
HAL Id: lirmm-03739788
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03739788v1

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective techniques for automatically improving the
transition delay fault coverage of Self-Test Libraries

Riccardo Cantoro, Francesco Garau, Patrick Girard, Nima Kolahimahmoudi,
Sandro Sartoni, Matteo Sonza Reorda, Arnaud Virazel

To cite this version:
Riccardo Cantoro, Francesco Garau, Patrick Girard, Nima Kolahimahmoudi, Sandro Sartoni, et al..
Effective techniques for automatically improving the transition delay fault coverage of Self-Test Li-
braries. ETS 2022 - 27th IEEE European Test Symposium, May 2022, Barcelona, Spain. pp.1-2,
�10.1109/ETS54262.2022.9810392�. �lirmm-03739788�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03739788v1
https://hal.archives-ouvertes.fr


Effective techniques for automatically improving the
transition delay fault coverage of Self-Test Libraries

Riccardo Cantoro∗, Francesco Garau∗, Patrick Girard†, Nima Kolahimahmoudi∗,
Sandro Sartoni∗, Matteo Sonza Reorda∗ and Arnaud Virazel†

∗Department of Computer and Control Engineering
Politecnico di Torino

†LIRMM
University of Montpellier / CNRS

Turin, Italy Montpellier, France

Abstract—In-field test of integrated circuits using Self-Test
Libraries (STLs) is a widely used technique specifically suited
to guarantee the processor’s correct behavior during the op-
erative lifetime, as mandated by functional safety standards
such as ISO26262. Developing STLs for stuck-at faults requires
significant manual efforts from test engineers, and targeting
delay faults is even more challenging. In order to support this
process, in this paper we propose a method to automate the
creation of STLs targeting delay faults starting from existing
STLs targeting stuck-at faults. The method is based first on
identifying excited but not-observed transition delay faults and
then adding suitable instructions able to observe (and hence
detect) them. Experimental results on a RISC-V processor show
that the method can systematically detect a significant percentage
of the target faults with reasonable computational effort and test
code size increase.

Index Terms—software-based self-test, software test libraries,
in-field test, safety, functional test, delay faults

I. INTRODUCTION

New advanced semiconductor technologies are increasingly
adopted in emerging applications, thanks to their enhanced
working frequencies and computational capabilities. Such
technologies, however, are extremely complex and sophisti-
cated, leading to more frequent physical defects and reduced
operative lifetime. Testing integrated circuits (ICs), hence, is
of paramount importance. Most of these defects are tested
by targeting not only static, but also dynamic defects, often
modeled as delay faults, i.e., faults that affect the timing be-
havior of the device under test (DUT), such as transition delay
faults (TDFs) or path delay faults (PDFs). Testing integrated
circuits can be done using two different approaches. The most
common one relies on the adoption of Design-for-Testability
(DfT) solutions, which usually require the usage of additional
hardware modules such as Logic BIST or scan chains. Such
modules are integrated within the DUT and are employed to
apply test vectors and monitor the circuit’s response to the
aforementioned vectors. Although based on mature technology
and supported by most EDA tools, such solutions impose
non-negligible timing and area overheads that could degrade
performances. Moreover, functionally untestable faults [1]
(FUFs), i.e., faults whose effects can never be observed within

Authors are listed in alphabetical order.

functional scenarios, will possibly be detected, leading to a
phenomenon known as overtesting, which leads to a yield
loss. These issues can be overcome by adopting another testing
solution, namely functional testing. In the form of Software-
Based Self-Test (SBST), functional testing [2], [3] is based
on the execution of a set of Self-Test Libraries (STLs) by the
DUT. The results produced by the test programs are compacted
into a signature that is compared against the golden circuit’s
one to look for the presence of structural faults. This approach
has been proved effective both when processor cores [4]–[11]
and peripherals [12]–[15] are tested, and several companies
provide STLs for their products [16]–[19]. SBST is a desirable
solution for in-field testing, i.e., when the device’s reliability
and safety has to be guaranteed throughout the operative
lifetime. SBST is reliable, cheap, and flexible — STLs can be
developed such that they fit the idle slots of the application run
by the DUT, hence avoiding any service interruption. Thanks
to these properties, SBST can be successfully used whenever
compliance to standards such as the ISO26262 standard for
automotive systems is required.

