N
N

N

HAL

open science

VERTIGo: A Visual Platform for Querying and
Exploring Large Multilayer Networks

Erick Cuenca, Arnaud Sallaberry, Dino Ienco, Pascal Poncelet

» To cite this version:

Erick Cuenca, Arnaud Sallaberry, Dino Ienco, Pascal Poncelet. VERTIGo: A Visual Platform for
Querying and Exploring Large Multilayer Networks. IEEE Transactions on Visualization and Com-

puter Graphics, 2022, 28 (3), pp.1634-1647. 10.1109/TVCG.2021.3067820 . lirmm-03738618

HAL Id: lirmm-03738618
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03738618v1
Submitted on 19 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-03738618v1
https://hal.archives-ouvertes.fr

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

VERTIGo: a Visual Platform for Querying and
Exploring Large Multilayer Networks

Erick Cuenca, Arnaud Sallaberry, Dino lenco, and Pascal Poncelet

Abstract—Many real world data can be modeled by a graph with a set of nodes interconnected to each other by multiple relationships.
Such a rich graph is called multilayer graph or network. Providing useful visualization tools to support the query process for such
graphs is challenging. Although many approaches have addressed the visual query construction, few efforts have been done to provide
a contextualized exploration of query results and suggestion strategies to refine the original query. This is due to several issues such as
i) the size of the graphs ii) the large number of retrieved results and iii) the way they can be organized to facilitate their exploration. In
this paper, we present VERTIGo, a novel visual platform to query, explore and support the analysis of large multilayer graphs.
VERTIGo provides coordinated views to navigate and explore the large set of retrieved results at different granularity levels. In addition,

the proposed system supports the refinement of the query by visual suggestions to guide the user through the exploration process.
Two examples and a user study demonstrate how VERTIGo can be used to perform visual analysis (query, exploration, and

suggestion) on real world multilayer networks.

Index Terms—Visual Querying System, Visual Pattern Suggestion, Multilayer Networks

1 INTRODUCTION

Graphs are ubiquitous structures that capture relationships
(edges) among entities (nodes). Many real world data can be
modeled by a graph where multiple types of entities are connected
to each other by multiple types of relationships. A multilayer
network, or multilayer graph, allows the definition of multiple
types of nodes and edges [1]. Examples of multilayer graphs
are: social networks spanning over the same set of people,
but involving different life aspects (e.g., social relationships
- Facebook, Twitter, Google+, work relationships - LinkedIn);
protein-protein interaction networks where each layer represents
a different pathway on which proteins interact [2]; bibliographic
networks where nodes are authors and the edge type spans over the
set of conferences/journals [3]; knowledge graphs (i. e. Resource
Description Framework) where the same subject/object nodes pair
is connected by different predicates [4].

Considering the significance of such structure to represent and
model real world information, designing visual tools to support
and ameliorate the analysis of large multilayer graphs is essential.
Recently, researchers from the InfoVis community have started to
propose visualization techniques to deal with multilayer graphs.
For instance, they have introduced specific visual encoding [5],
new exploration systems [6], dedicated layout algorithms [7], etc.
An overview of the state of the art is available in [8].

Designing visual graph query systems is also an active area
of research [9], [10], [11], [12], [13], [14]. Considering a gen-
eral visual graph query system, we can highlight four important
tasks that must be managed: Query Construction, Visualization
and Exploration of Query Results, and Query Suggestion. While
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researches mainly focus on tasks such as Query Construction and
Results Visualization [9], [10], [11], [12], [13], [14], less research
effort was devoted to deal with Results Exploration [11], and
Query Suggestion [14]. To the best of our knowledge, no visual
graph query system deals with these four tasks simultaneously on
standard and/or multilayer graphs.

In this paper, we propose VERTIGo', a new visual platform
that supports the users to query large multilayer graphs, visual-
izes/explores retrieved results and suggests new query extensions
based on the underlying multilayer graph structure and the current
query results. VERTIGo provides new mechanisms to integrate
and manage the four tasks previously listed in a single application.
In this way, it enables users to obtain information on multilayer
graphs in an integrated context. Coordinated views support explo-
ration and navigation of a large set of retrieved results at different
levels of granularity. The views allow users to explore the results
in detail as well as observe where they are located w.r.t. the
initial graph, thus making it possible to pinpoint the cluster they
belong to. Additionally, our platform also supports the synergy
between the user and the underlying query process. The user can
start, pause, and resume the query engine with the possibility to
navigate/explore partially collected results. Fig. 1 illustrates our
system while a demonstration video is available?. We remind that
a standard graph defined on a single type of edge can be seen as a
particular case of multilayer graph. This means that VERTIGo can
also deal with a standard (single-layer) large graph.

The rest of this paper is organized as follows. Sec. 2 summa-
rizes and discusses the related work. The requirement analysis is
presented in Sec. 3. Sec. 4 introduces the proposed techniques
while Sec. 5 introduces the interaction between the different
visual components involved in VERTIGo. Two examples of use
are described in Sec. 6. A usability evaluation and a discussion

1. A preliminary version of our system was presented as a demo paper
at SSDBM [15]. Here, we detail the methodology, add new functionalities,
illustrate the application with new examples, and perform a user study.

2. Demo video: https://youtu.be/0aC6-8pW66Y (accessed on June 22, 2020)
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Fig. 1: The VERTIGo’s user interface being used to explore a co-authorship network. (a) The Query view allows the users to build
the query and start the process to retrieve the results, called embeddings. This view also supports query suggestions visualized as
pie charts. (b)(c) The Graph view showing either an overview of the embedding locations with a heatmap representation (b) or the
embedding relations with Kelp-based diagrams (c). (d) The Embeddings view shows a list of embeddings for a set of selected entities
(the embeddings involving N. Ramakrishnan in this example). (e) A histogram allows filtering embeddings by their Minimum Bounding

Rectangle values.

of the advantages of our approach is presented in Sec. 7. Sec. 8
concludes.

2 RELATED WORK

Gaining insights from large and complex graphs is challenging [1],
[8], [16]. This requires the use of visual analytic tools with
dedicated views, interactions, and techniques to assist users with
exploration and navigation tasks. Pienta er al. [17] survey several
visual graph systems and discuss the challenges related to making
sense of large graph datasets. This includes the importance of
combining graph visualization and exploration with data analytics
methods to extract information. In this direction, the subgraph
mining technique is valuable to help users discovering particular
subgraphs (e. g., patterns) on a graph. This technique uses two
approaches: 1) subgraph matching, where all occurrences of a
subgraph are searched on the target graph [9], [10], [11], [12],
[13], and ii) frequent subgraph mining, where common subgraphs
are identified in the structure of the graph [18], [19]. In this
paper, we focus our study on the subgraph matching technique
combined with visualization and interaction methods to retrieve
results information from large multilayer graphs.

2.1 Multilayer Graph Exploration

By using different layers, multilayer graphs better model the
complexity of various real world datasets (e. g., social networks,
protein interactions network). However, using multiple layers on
the same graph increases cognitive load when users interact with
them [20]. Several approaches and techniques have been proposed
to deal with the characteristics of such rich graphs. For instance,
OntoVis [21] analyzes relationships in large heterogeneous social
networks through the use of semantic and structural abstractions.

