some cases, choosing a lower base could
be useful, especially if the maximum number of vertices or
edges is high or if we need more links between entry data
and boundary data in the boundary sub-view. Finally, the
thresholds used in the splitting step in Sec. 4.4 and Sec. 4.6
depend on knowledge of the dataset. In our experiments, we
use 3,200 edges and 800 vertices as thresholds. These values
could be used by default. Smaller values result in more
specific localities instead of large localities and therefore
more local and less general explanation. Finally, the dataset
highly influences the processing time, and using EBBE-Text
with a dataset larger than 100,000 entries is not advisable.

7.3 Comparison to alternative techniques

Tab. 4 shows a comparison, in terms of functionalities,
between EBBE-Text and the alternative techniques. We can
observe that EBBE-Text offers, in a single tool, most of the
possibilities previously offered the other techniques. In this
section, we focus on some of these possibilities to highlight
the benefits and the limits of our approach.

Decision boundary visualization. Migut et al. [32] pro-
pose the visualization of the decision boundary in the high-
dimensional entry space, but the distances to the boundary
are meaningless. Zhiyong and Congfu [33] propose an algo-
rithm to find decision boundary data, yet distances in their
visualization are again less meaningful than in ours. Zhang
et al. [40] use meaningful distances to compare two classi-
fiers, but any other information about neighbors or data con-
tent is lost. Rodrigues et al. [34] visualize the decision bound-
ary of classifiers using dimension-reduction techniques in
the entry space of classifiers. Two of the five most effective
dimension-reduction techniques they identify for visualiz-
ing the decision boundary of a convolutional NN in binary
classification are UMAP and t-SNE. However, they use a
linearly separable dataset, which is not a realistic dataset.
Moreover, their method does not allow the exploration of
different localities. In addition to our decision boundary

view, which addresses this shortcoming, our visualization
includes these two techniques in our reduced-dimension
space views, thus providing complementary views that en-
able the exploration of the data from different points of view.
In our experiment, we observe that the more effective the
network (with a good score on prediction metrics), the more
effective the visualization of the decision boundary as a line
using classic dimension-reduction techniques (PCA, t-SNE,
UMAP). Melnik et al. [35] propose a connectivity analysis
of data in the entry space that ensures that no decision
boundary exists between two data elements if they belong
to the same decision region. Different decision regions are
computed and can be compared across different classifiers
such as NNs or SVMs. Ramamurthy et al. [41] propose a
methodology to compare decision boundary complexities
in a model and therefore the generalization capacity of
models for a given dataset. Finally, Ma et al. [42] propose
a visualization tool similar to EBBE-Text that presents the
decision boundary by using an SVM on data close to the
decision boundary to construct different linear segments of
the decision boundary, with highlights of precise parts of the
decision boundary. The greatest difference between all these
works and ours is that we construct the decision boundary
in the space constructed by the NN. The constructed space
is of greater interest to exploring how NNs disentangle
data and construct meaningful localities. Moreover, we can
compute the real distance to the decision boundary and
explore these meaningful localities.

Multi-class classification. EBBE-Text is limited to binary
classification. Extending it to multi-class classification is an
interesting problem for future work that will raise research
questions. In particular, it seems that we will have to resort
to the use of a one-versus-all method or lose information on
similarity between data.

All data types. EBBE-Text is designed for textual data.
The features specific to texts are the list of texts and descrip-
tors, and the top-word list (see Sec. 5.2.2). Other features are
not specific and can be used for any types of data . One can
imagine using the central panel differently to explore other
data such as images, audios, etc.

All NN and classifiers. As mentioned in Sec. 2, there
are several ways to interpret the inner workings of an NN
and its predictions. Seq2seq-vis [36] and LSTMVis [37] focus
on a RNN, while EBBE-Text is more generic and can be
used with any NN. However, one may prefer the specific
information extracted for RNNs provided by specific tools
as it allows an exploration of the evolution of the hidden
states for each inputted word. EBBE-Text can also be used
with any classifier that represent texts in a representation
space in one step and linearly classifies them after this step.

Active Learning. EBBE-Text does not provide an active
learning strategy in the manner of Seifert et al. [38] and
Heimerl et al. [39]. It is not yet possible to label data in
EBBE-Text. This is, however, a possible add-on feature. For
example, we could add a ”change label” button under the
descriptor of each sentence. Nevertheless, identifying texts
as useful to improving prediction is difficult because they
are not necessarily the ones with the highest uncertainty
scores (distance to the decision boundary) or the ones that
are misclassified [69], [70], [71]. Moreover, in order to take
into account the new labels, retraining the NN, a new
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Comparison between EBBE-Text and alternative techniques in terms of the functionalities provided.

embedding of texts, and running all the steps described
above would be necessary. In many cases, this would be
time consuming.

Contribution visualization. In our approach, we visu-
alize the attention score to highlight the contribution of a
term to a prediction. It should be noted that our approach
is consistent with other contribution scores. Previously, Vig
et al. [17], [19] and Clark et al. [18] proposed a visualization
of attention term to term; Hoover et al. [20] did something
similar, but added a search for the selected data’s nearest
neighbor in the text corpus. DeRose et al. [21] propose
an interactive radial layout in which each ring of tokens
corresponds to a given layer of a transformer model for
displaying attention scores, which allows a comparison
between two different NNs. Wang et al. [22] propose radial,
grid and force layouts and different views to show and
compare the attention weights of transformer models for
different inputs. As presented in Sec. 5.2.2, we propose
displaying a term to term score of the word over which the
user hovers. Our method requires action by the user while
others do not. However, using alternative methods in EBBE-
Text, such as bump charts or radial layouts, would have
been too noisy when we display many different sentences
or sometimes long sentences.