However, developing STLs from scratch is not a trivial task,
more so when targeting delay faults on complex devices. For
test programs to achieve high fault coverage figures, they must
be able to excite as many faults as possible from the whole
DUT and make their effects observable at primary outputs
(POs) by using instructions from the system’s instruction
set architecture, only [20]. Achieving this requires a non-
negligible amount of manual effort by the test engineer.
Moreover, when fault reports are available, understanding
why certain faults are not detected (possibly isolating the
contribution of FUFs) is not always easy. The work in [21]
moves the first step in classifying not-observed transition
delay faults, giving some insights on where these fault effects
propagated and stopped and defining some upper boundaries
on how much the final TDF coverage can be increased.

In this paper, we propose an automatic and systematic
methodology to increase the TDF coverage of STLs, by de-
tecting faults identified in [21] on complex pipelined processor
cores, starting from a set of test programs devised for stuck-at
faults (SAFs). We choose the transition delay fault model over
the path delay one because TDFs are much better supported



by both standards and EDA tools than PDFs. The main
contributions of this work are:

• a set of techniques able to identify which instructions are
capable of detecting not-observed transition delay faults;

• a test flow able to automatically add the previously
identified instructions into the right place within existing
STLs to improve the final fault coverage;

• data on how much overhead is added to the original STL
after its enhancement.

This approach is validated on a RISC-V core, using available
commercial tools and a set of pre-existing STLs targeting
SAFs. The reported results show that it is possible to detect
most of the aforementioned transition delay faults (increasing
the TDF coverage by up to 15%) with a reasonable computa-
tional effort and test time increase.

The article is organized as follows: in Section II a back-
ground on the transition delay fault model and related works
is outlined, while in Section III we describe the proposed
approach. In Section IV we present the experimental results
and, finally, in Section V we draw the conclusions.

II. BACKGROUND

A. Transition delay faults

Transition delay faults are a class of faults that causes
failures in the timing behavior of a circuit. They are mod-
eled so that large delays are concentrated at a logical node,
differently from path delays faults that are modeled by means
of delays distributed on a path. Their effects are noticeable
when the circuit works at nominal speed, usually affecting
the propagation delay of signals. TDFs come in two different
types, namely slow-to-rise (STR) — i.e., faults that affect
rising (0 → 1) transitions — and slow-to-fall (STF) — i.e.,
faults that affect falling (1 → 0) transitions.

Testing TDFs, hence, requires applying rising and falling
transitions on the node to be tested, and propagating the
transition to an observable point of the circuit under test.
Consequently, tests are comprised of two pairs of vectors: one
for initializing the signal, the other for generating the intended
transition and propagating its effects. Current EDA tools well
support the transition delay fault model when resorting to
DfT approaches (that usually involve the usage of scan chain-
based protocols like Launch-on-Shift and Launch-on-Capture).
Functional solutions, however, are also a particularly effective
approach, especially when considering that test vectors for
testing delay faults must be at speed, a feature that is easily
achieved when executing STLs. In this case, test vector pairs
are provided by the instructions within the test program,
which must be able to excite TDFs and propagate their effects
towards POs. Unfortunately, EDA tools do not currently pro-
vide effective solutions for automatic test program generation,
which is still an open issue in the testing community.

B. Related Works

The development of test programs for delay faults through
an SBST approach has been faced by some works describing