It guides the analysis using filtering techniques and an ontology
graph that describes relationships in the initial graph. McGee et
al. [16] propose an approach to improve the exploration task on
large multilayer graphs by extracting small set of data from the
initial graph. This system provides a visual query builder interface
that guides users through the relationships of the initial graph,
allowing a subset of data to be built on demand. In their approach,
the data is stored in a graph database (composed by a collection
of graphs).

2.2 Visual Graph Query Systems

Given a query, find all its occurrences in a graph is computation-
ally demanding, as it involves solving the subgraph isomorphism
problem [22]. To overcome this problem, different subgraph
matching algorithms [22], [23], [24], [25], [26] have been pro-
posed. Several visual graph query systems use these algorithms
as querying engines for matching subgraphs. GRAPHITE [9] pro-
poses a visual interface to build a query on an author-publication
network and display the results. To this purpose, it exploits the G-
Ray [24] algorithm to retrieve subgraphs. VISAGE [10] provides
a visual interface to guide the construction of the query. In this
approach, the Neo4j® platform is employed to manage the graph
database. In VIGOR [11], the query is firstly expressed by using
the Cypher* query language and then transformed to a visual
query. VIGOR also uses the Neo4j to manage the graph database.
GraphVista [12] leverages a streaming mechanism that does not
wait for the end of the query process, but instead visualizes the
results as soon as they are available. GraphVista employs the

3. https://neo4j.com/ (accessed on June 4, 2020)

4. https://neo4j.com/docs/developer-manual/current/cypher/ (accessed on
June 4, 2020)
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Graphite [27] engine to retrieve subgraph results. A more sophisti-
cated approach is proposed by VOGUE [13] where graph mining
(gSpan [25]) and subgraph isomorphism (VF2 [23]) algorithms
are combined to guide the user query process. Unfortunately, this
approach works for transactional graphs settings where the graph
database is constituted of a collection of graphs (e. g., a database of
chemical molecules) and cannot be extended to work on a standard
single large graph (e. g., social network, RDF data or biological
network) where all the nodes of the graph database belong to the
same big graph.

To summarize, the mentioned approaches working on single
large graph provide limited interaction mechanisms among the
user, the visual query system, and the query engine.

2.3 Visual Graph Query Suggestions

All the previous approaches mainly focus on two aspects: i)
visually build the query and ii) display the results. Very few efforts
have been done to reuse previous results to refine the querying
process by suggestion [14], [28], [29]. VIIQ [14] proposes a
visual interface to suggest the top-k relevant edges to extend the
query by using user logs. It randomly samples a subset of the
user logs then suggests actions that can match with the current
query structure. The suggestions are not visually integrated into
the query construction visualization, but are rather supplied with
an additional panel showing the top-k results in terms of possible
nodes/edges extensions.

Other approaches such as [28], [29] propose query suggestions
using a list of possible nodes/edges to add to the current query;
however, these approaches are dedicated to transactional graphs.

2.4 Visual Graph Query Processing Task

Table 1 shows a comparison of different visual graph query
systems considering common tasks usually involved in the visual
query process: Query Construction, Visualization and Exploration
of Query Results, and Query Suggestion. We can note that,
generally, the first two tasks are supported by all the systems.
GRAPHITE [9], VOGUE [13], VIIQ [14], and VISAGE [10]
use standard interaction techniques to visually draw the query
structure (nodes, edges, and attributes) in a dedicated view and
successively visualize query results. Conversely, VIGOR [11] does
not provide a visual construction mechanism to build the query
but it leverages the Cypher language to build it. GraphVista [12]
allows the user to build the query via a node-attribute list,
rather than visually drawing a query structure. Considering the
Exploration of Results task, only the VIGOR [11] system provides
mechanisms to browse results via coordinated views. Regarding
the Query Suggestion task, VIIQ [14] is the only tool that supplies
suggestion based on previous user actions. To summarize, most
of the approaches focus on tasks such as Query Construction
and Visualization of Results rather than Exploration of Results
and Query Suggestion. To the best of our knowledge, there are
no visual systems dealing with the four tasks simultaneously. In
addition, the previous approaches only consider traditional graphs.

In this work, we introduce VERTIGo, a visual graph query
system especially tailored for multilayer graphs. The proposed
system introduces new mechanisms to cope with the query refine-
ment process, the exploration/navigation of the retrieved results,
and suggestions based on the graph structure.

3

TABLE 1: Comparison of various visual graph query systems to
support query process tasks.

. Query  Visualization  Exploration  Query
Approaches const. of results of results sugg.
GRAPHITE [9] X X
VOGUE [13] X X
GraphVista [12] X X
VISAGE [10] X X
VIGOR [11] X X X
VIIQ [14] X X
VERTIGo X X X X

3 REQUIREMENT ANALYSIS

In this section, we describe the requirements of VERTIGo to
effectively assist users in the process of querying a graph. Through
an illustrative scenario, we conceptualize the main goals of our
approach. In this example, we use a co-authorship network in
the Visualization and the Data Mining fields of research. In this
scenario, a user is interested in getting knowledge about authors
who have published in the two fields of research. He or she starts
with a query, in which the goal is to retrieve groups of authors
that collaborate together and one of them has publications in both
fields: he/she published a TVCG paper with one author and he/she
also published an ICDM and a KDD paper with another author.
This kind of query will give the user a guideline of the authors that
is used as a link between the two communities. The user starts the
query process on the graph. Once the results (groups of authors)
are fetched, the user expects to see an overview of them. From this
overview, the user can recover in which main community these
authors are located, according to the co-authorship network, and
thus obtain a starting point for a further analysis. In the detailed
analysis, the user would be interested to know: a) the author
with more occurrences in the aforementioned query, b) all the
occurrences where an author is present, ¢) if two given authors are
connected in an occurrence, and d) the locations of these authors
regarding the co-authorship network. Based on this information,
he/she would refine their previous query. For example, is there any
other venue (e. g., InfoVis, Sigmod, and so forth) that was not taken
into account in the initial query? From this scenario, we identified
the following list of requirements:

[R1] Graph query design and matching: This requirement
aims to provide the user with a tool to interactively de-
sign/construct a query. This query will serve as a starting point
to find all the occurrences on the graph. In the previous example,
the user can easily depict the authors and the conferences linking
these authors with various venue types as journals or conferences
(e.g. TVCG, ICDM, and KDD).

[R2] Navigation and exploration of the results: This require-
ment aims to provide visualizations and interactions to facilitate
the exploration of the results, or the embeddings® at different
granularity levels.

[R3] Handling multilayer graphs: This requirement aims to
allow the user to model and depict a traditional graph or a
multilayer graph, i.e., a graph where each layer contains edges
of a certain type. Referring to the previous example, a layer can
be a specific venue in the co-authorship network.