7.4 Post-hoc or local explanations

Post-hoc or local explanations aim to explain predictions,
sometimes without following the same reasoning process as
the NN or without directly linking decisions to the inputs.
In our work, we did not look at whether and to what extent
explanations were justifiable or true [48]. We mainly focused
on whether or not user trust in the NN used [49] with

local explanations increased. The feeling that the network
behaves in a more human-like way would increase user
trust in the network. For example, the user could see that
the few mistakes that a network made were falsely labeled
data, that attention scores where coherent for words that are
more important for humans (see case study in Sec. 6.3.2),
or the order of the data from closest to farthest from the
decision boundary (see case study in Sec. 6.3.1).

7.5 Visualization limits and cognitive load
With regards to the visualization, depending on the network
used and its predictions, the data in the decision boundary
sub-view could overlap. This overlap is due to the small
amount of boundary data linked to entry data. It occurs
when the neural network has strong confidence in the
predictions and therefore the UMAP-constructed proximity
graph links entry data to boundary data using the weakest
weight. This specificity causes links between entry data and
boundary data to only exist via the boundary connection
step (see Sec. 4.5) and therefore be small in number.

With regards to the localities, some neural networks
divide the representation space in a way that localities do
not contain data of both classes. This means that even
projections of entry data on the decision boundary are
distant from each other. Some could argue that this does not
allow users to compare data with different predictions, but
comparing data elements that are distant from each other in
the representation space constructed by the neural network
is meaningless. The information that the NN separates
entry data via multiple hyperplanes (i.e. the hyperplane
separating entry data and the hyperplane separating their
projections) could provide an insight into how easy the
classification task was for the NN.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

With regards to the cognitive load associated with the
use of EBBE-Text, the sorting possibilities in the overview
reduce the cognitive load of the search for localities of
interest. In the locality view, we believe that constructing
a locality visualization reduces the cognitive load, since
almost every sub-view in the single view is proposed. The
user does not have to switch between multiple views to
get relevant information about the prediction. The only two
features that are not accessible together are the top 10 word
table and the dimension-reduction space visualization, but
this does not limit users in their search for relevant data,
as the ICE-T evaluation shows in Sec. 6.1. it should be
emphasized that knowledge and comprehension of the NN
used is essential to correctly interpreting the meaning of
attention scores or word relevance in some cases.

7.6 Toward interpretability

The search for better interpretability of classifiers could lead
users to transparent classifiers (see 3.1), e.g. decision trees.
Even if NNs are less transparent, their structure can be
adjusted to be more interpretable. While EBBE-Text offers
a powerful way of interpreting the inner workings of an
NN, we have observed that NNs that carried out a recon-
struction task in addition to the classification task are more
interpretable by EBBE-Text, as localities tend to contain data
labeled differently and lying on both sides of the decision
boundary (see Fig. 2 and Fig. 12b). Choosing a classifier
involves finding a good trade-off between performance and
interpretability. Adding a reconstruction task can decrease
performance but considerably increases the interpretability.
When texts are also close to each other in the representation
constructed by the NN, the user can compare them. A
single-task NN, by focusing only on classification, tends to
assign greater distances in the representation space between
texts labeled differently, even if they are close to each other.
However, one can imagine that for a human representation
space, texts that are almost identical, except in sentiment,
should be close to each other, and that an NN that includes
a reconstruction task would construct a more interpretable
representation space.

Our method ensures that in the decision boundary sub-
view, the distances to the decision boundary are exact and
links between data elements are meaningful. UMAP pro-
duces neighborhoods in the proximity graph (see Sec. 4.3).
Through the following steps, we remove edges that are less
important for vertices (small weight) and edges that link
clusters inside large components (see Sec. 4.6). Finally, links
are only created between initial data and their projections.
Removing and creating edges is necessary for exploring the
space. At the end of the data abstraction and visual encoding
steps, the visualization of the decision boundary represents
the stronger links between data from UMAP, as well as the
exact distance to the decision boundary, and constructs the
layout according to these two pieces of information (see
Sec. 5.2.1).

8 CONCLUSION AND PERSPECTIVES

In this article, we propose a new visual approach to help
explain the predictions of NNs (and other classifiers) for a

text classification task. It is based on a multi-scale decision
boundary exploration of different localities of the text rep-
resentation space. Current methods do not visualize how
certain an NN is of its predictions and the distances and
paths to the decision boundary. Our innovative exploration
method allows users to search for post-hoc explanations
by inspecting data elements close to each other in the text
representation space and their distances to the decision
boundary, as well as contribution scores.

With regard to our perspectives, our future work will
look at justified counterfactual explanations [48] and ex-
amine how our method can assist active learning [72]. We
will also explore different encoding-decoding techniques to
allow text generation on the decision boundary [73]. Finally,
we will also allow users to compare different NNs at the
same time for the same or different tags or categories.
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