methodologies to do so [6], [8], [10]. Regarding TDF specifi-
cally, [21] introduces a study on transition delay faults of mod-
ern pipelined CPUs that have not been observed throughout
the execution of STLs targeting SAFs, focusing on where their
effects propagated and stopped inside the DUT. The article
introduces two fault groups: User Accessible Register faults
(UARs), whose effects reached registers that can be directly
observed through instructions from the CPU’s instruction set
architecture, e.g., the register file, and Hidden Register (HRs)
faults, whose effects reached registers non directly control-
lable, e.g., pipeline registers. The work in [21] provides some
useful insights on what faults to target to improve the final fault
coverage, and provides an upper bound on how much the final
transition delay fault coverage can be improved. Given three
test programs, namely STL1, STL2 and STL3, [21] shows
that it is possible to increase their fault coverage by, relatively,
9.15, 17.85 and 8.96 percentile units. This work, however does
not provide strategies to detect them, which is the goal of this
paper. The work [12] describes STL development strategies for
peripherals embedded in modern System on Chips, achieving
significant fault coverage figures. Works [4], [5], on the other
hand, focus on the development of test programs for processor
cores. [4] describes a methodology to test delay faults on
computational blocks within superscalar processors, while
[5] aims at testing RISC-like CPUs by dividing them into
modules under test and devising test strategies for each of
these modules without the need of knowing implementation
details. Finally, [22] presents a reinforcement learning-based
test program generation technique for TDFs validated on a
MIPS32 core. Although effective, showing that it is possible
to thoroughly test delay faults through functional means, all
these works require the generation of test programs starting
from scratch, a task that requires non-negligible time and
effort from test engineers. [22], moreover, requires the usage
of a reinforcement learning algorithm, which might not be
particularly effective when tackling high-complexity cores.

Articles like [23]–[25] focus on the improvement of avail-
able programs to obtain high fault coverage figures. [23]
describes how to derive test patterns intended for online testing
starting from programs originally intended for verification
purposes, significantly increasing the final coverage of stuck-
at faults on a RISCV core. Works [24], [25], on the other
hand, present a tool based on High-Level Decision Diagrams
(HLDDs) for modeling microprocessors and faults, used in
conjunction with previously prepared code templates to gen-
erate the final self-test program targeting stuck-at faults. These
works show that methodologies for improving test programs
can be successfully devised. Nonetheless, they are developed
bearing the classical stuck-at fault model in mind.

The goal of this paper is to propose some techniques allow-
ing to automate the transformation of existing STLs targeting
SAFs so that the resulting TDF coverage is improved.

III. PROPOSED APPROACH

This work mainly stems from an empirical observation:
STLs targeting stuck-at faults often fail in achieving a high



TDF coverage because of their inability to propagate TDF
effects up to some observable point. By improving the ability
of an STL to propagate TDF effects we could significantly
increase its TDF coverage.

Detecting transition delay faults that were excited but not
observed by STLs requires some considerations on where their
effects propagated and stopped within the DUT. The reason
for doing so lies in the fact that, in order to detect the afore-
mentioned faults, we need to propagate their effects towards
observable points (e.g., memory locations) and strategies for
such task may vary based on the functional sub-module
from which the propagation occurs. Given this premise, in
this work we start from the two main categories of internal
observation points introduced in [21], i.e., User Accessible
Registers (UARs) and Hidden Registers (HRs), and define
some internal observation points to be used during simulation
to further refine the topological analysis about fault effects.
Inserting observation points is done by exploiting capabilities
offered by available commercial fault simulation tools. Such
task does not require the modification of the DUT’s hardware
as they are simply labels that the tool attaches to the netlist. To
each label a fault status is associated, and the hierarchy of the
statuses can be customized to make sure that locations closer
to the primary outputs of the architecture are prioritized. As
a further step, this paper describes how to introduce suitable
instructions in the STL code, so that for each group of faults, a
significant percentage of them is made observable, and hence
detected.

In the following, we discuss strategies for the aforemen-
tioned two main fault categories.

A. User Accessible Register faults

User Accessible Register faults are faults whose effects have
been propagated from the original fault site to registers that can
be directly observed through instructions from the instruction
set architecture. Being able to directly access these registers’
content through instructions helps the test engineer to make
faults effects observable at the primary outputs.

In order to detect such faults, first we must analyze the
fault data base produced at the end of the fault simulation
where internal observation points have been added. Such data
base stores information on which faults have been observed
at any given internal observation point at some specific time
instant. This allows us to obtain topological information, i.e.,
what register we have to work on, as well as chronological
information, i.e., what portion of the test program should be
improved. The latter is possible since we are able to associate
instructions being executed by the CPU to the simulation time
reported in the dictionary.