5. The term embedding refers to a subgraph matching the query structure.
In this paper, it is employed as a synonym of query result.
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[R4] Query suggestion: This requirement aims to suggest an
extension of the initial query to the user. Mentioning the previous
example, it could propose another conference venue based on the
graph structure that links two authors in order to refine the results.

[R5] Scalability: This requirement aims to handle querying on
large graphs and recover the embeddings in a reasonable System
Response Time (SRT). SRT is defined as the time taken by the
matching engine to evaluate the entire query.

The above list of requirements is intended to support frequent
tasks involved in the visual graph query process, such as query
construction, visualization of results, exploration of results, and
query suggestions. Previous works [9], [10], [11], [12], [13]
mainly cover the first two tasks: query construction and visual-
ization of the results. However, to gain a better understanding
of large and complex graphs, new visual approaches capable of
taking advantage of the characteristics of multilayer graphs are
needed [17], [20]. Therefore, this work aims to propose a tool
to support the four important tasks involved in the process of
graph querying. Since graphs are ubiquitous structures that can
model data coming from many different domains [1], [8], our tool
can be deployed in a wide range of scenarios. The previous list
of requirements derived from an illustrative scenario intends to
contextualize the benefits of a tool that can visually handle the
graph query process.

4 PROPOSED TECHNIQUE

This section describes our visual system. We first give a summary
of the design rationale. We then detail each view. We leave the
interactive functionality for the next section.

4.1 Design Rationale Summary

Based on the requirement analysis, we present VERTIGo (Fig. 1).
It is based on three main visual components. The Query view
(Fig. 1a) allows the users to visually construct/suggest the query
structure (nodes, edges, node/edge-attributes) and start the graph
engine processing. The Graph view (Fig. 1(b, c)) depicts the
graph structure and the embeddings at different granularity levels.
The Embeddings view (Fig. 1d) depicts in detail the structure of
the embeddings for a given set of nodes. Below, we present these
visual components and explain how they support the querying
process.

4.2 The Query View

Fig. 2 shows the query view interface. This view allows the user
to define the query structure (nodes, edges node/edge-attributes)
via interactive functionalities [R1, R3]. This interface contains a
drawing canvas, two built-in toolbars and a status bar. The drawing
canvas (Fig. 2a) is the area where the query is constructed and
where interactions happen. The design toolbar (Fig. 2b) provides
different actions to build the query. From top to bottom, these
actions are: add a node of a specific layer, add an edge of a specific
layer, delete a node/edge, launch the edge suggestion mechanism
and arrange the layout of the query by applying a force directed
algorithm. The standard toolbar (Fig. 2¢) includes frequently used
features such as load, create, and save a query structure. It also
contains the Search button that runs the graph engine. Finally, the
status bar (Fig. 2d) provides textual information about the current
state of the view.

O, SEARCH

Arie E. Kaufman

Hans Hagen

David S. Ebert

Ready @)

Fig. 2: The Query view displaying an example of a multilayer
query. (a) The query is depicted in the drawing canvas. (b) The
design toolbar provides interactions to construct the query. (c) The
standard toolbar provides common features and also contains the
Search button that starts the graph engine process. (d) A status bar
shows textual information about the view. (e) The user can specify
an attribute value on a node.

Actions such as specifying a node type or an attribute value,
specifying an edge type, starting the query matching process
and launching the edge suggestion mechanism require specific
interactions described below.

4.2.1 Specifying a Node Type (Layer) and a Node Attribute
Value

VERTIGo allows the users to specify the types of nodes in the
query, which fit the multilayer aspect of the input graph [R3].
In this case, the list of matched embeddings only contains the
nodes holding the selected types, and the SRT of the query process
decreases [R5]. Nodes of a given type are represented by the same
icon showing the type semantic (for instance, a person in Fig. 2e).

A specific attribute value can also be added to a node of the
query in order to decrease the number of embeddings and the SRT
of the query process [RS]. The query view enables this action by
right-clicking on the desired node and selecting a value from the
displayed pop-up list. For instance, in Fig. 2e, one can select an
author name in a co-authorship network.

4.2.2 Specifying an Edge Type (Layer)

VERTIGo allows the users to query traditional graphs or multilayer
graphs [R3]. We adopt a well-known way to visualize the edge
types (or layers) by color coding. When a pair of nodes is
connected by several edges, some scalability challenges arise i)
how to organize these links and ii) how to deal with many edge
types. To overcome these problems, edges between a pair of nodes
are arranged in a parallel way. The relative distance between
parallel edges remains the same even when the number of links
increases, which allows the users to clearly see all the links, as
shown in Fig. 2. The upper limit for the number of edges is 10
because of the known problem of distinguishing small regions of
colors [30]. Edges are labeled to enhance the type recognition.
In order to add an edge to a query, the user must first choose
an edge type from the drop-down edges button on the design
toolbar (Fig. 2b). Then, using the mouse pointer, the user draws the
edge from one node to another. Finally, the edge is automatically
arranged. When more than two edges connect a pair of nodes,
the Boolean logical operator AND 1is used to perform a logical
conjunction between them.
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Fig. 2 shows the query example described in Sec. 3, where an
author published a TVCG paper with one author and he/she also
published an ICDM and a KDD paper with another author. More
precisely, we explicitly state that the author corresponding to the
central node has published both an ICDM and a KDD article with
the same co-author, and a TVCG paper with another co-author. We
can observe that the multilayer graph structure allows us to easily
specify multiple constraints between the same pair of nodes.

4.2.3 Starting the Query Engine Process

Since a multilayer graph involves different nodes and edge types,
standard query engines such as TurboISO [22] or VF3 [26] are
not adapted for such graphs. To deal with multilayer graphs [R3],
we integrate into VERTIGo a recent multilayer graph query engine
named SuMGra [31]. It exploits specialized indexing techniques
to speed the backtracking algorithm that is commonly employed
to deal with the subgraph isomorphism problem [32]. The Search
button in the standard toolbar (Fig. 2c) starts the query process.

A common paradigm in query process is based on a
Query—Result approach, i.e., after a query construction, send
the request to the query engine and then visualize the retrieved
results [12]. However, as interactions with the query engine are
not available in this paradigm, the process can be affected by
huge SRT when the number of results grows exponentially. In
order to improve the SRT [RS5], VERTIGo tightly interacts with
the SuMGra system to enable the user to start, pause, and resume
the query engine with the possibility to navigate/explore partially
collected embeddings [R2] (this functionality is described in
Sec. 5).

4.2.4 Visualizing Query Suggestions

Based on the initial query structure, VERTIGo automatically
suggests k edges to the user’s query intention [R4]. To obtain can-
didate edges, VIIQ [14] uses a correlation of a subset of edges of
a user log. This approach only ranks a subset of edges which leads
to suggest only a part of the query structure. VERTIGo overcomes
this drawback by ranking all the adjacent edges for every node of
the embeddings and then suggests the top-k frequent type of edges
found. The graph structure is used to obtain the adjacent edges
for each embedding node. This mechanism suggests interesting
extensions of the query since it leverages information obtained by
the underlying graph.

VERTIGo suggests two types of candidate edges: internal
edges that link nodes that are already in the query, and external
edges that link nodes of the query to other ones. Internal and ex-
ternal suggested edges are displayed directly on the query. The left
of Fig. 3 shows the query of Fig. 2 including visual suggestions.
Internal edges are represented by dashed lines to differentiate them
from existing edges (Fig. 3(a, b) KDD and SDM links). Since
external edges convey extension to an external node, we use a pie
chart. The number of slices in the pie chart is equal to k (the
number of external edge suggestions Fig. 3c). The percentage
represented by a slice and displayed on its tooltip depicts the
quantity of edges in the neighborhood of the embeddings that
support the extension of the query by the particular edge type. For
instance, Fig. 3c indicates that 10% of the embeddings already
found can be extended with a CGF edge type.

The right part of Fig. 3 shows the query after adding the above-
mentioned suggestions. To accept a suggested edge, the user clicks
on the internal (dashed line) or external edge (pie slice). A new
internal edge is displayed as a continuous line (Fig. 3(d, ) KDD
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Fig. 3: An example of a query suggestion. On the left, the visual
elements on the query depict suggested edges. On the right, the
query structure includes newly added suggested edges.

and SDM links). A new external edge is displayed as a link to a
node toward its slice (Fig. 3f CGF link). The query suggestion
mechanism provides visual elements to guide the user in the
incremental construction of the query [R1, R4]. Thus, each time
the query is extended, the user can retrieve embeddings and further
refine his/her searching process. The query suggestion mechanism
is activated from the design toolbar (Fig. 2b).

4.3 The Graph View

We adopt a node-link diagram with a force directed layout [33]
to produce a suitable visualization of the graph. Working with
large graphs entails some challenges: aesthetic criteria, scalabil-
ity and reasonable interaction time. To deal with these issues,
we leverage a multilevel technique named Multipole Multilevel
Method (FM?) [34]. FM? is a well-known approach in the graph
drawing field that allows scaling up to large graphs with a good
trade off between time and visualization performances [R2, R5].
An example of a graph layout obtained by VERTIGo is presented
in Fig. 4a. The input graph is a biological dataset [3] modeled
as a multilayer graph. It is composed of 38,936 nodes, 310,664
edges and 7 edge types. We note that such a visualization has
the advantage to stand out groups of nodes that clearly form
communities. In this particular example, we can easily highlight
five major groups (clusters) of nodes. Edges of the graph layout
are not depicted to avoid cluttering issues.

4.4 The Embeddings View

In order to display a large number of embeddings, Pienta ez al. [11]
reduced them to points. This kind of abstraction avoids a cluttered
visualization; however, the spatial distribution of its elements is
not depicted. With the aim to display in detail the topology of
the embeddings (i.e., nodes and edges) [R2], we designed the
Embeddings view (Fig. 5). In this view, we show in detail the
structure of the embeddings (Fig. 5b) containing a given set of
nodes (Fig. 5a) (interactions to select these nodes are described in
Sec. 5).

The goal of the Embeddings view is to allow the user to
sample the embeddings for any combination of nodes involved in
the embeddings. For example, considering the embeddings of the
query shown in Fig. 2, the Fig. 5b shows the list of embeddings
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(a)

¢

Fig. 4: The Graph view displaying a biological dataset. (a) The
obtained layout allows the users to easily identify five different
communities. (b) A heatmap shows an overview of the retrieved
embedding locations in the graph.
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Fig. 5: The Embeddings view showing a list of embeddings (b) for
a set of entities (a). (c) An example of a fusion embedding where
the thickness of the edges conveys the number of aggregations.

where Shixia Liu and Yangqiu Song are present. This behaviour
enhances the exploration task [R2] since it not only shows the
embeddings, but also a subset of them.

In order to convey the spatial distribution of the embeddings,
we use the Minimum Bounding Rectangle (MBR) value that
bounds the nodes of an embedding in the Graph view. This value
transmits the extent of the nodes within an embedding. For in-
stance, a low MBR value conveys the closeness of its nodes, while

6

a high MBR value means that one or more nodes are far apart
from the others, possibly in different clusters. The Embeddings
view allows users to sort results in an ascending/descending order
based on their MBR values [R2]. This metric is also used to filter
results using a histogram (Fig. 1e) that groups MBR values into n
ranges (interactions are described in Sec. 5.2).

With the aim to depict the topological structure of the em-
beddings, we must consider that some embeddings could involve
the same set of nodes, with a different edge topology. Based
on this feature, we aggregate embeddings with the same set of
nodes into a single fusion embedding. Fig. 6 shows an example
where the fusion embedding (c) is the result of the fusion of the
embeddings (a) and (b). Thus, this fusion maintains the topology
of nodes, but the topology of edges evolves according to the links
in their aggregated embeddings. The number of aggregations is
represented by the thickness of the edges in Fig. 6c.

Fig. 6: Construction of the fusion embedding (c) from the fusion of
embeddings (a) and (b). The topology of the nodes is maintained
while the topology of the edges evolves. The thickness of the
edges reveals the number of aggregations.

Each row in the list of embeddings (Fig. 5b) is composed by
a fusion embedding and its associated metadata (i.e., the MBR
value and the number of aggregated embeddings). This metadata
can be particularly useful to explore embeddings according to
their spatial/topological features. For instance, in a co-authorship
network, given a set of authors (Fig. 5a), if the user is interested
in knowing other authors who often collaborate with them, he/she
can order up the list of embeddings (Fig. 5b) by clicking on the
last column of the view, and recover the embedding(s) with the
highest number of aggregations (Fig. 5c).

In this section, we have presented the three main visual
components of VERTIGo: the Query view, the Graph view, and
the Embeddings view. Each view performs a specific task on the
visual query process. The Query view allows the visual query
construction and query suggestion. The Graph view shows the
graph structure and allows users to navigate/explore embeddings
at different granularity levels. The Embeddings view allows the
users to visualize a list of embeddings for further investigations.
In the next section, we describe the interactions among these visual
components.

5 INTERACTIONS

In this section, we describe the interactions between the visual
components involved in VERTIGo. Interactions are tailored to
help the user on the visual query process: query construction,
results visualization, results exploration, and query suggestions.
Fig. 7 shows the general architecture of VERTIGo, where arrows
represent the interactions among the components. The user and
system operations are represented in blue and green respectively.
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Fig. 7: System architecture of VERTIGo. Colored arrows show interactions between components. User operations are represented with

blue arrows, while system actions are shown in green.

5.1 Visualizing Embeddings

The user starts the visual query process by building the query
structure (Fig. 7a). Once the construction of the query is finished,
the user sends the query to the engine (Fig. 7b). Next, the
query engine requests the graph structure in order to retrieve the
embeddings (Fig. 7(c, d)) and returns them to the Graph view.
Based on the retrieved embeddings and the graph structure, the
visual query mechanism suggests k edges to refine the previous
query and execute it again (Fig. 7j).