When analyzing the time at which fault effects reached user
accessible registers, it is crucial to keep in mind that, in mod-
ern in-order pipelined processor cores, there are instructions
that take more than one clock cycle to go through the CPU
execution stage, e.g., division operations. These instructions
— from hereinafter referred to as multi-cycle instructions, as
opposed to single-cycle instructions that only take one cycle in

Fig. 1. Multi-cycle instructions and fault effects propagation

the execution stage — should be carefully taken into account,
as the fault effect might be overwritten during the required
execution cycles. For instance, given an instruction that takes
4 clock cycles to go through the execution stage, a situation
similar to the one reported in Fig. 1 might occur, where
the fault effect is propagated at an inner cycle only to be
overwritten later, losing the possibility of observing the faulty
value. For this reason, we define two strategies depending on
whether we deal with single-cycle or multi-cycle instructions:

• single-cycle instructions: detecting these faults is quite
easy, as it is sufficient to perform a store operation on
the register affected by the faulty value after the time
at which said effect reached the register, and before the
register is overwritten by another operation;

• multi-cycle instructions: if the fault effect is still present
at the last execution cycle the same strategy adopted
for single-cycle instructions is used, else we modify
the operands of the multi-cycle instructions — either
arithmetical or logical operations — to ensure that the
faulty value reaches the register towards the end of the
execution stage, so that it can be observed through a store
instruction. As it is demonstrated by the experimental
results we gathered, identifying suitable operands for this
purpose is a feasible task, which can often performed
following a try-and-error approach.

B. Hidden Register faults

All those faults whose effects reach registers that cannot
directly observed through instructions fall within the Hidden
Register faults group. These registers are deeply embedded
inside the processor core, either belonging to pipeline registers
or inner sub-modules, which makes particularly hard to prop-
agate values from those locations to either primary outputs or
user accessible registers (in this case the techniques described
in the previous sub-section can then be adopted).

The strategy we propose to detect these faults starts off
similarly to Section III-A, that is, by analyzing the fault data
base to extract information on where faults propagate and stop
and at what time instant, i.e., in what portion of the STL, such
events occur. Given the nature of hidden registers, however,
additional analysis are needed to understand how to detect
these faults.

In order to do so, we observe that the process of exciting a
transition delay fault and observing its effects in a pipelined



Algorithm 1: HR faults detection algorithm
input : A list L of triplets (Fi, Hi, Ti) where

Fi is the transition delay fault to be tested
Hi is the HR bit reached by the fault’s effect
Ti is the time at which the fault effect reached Hi

An STL S that has been developed for SAFs
output: A set of instructions to propagate transition delay

fault effects to primary outputs
foreach (Fi, Hi, Ti) in L do

if S detects Hi’s stuck-at-1 and/or stuck-at-0 faults then
get the time Ts at which the stuck-at fault on Hi is

detected;
extract a block B with the last N instructions before
Ts from S;

check whether B does not contain jump instructions;
if Fi has been detected by B then

add B to the original program;
end

end
end

CPU can be decoupled into two sub-processes. First, a specific
pair of test vectors must be applied to generate the required
transition and propagate it towards an endpoint, may that be a
primary output — in which case the fault is marked as detected
— or a register within the processor core. Secondly, if the
fault’s effect reached a register, methodologies to propagate
such effect to primary outputs are employed to detect the
fault. While the first step obviously depends on the fault model
and the transition that we want to generate, the second step
does not depend as much on the fault to be excited, and
is just a problem of propagating a value from one point to
another. The aim of this work is to define an automatic way
to easily increase the transition delay fault coverage for STLs
that were previously devised for stuck-at faults. Given this
group of faults, hence, we define the algorithm summarized
in Algorithm 1.