Since the number of embeddings can be large, the visualization
is challenging. To overcome this issue, VERTIGo enables two
different levels of analysis: i) an overview level in which it sums
up the embeddings according to the graph (Fig. 7e) and ii) a
detailed level in which it allows the user to inspect particular nodes
involved in the results (Fig. 7f). The user navigates between the
overview and the detailed levels performing a semantic zooming
(i. e., changing the detail levels of the graph and the embeddings).

5.1.1 Overview Level

Considering the overview, we employ a heatmap [35] that dynam-
ically illustrates the portion of the graph in which embeddings are
located. Fig. 4b shows an example of a heatmap of embeddings.
The density distribution is represented using the viridis colour
gradient [36] which offers a high range of perceived values while
avoiding red-green color blindness. Liu and Heer [37] demonstrate
that this gradient performs well to encode quantitative data in
terms of time and error through an experimentation involving 9
competitors. The viridis scheme varies in a sequential multi-hue
palette from blue (low-dense areas) to yellow (high-dense areas).
In the example depicted in Fig. 4b, we can highlight that the Graph
view shows different communities since the layout algorithm
highlights different groups of nodes. Here, the embeddings are not
equally distributed among these groups. As an interesting point,
we can note a high density (high concentration of embeddings
depicted in yellow) in the center of the image while a lower
concentration of embeddings appears in the upper-right corner.
Our heatmap can be employed to visually understand if a query is
specific to a certain portion of the graph or not, and thus provides
the user an entry point for the exploration task [R2].

We would like to note that VERTIGo allows the user to
pause and resume the underlying query process (Fig. 7b). This
can be particularly useful if the number of embeddings grows
quickly [RS5]. In that scenario, the process can be paused at any
moment, the embeddings are retrieved considering the current
state of the query engine and the corresponding heatmap (Fig. 7e)
is produced or updated. Finally, the user can resume the query
process from where he/she had stopped.

5.1.2 Detailed Level

The abstraction supplied by the heatmap makes it difficult to know
the exact number/distribution of embeddings found in a region.
To deal with this issue, VERTIGo allows the users to change the
levels of details zooming on some particular area [R2] (Fig. 7f). In
this case, the nodes of the embeddings are shown in a contrasted
color (see the blue nodes in Fig. 8). We use the area of the node
to depict the number of embeddings it belongs to: bigger nodes
correspond to nodes occurring in more embeddings. In order to
enhance the effectiveness of the exploration task [R2], we show
the labels of embedding nodes. Labeling the nodes is not a trivial
task, since showing labels for all nodes may cause cluttering
issues. To overcome this problem, we show overlapping-free labels
based on node weight (i.e., the number of times it appears in an
embedding), by using a greedy algorithm. It first orders the set of
nodes by weight. Next, for each node, it calculates the bounding
rectangle of the label, and it checks if there is no overlap with the
previous labeled nodes. If there is no overlap, the label is shown,
otherwise it is not. The complexity of this algorithm is O(n?),
where n is the set of embedding nodes. The result depends on
the zoom level. Thus, when the user zooms in/out, the algorithm
computes again the displayed labels. Fig. 8 shows an example.
Notice that some node labels are bigger (e. g., N. Ramakrishnan)
than their neighbors.

The labeling algorithm clearly displays the most weighted
node labels. However, depending on the zoom level, some nodes
with low weight may be underneath others. To overcome this
problem, we implement a text field search facility to retrieve nodes
by their name. Fig. 8a shows this option. Once the node name is
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Fig. 8: The Graph view showing the nodes of the retrieved embed-
dings. The area of a node represents the number of embeddings it
belongs to. (a) A text field allows the search for a specific node by
its name.

selected, the focus of the Graph view is automatically redirected
to the node location and an animation shows its exact location.

From the detailed level, the user can select a set of embedding
nodes for further analysis by clicking on them. Their border color
becomes red and they are automatically added to the Embeddings
view (Fig. 7g). The user can thus visualize the list of the associated
embeddings (Fig. 7h). In the following section, we describe the
exploration of embeddings using both: the Embeddings and the
Graph views.

5.2 Exploring Embeddings

The Embeddings view displays the list of fusion embeddings
(Fig. 7h) containing the set of the selected nodes (Fig. 7g). This
list allows the user to explore embeddings based on their spatial
(MBR values) and topological (aggregations) structure; however,
the specific location on the graph is not shown. Since the whole
graph is shown in the Graph view (Fig. 7(e, f)), we aim to display
embedding locations in this view. Considering the presence of
nodes in multiple embeddings, several existing methods such as
BubbleSets [38], LineSets [39] and Kelp diagrams [40] seem
suitable. All these approaches form an appropriated visualization
when the positions of nodes are fixed. Among all these approaches,
we chose in our work the Kelp diagrams due to their ability
to emphasize aesthetic criteria to deal with overlapping in set
membership. Kelp diagrams act on static layouts (such as maps)
without user interactions. Since the Graph view (Fig. 7(e, f))
provides a zooming technique that changes node positions, we
must adapt the Kelp diagrams to our needs. Our Kelp-based
approach is described in Sec. 5.3.

From the list of embeddings (Fig. 7h), the user can select
different fusion embeddings that will be visualized on the Graph
view by using a Kelp-based approach (Fig. 7i). When the user
selects a fusion embedding, the row border is colored according
to a categorical color scheme. Ware [30] mentions that there are
up to seven user-distinguishable colors. In our implementation, we
use a five color scale (red, green, blue, orange, and pink) and we
can then go up to five colors. If we go beyond five, we return to the
same colors. The same color is used in the respective Kelp-based
diagram on the detailed level of the Graph view (Fig. 7i).

Besides the Kelp-based representation, VERTIGo provides a
histogram to explore embedding results based on their MBR value
[R2]. MBR values are grouped into n ranges defined by the
user, where 1 < n < 10. Fig. le displays a histogram grouped
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into five ranges. In this example, we can highlight that there is
a concentration of embeddings with a low MBR value, which
reflects their proximity in the graph (maybe in the same cluster).
On the other hand, the last two ranges show a low concentration of
embeddings with a high MBR value (nodes of these embeddings
might be in different clusters). This histogram allows the user
to filter embeddings by clicking over the desired bar. Thank to
this functionality, users can focus on a specific group or discover
anomalous embeddings (please refer to the example on Sec. 6.1 to
see this functionality).

5.3 The Kelp-based Approach

When zooming in the Graph view, the positions of the nodes
change according to the focal point (guided by the mouse pointer).
Thus, at a certain zoom level, some nodes can be affected by nodes
and/or edges overlap. Unfortunately, even if Kelp diagrams are
very attractive for highlighting embeddings, they are not suited
to deal with non-predefined node positions. Their high compu-
tational burden negatively influences their use to manage real-
time interaction. To deal with this issue, we extend the standard
Kelp technique with a strategy to manage non-predefined node
positions. Our Kelp-based approach has two main parts: i) find
a spatial arrangement of nodes at the current zoom level and ii)
generate a nested visualization of them.

5.3.1 Positioning the Nodes

The following pseudo-code presents the steps of our approach
to position the nodes in order to generate an overlapping free
diagram. We consider each embedding as a subgraph E of the
initial graph. E denotes the set of the embeddings and N denotes
the set of nodes in E.

1: For every n € N, set a circle of radius r,, corresponding to the
number of embeddings of E containing n (Fig. 9a).

2: Derive a Delaunay triangulation of the set of nodes N and
for each edge of the Delaunay triangulation, eliminate the
overlapping employing a stress model [41] (Fig. 9b).

3: Let L be the set of links to draw between the nodes of N.
Thus, L contains the union of the edges of the embeddings
E. For every link / € L, the thickness r; corresponds to the
number of embeddings of E containing / (Fig. 9c, in which
node-link overlaps appear).

4: For every node-link overlap, set a fixed-control-node ¢ € C
at the barycenter of the overlapping region with a radius
corresponding to the distance from the barycenter to the
border of the link (Fig. 9d). Then, add the set C to N.

5: Re-execute the node overlapping process described in step 2
over the current set of nodes N, the set of C remains fixed
over this process (Fig. 9e). Once finished, remove the set of C
from N.

We now give the details of each step.

Step 1: The first step of our approach aims to locate the set
of nodes N and the set of embeddings E avoiding overlap at the
current zoom level. We display every node n € N as a circle of
radius r, (r, > 1) corresponding to the number of embeddings
E € E to which it belongs.

Step 2: Considering the circles and the positions of the nodes
at the current zoom level, some of them may overlap. To deal
with this problem, we remove node overlapping by using the
approach described in [41] (see [42] for an introduction to node
overlap removal algorithms). The approach proposes to derive the
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Fig. 9: Node-link overlapping process: (a) Detection of possible node overlapping (b) Removing node overlapping using a Delaunay
triangulation approach (c¢) Adding links between nodes (orange) and detection of possible node-link overlapping (red box) (d)
Determination of position of fixed-control-nodes (in red) (e) Fixed-control-nodes are used to re-calculate the node-link overlap process

into the layout.

Delaunay triangulation from the overlapping layout (where the
radius sizes of the nodes are greater than zero) and then, for each
edge of the triangulation, to gradually eliminate the overlapping
employing a stress model. Following this approach, the Delaunay
triangulation from the set of nodes N is derived (Fig. 9a) and
the stress model (Fig. 9b) is successively applied. The result of
this method is an overlapping-free graph that allows the users to
preserve the mental map of the initial layout. Furthermore, the
method also maintains a reasonable computational complexity to
facilitate real-time interaction.

Step 3: After removing nodes overlapping, we aim to visually
connect the nodes in every embedding E € E. We define L as
the set of links to draw between the nodes of N. Each link / € L
holds a thickness r; that is equal to the number of embeddings
of E containing /. Fig. 9c shows these links in orange. After this
step, some links can overlap with the nodes, (see the red boxes in
Fig. 9¢).

Step 4: To solve the issue related to possible node-link
overlaps, we introduce a set of fixed-control-nodes (C) around
the barycenter of the overlap regions. The radius is given by the
distance from the barycenter to the corresponding overlapping link
I. Then, the set of the fixed-control-nodes C is added to the set
of nodes N. Fig. 9d shows two control nodes, cl1 and c2 on the
overlapping regions depicted in Fig. 9c.

Step 5: finally, we perform again the node overlapping process
described in step 2 including the augmented set of control nodes
C to N. The position of the control nodes remains fixed during
the node-overlapping elimination process. Thus, link positions are
preserved and only overlapping nodes are rearranged. Once this
process is finished, fixed-control-nodes C are removed from the
set of nodes N. Fig. 9¢ shows the final result of this process,
displaying the Delaunay triangulation in gray and the barycenter
of the control nodes in red. Once we obtain a suitable allocation
of both nodes and links, we draw them.

5.3.2 Generation of a Nested Visualization

When nodes are positioned, we need to visualize the embeddings
as nested sets. We provide two different styles: a Kelp-based
diagram without edges and another one with edges (Fig. 10(a, b)).
To generate these styles, every embedding is assigned to a colored
layer in a stacked structure. Nodes and edges are stacked on top
of each other modifying the radius of the nodes and the thickness
of the edges to make them visible. The color of an embedding is
assigned from the border row of the corresponding embedding E
in the Embeddings view (Fig. 7h).

Fig. 10 shows the nested visualization with hidden edges (a)
and visible edges (b). In this example, the Kelp-based diagrams

show four selected embeddings. We note that, when nodes or
edges are involved in many embeddings they become visually
dominant (e. g., nodes for Yangqgiu Song and Shixia Liu authors).
We label nodes and edges in order to facilitate their identification
and enhance exploration tasks (Fig. 10c). Labels of the edges are
shown when the user hovers the mouse on an embedding. The
selected embedding is also highlighted while the others decrease
in opacity. In addition, VERTIGo provides a user control panel
to change from one nested style to another one on the fly, or
modifying some visual parameters such as the initial radius of
nodes, the thickness of links, the font label size, etc.

©

'Yanggiu Song

Yanggiu Song

Shixia Liu

Fig. 10: Kelp-based nested styles: (a) links are not shown and (b)
links are visible. (c) When hovering an embedding, it becomes
highlighted and the edge labels are displayed.

5.4

VERTIGo is developed using Java technologies (JavaFX, Process-
ing®) for its interface and interaction among the different com-

Implementation and Equipment

6. https://processing.org/ (accessed on June 4, 2020)
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ponents. We use the FM> implementation supplied by OGDF’.
The graph database engine [31] is also implemented in Java and
integrated in the system. Demonstration scenario is carried out on
a Work Station with an Intel Xeon processor at 3.00 GHz with 16
GB of RAM memory with a 64-bit Windows OS.

6 EXAMPLES

In this section, we present two examples illustrating how
VERTIGo can be used to explore multilayer networks.

6.1

In this section, we consider a real co-authorship network obtained
from the DBLP? bibliographic database. The network is composed
of 37,878 nodes (the authors) and 129,983 edges (co-authorship).
The multilayer network has 18 layers (edge types), each of them
corresponding to a different venue (journal or conference) in
which authors have published. Two nodes are linked together if the
corresponding authors have co-authored at least one paper together
in a specific venue. The different venues are chosen considering
the Visualization (VIS) and the Data Mining/Data Base (DMDB)
fields of research. Regarding the VIS domain, we have selected
the following venues: TVCG, InfoVis, CGF, EuroVis, PacificVis,
Graph Drawing, CG&A, and 1V. Considering the DMDB domain
the chosen venues are: DASFAA, EDBT, ICDE, ICDM, ICDT,
KDD, SDM, SSDBM, SIGMOD, and VLDB.

The bottom of Fig. 11a shows the DBLP multilayer graph
displayed in the Graph view [R3]. The nodes (authors) are shown
as blue circles of equal sizes, edges are not depicted to avoid
cluttering. We can note that the chosen directed force layout
algorithm allows the users to visually recognize two dense areas.
In this example, we aim to retrieve the co-authorship network of a
given author. More precisely, using the k suggested edges provided
by the query suggestion mechanism, we want to visualize the
network around Yehuda Koren [R1, R2, R4]. The top of Fig. 11a
shows the initial query. The depicted graph involves two authors
(nodes) that have co-authored a TVCG and a Graph Drawing
paper. In addition, one of the two nodes is identified as Yehuda
Koren. Once this query is executed, the Graph view displays the
retrieved embedding results via a heatmap in order to locate them
on the original graph (the bottom of Fig. 11a) [R1, R2, R3]. The
heatmap shows a concentration of embedding results in the right
center part of the DBLP network, which leads us to think that the
dense area on the right corresponds to the VIS community.

With the aim to visually extend the Koren’s collaboration
network, we use the query suggestion mechanism provided by
VERTIGo [R2, R4]. The top of Fig. 11b shows the k-edges
suggested to extend the query. We focus on the external suggested
edges (i.e., pie charts). The percentage displayed on the slice
informs us that 41% of edges in the DBLP network support the
extension of a new TVCG link to another co-author. Thus, we
add this suggested edge to the query structure and we execute the
query process again. The bottom of Fig. 11b shows the embedding
results: they are concentrated on the right community. This further
evidence confirms that the right area of the graph corresponds to
the VIS community.

Once this community is detected in the network, we continue
adding suggested edges with the objective to observe connections

Co-authorship Network

7. http://www.ogdf.net/ (accessed on June 4, 2020)
8. http://dblp.uni-trier.de/ (accessed on June 4, 2020)
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involving authors from the DMDB community [R2, R4]. The
top of Fig. 11c shows a query structure where one of the top-
5 suggested edges corresponds to the KDD conference. We add
it to the query. The bottom of Fig. 11c shows the results. They
start to spread toward the left part of the DBLP network. The
top of Fig. 11d shows the query structure after adding an /CDM
link to a new co-author. The embedding results show even more
concentration of results into the left community, confirming that
this part of the network represents the DMDB community.

After four refinement steps achieved by adding suggested
edges, we can infer that the Koren’s co-authorship collaboration
network involves many researchers from both communities VIS
and DMDB. Moreover, as the suggestions on his node directly
concern the two communities (TVCG, Graph Drawing and KDD
developed in our example), we can assume that this author is a
hub between the communities. This is confirmed by the whole
list of publications from the author containing many VIS articles
(TVCG, Graph Drawing, InfoVis, etc.), as well as many DMDB
articles (KDD, ICDM, TKDD, etc.).

Guided by the heatmap of Fig. 11d, we zoom to the center
of these two communities (see Fig. 12a). The font size for Yehuda
Koren is bigger than the other node labels since this author appears
in all the query results [R2]. He is located in the middle of both
communities, which makes sense since he acts as a hub between
them. In the histogram organized into 5 ranges, we can observe a
lot of embeddings with a low MBR value, i. e. located in the same
region of the graph. In Fig. 12b we filter the first four bins in order
to concentrate the visual analysis on embeddings with a high MBR
(the authors that can be in different communities). As a result, the
Graph view shows fewer embedding nodes, which indicates less
collaboration between central authors of the two communities. We
then display the list of embeddings on the Embeddings View.
From this list, we select three of them. Fig. 12c shows the
corresponding Kelp-based diagram. Yehuda Koren appears in the
center as a bridge between researchers who contribute primarily
in their respective communities. For instance, V. S. Subrahmanian
from DMDB and D. Weiskopf from VIS appear as a central nodes
of their community, but less prone to collaborate with researchers
from the other community. This is confirmed with their DBLP
record in which their venues are mostly related to their own field
of research.

6.2 Offshore Leaks Network

Our second example is based on a real offshore dataset revealed by
the International Consortium of Investigative Journalists (ICIJ)°.
This dataset exposes the relationship between entities (persons,
companies, clients, and addresses) in tax heavens around the
world through four investigations called the Panama Papers, the
Offshore Leaks, the Bahamas Leaks, and the Paradise Papers. The
structures in these investigations contain three possible types of
relationship between entities: i) a person isOfficer of a company, ii)
a person hasRegistered an address, and iii) a client isIntermediary
of a company. We use this data to model our multilayer graph
which is composed by 406,072 nodes (the entities) and 664,901
edges (the relationships) [R3, R5]. Our multilayer graph has 12
layers (edge types) that represent the types of relationship and the
investigation to which it belongs, and thus we obtain the layers:
isOfficer_panama, isOfficer_offshore, isOfficer_bahamas, isOf-
ficer_paradise, hasRegistered_panama, hasRegistered_offshore,

9. https://offshoreleaks.icij.org/pages/database (accessed on June 4, 2020)
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Fig. 11: Query refinement process exploiting the suggestions provided by VERTIGo.
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Fig. 12: (a) Detailed level of the embedding results from the
Fig. 11c. Note the histogram with a high concentration of embed-
dings with a low MBR value. (b) Embedding results after filtering
embeddings with high MBR value. (c¢) The Kelp-based diagram
associated to the selected embeddings.

hasRegistered_bahamas, hasRegistered_paradise, isIntermedi-
ary_panama, isintermediary_offshore, isIntermediary_bahamas,
and isIlntermediary_paradise.

When analyzing the offshore dataset, an interesting starting
point is a person sharing relationships with different companies
across investigations [R3]. For instance, a person P who is an
officer of a company C) in the Panama Papers and who also is
an officer of another company C, on the Offshore links can be
used to start further analysis of the relationship between these
companies and the role of the person among them. VERTIGo can
easily help to identify such people by launching the query shown
in Fig. 13. In this example, the query contains three people, two
of them being officers of a company in two distinct investigations
(Panama Papers and Offshore links) and the third one being an
officer of both companies [R1, R3].
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Fig. 13: Query to extract people who are officers of different
companies in distinct investigations.

Once this query is executed and VERTIGo gets the results,
we observe two sets of embeddings involving politicians [R1, R2,
R3]. The first one is shown by Fig. 14a. We can observe three
embeddings in blue, red and orange. Ilham Aliyev, President of
Azerbaijan, belongs to these three embeddings, as does his wife,
Mehriban Aliyev. She is the one who acts as a bridge between the
two investigations and thus, the two companies (match with the
central node of the query). She and President Aliyev are officers
of the Rosamund International company in the Offshore Leaks.
The President’s daughters, Leyda and Arzu, and his father, Heyda,
are officers of the same company, the UF Universe Foundation,
in the Panama Papers. Further investigation on the family states
their implication in a vast affair of hidden wealth [43]. While
this example had been identified by the journalists of the ICIJ by
manual inspection of the ten thousand entities contained in the
dataset, we have demonstrated here how VERTIGo can support
such investigation, automatically, reducing human effort and time.

The second set of embeddings involving a politician is shown
in Fig. 14b. The Kelp-like diagram depicts three embeddings in
which Elias Bou Saab, a Lebanese Minister is present. We see
that a person labeled as The Bearer links both investigations
(Panama Papers and Offshore links). This entity and Minister
Bou Saab are officers of the Sim International Services Limited
company through the Panama Papers investigation. By counting
the number of circles that surround them, we can conclude that
they participate in the three result embeddings while the other
entities participate in fewer results [R2]. The Bearer is particularly
interesting as it does not reveal its real name. The relationships
he/she has with the other entities could be a starting point to
support further investigations. Another question lies on the relation
between Bearer and The Bearer: are they the same person?
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Fig. 14: Sets of embeddings extracted with the query shown
in Fig. 13. (a) Relationship of the family of the President of
Azerbaijan, Ilham Aliyev. (b) Relationship of a Lebanese Minister,
Elias Bou Saab.

7 EVALUATION AND DISCUSSION

In this section, we discuss the usability, the usefulness and the
performance of our work. We carry out a user study to obtain a
qualitative evaluation of specialized users.

7.1 User Study

This study has two objectives. The first one is to introduce
VERTIGo’s functionalities to potential users (e.g., investigative
journalists), and the second one is to obtain feedback to evaluate
the capabilities of our work in a practical context. The steps
to achieve these goals are: i) choose an appropriate dataset, ii)
determine domain experts to involve in the study, and iii) conduct
a survey to measure the usability and effectiveness of VERTIGo.
These activities are described below:

Choose a dataset: We chose the real dataset of the Offshore
Leaks Networks described in Sec. 6.2. A suitable characteristic of
this dataset is that it contains different types of nodes and edges in
a large multilayer graph.

Determine domain experts: Even if no particular skills are
needed to use our system, in the case of the Offshore Leaks
Networks study (Sec. 6.2), an investigative experience is required.
Thus, for this study, VERTIGo was tested and evaluated by
three investigative journalists who work for different organiza-
tions: Ecuadorian National Polytechnic School'®, University of
the Hemispheres'!, and Ecuadorian Public Expenditure Observa-
torylz.

Usability survey: VERTIGo is a desktop application, so we
operate the tool in a local environment from where we met with

10. https://www.epn.edu.ec/ (accessed on November 15, 2020)
11. https://www.uhemisferios.edu.ec/ (accessed on November 15, 2020)
12. https://www.gastopublico.org/ (accessed on November 15, 2020)
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TABLE 2: User study evaluation: average usefulness and usability
scores for each view.

Views Usefulness  Usability
- (upto5)  (upto5)

Query view

(Query construction/suggestion) 4.8 5.0

Graph view

(Visualization of results) 5.0 5.0

Embeddings view o us

(Exploration of results)

experts separately through online video communication'®. The
system operator had to attend to any request from the experts about
the tool. Firstly, we introduced in detail VERTIGo’s views and
functionalities. Then, using the Offshore dataset, we explained the
four tasks that our system manages: Query Construction, Visual-
ization and Exploration of Results, and Query Suggestions. At this
point, the experts were free to request the construction of specific
queries and explore their results. Each session had an average
duration of one hour. After that, they were asked to complete a
Google Form survey aimed at evaluating the functionalities of
the system. The questions rate the usefulness and usability of
each view/functionality on a scale ranging from 1 to 5 (1: very
useless”/”’very complicated to use”, 5: ”very useful”/”very simple
to use”). We have also collected feedback on the views and the
system in general.

Table 2 shows the average results of the user study for each
view. We can note that the experts appreciate the usefulness (av-
erage score of 4.9/5) and usability (average score of 4.8/5) of our
system. Considering the usefulness aspect, all three experts agree
with each other that the pause and resume functionality associated
to the query engine process is a convenient feature that helps users
to quickly explore and navigate partial results. If the retrieved
results seem irrelevant, they could build another query immedi-
ately. Experts also highlight that the process of creating a query
is simple and smooth. They mention this functionality as intuitive
and user-friendly. Finally, they appreciate the possibility of the
system to suggest new relationships, which stimulates the creation
of new possible queries. The usability of the system is also highly
appreciated by experts. They mention that the exploration task
is enhanced by using a heatmap showing the locations of the
results on the original graph. They like that different embeddings
can be shown using colors (Kelp-based visualizations). However,
the Embeddings view obtained the lowest average score. As we
expected, listing the results increases (overloads) the cognitive
effort of a user.

Overall, VERTIGo meets the expectations of investigative
journalists. They state that our system is well-conceived and the
interactions are intuitive. A suggestion was made regarding the
possibility to use different color scheme for node types. The
possibility to add an option to select the color of nodes can be
considered as a future improvement.

7.2 Performance of VERTIGo

Retrieving all the occurrences of a query in a large multilayer
graph is computationally demanding [22] as it involves dealing
with the subgraph isomorphism problem, which belongs to the

13. The COVID-19 pandemic was ongoing when this study was conducted
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class of NP-complete problems [32]. To reduce the System Re-
sponse Time (SRT) of the query processing, VERTIGo implements
several strategies in computational and visualization terms. First
of all, it integrates the SuMGra [31] multilayer graph query
engine that speeds the backtracking algorithm by using indexing
techniques. Our system also interacts with the query engine (start,
pause, and resume interactions) to allow users to explore results
as soon as possible and reduce the SRT. In terms of visualization
performance, we use the F M3 technique [34] to efficiently draw
large graphics (the design is rendered offline). Also, our tool does
not show edges, thus does not increase the rendering time.

All these techniques are intended to provide a better user ex-
perience; however, the SRT of the system increases exponentially
when the graph is large and the request query is complex (a high
number of nodes). We ran the two case studies presented in Sec. 6
on a 64-bit Work Station, Intel Xeon 3.00 GHz processor with
16 GB of RAM. The first one (37,878 nodes) did not present
any particular problem when performing the queries described in
the case study (Sec. 6.1). Interactions such as dragging, zooming
in, zooming out, and selection were seamless. In contrast, in the
second case study (Sec. 6.2), composed by 406,072 nodes, the SRT
increased when displaying the heatmap of the results. Also, the
algorithm for labeling the nodes decreases performance (the user
can disable this option from the control panel). As we expected,
the performance of the system is compromised when the number
of nodes increases. VERTIGo’s responsiveness decreases when
working with ~500,000 nodes on the aforementioned hardware.

8 CONCLUSION

In this paper, we presented VERTIGo, a new visual platform that
allows the users to query multilayer networks, visualize/explore
the obtained results and suggest new query extensions based on
the underlying multilayer graph and the current query embeddings.
The results are analyzed at different granularity levels and the con-
ceived visual components support the user to focus on particular
interesting areas of the multilayer graph for further inspection. The
proposed system also enables the interaction between the user and
the query process. The user can start, pause, and resume the query
engine with the possibility to navigate/explore partially collected
embeddings. Two real world examples and a user study highlight
the quality of VERTIGo to inspect and explore information mod-
eled as multilayer networks. Visual components and interaction
techniques facilitate the user to deal with tasks commonly involved
in the visual query process: Query Construction, Visualization and
Exploration of Query Results, and Query Suggestion. We plan, as a
future work, to extend VERTIGo for dealing with dynamic graphs
where the network structure (nodes and edges) change or evolve
over time.
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