The basic idea behind this algorithm is that the available
STLs may already be able to test stuck-at-0 and stuck-at-1
faults located in pipeline registers. The code that serves that
purpose, however, can also be used to propagate values from
said locations to primary outputs. This makes for an effortless
way to detect transition delay faults, as we just need to find the
appropriate chunk of code and put it right next to the one that
excites the transition delay fault and propagate its effect up to
the relative pipeline register. This operation, however, should
not disrupt the overall flow of the original test program: for
this reason, jump instructions in the code to be added should
be avoided. In the rare case when the TDF propagated to a
bit in a pipeline register, whose corresponding SAFs were still
not detected by the existing STL, methods such as [26] can be
used to generate the required chunk of instructions (improving
the SAF coverage as well).

A final point that applies to both User Accessible Register
and Hidden Register faults is that, given the right premises,
a set of instructions added to the original test program may
be capable of detecting more than one TDF at the same time.
This is only possible for all those transition delay faults whose

effects propagate to the same register at the same time. Thanks
to this feature, it is possible to achieve better fault coverages
with a smaller test program with respect to having a set of
instructions for each fault to be tested.

IV. EXPERIMENTAL RESULTS

A. Case study

The methodology introduced in this paper has been vali-
dated on PULPino [27], a 32-bit RISC-V-based SoC platform
developed by ETH Zurich and Università di Bologna. The
DUT has been synthesized using the 45nm Silvaco Open
Cell library [28] and accounts for 51,001 NAND2-equivalent
gates, 159,326 stuck-at faults (SAF) and transition delay faults
(TDF), and 1,207 flip-flops belonging to hidden registers.

As for the test programs, we adopted three different STLs
that were originally intended to test SAFs on the PULPino
core, namely STL1, STL2, and STL3. In order to ensure a
diverse and realistic testbench, the three test programs we
selected have been developed following different implementa-
tion strategies, by different test engineers. A summary of the
most important characteristics of the adopted STLs, namely
the execution time (expressed in the total amount of clock
cycles), memory size (in kB), and SAF coverage, is reported
in Table I.

TABLE I
STLS GENERAL INFORMATION

Test
Program

#Clock
cycles

Memory
size [kB]

SAF
coverage %

STL1 17, 308 27.32 81.42
STL2 31, 158 27.86 81.86
STL3 80, 455 16.68 82.18

It is noted that the reported amount of clock cycles is
obtained by executing all STLs completely; depending on
the situation, the test engineer can then decide to split them
into sub-modules that can be launched separately, each re-
quiring a fraction of the overall time with the same final
fault coverage. Fault simulations have been carried out using
Synopsys Z01X, a commercial tool devised specifically for
functional safety. Experiments have been conducted by means
of Python scripts, with the goals of collecting information
from fault dictionaries, improving test programs according to
the methodologies described in Section III, and launching the
actual fault simulations. As a result, the full flow of STL
improvement and fault simulation for transition delay faults
took no longer than 4 days on an Intel Xeon CPU E5-2680
v3 server with a clock frequency up to 3.3GHz.

B. Achieved results

In this subsection we describe the achieved results in details.
Table III and Table IV show summary data on the user
accessible register (UAR) and hidden register (HR) faults that
were detected as a result of the proposed methodology.

Starting with Table III, it is possible to see that our ap-
proach is greatly effective as it is capable of detecting almost



TABLE II
SUB-MODULES ANALYSIS FOR THE ADOPTED STLS

Test Program Hidden Register faults User Accessible Register faults

Fetch Stage Decode Stage Execute Stage Memory Stage GPRs SPRs

STL1
Detected faults 23 587 32 1 4, 359 2, 219
Total faults 1, 109 5, 109 388 135 4, 359 2, 232
Added Instructions 45 550 25 5 1, 107 478

STL2
Detected faults 52 120 5 6 23, 814 98
Total faults 1, 311 1, 976 221 91 23, 814 108
Added Instructions 80 115 20 15 1, 022 20

STL3
Detected faults 13 595 0 0 2, 853 11
Total faults 1, 028 2, 463 351 113 2, 853 47
Added Instructions 35 195 0 0 877 6

every fault, with the worst case scenario being STL3 with a
98.76% of UAR faults being detected. Given a total amount
of 159, 326 transition delay faults, through our methodology
we can increase the final fault coverage by 4.13% for STL1,
15.01% for STL2, and 1.80% for STL3, respectively.

TABLE III
ANALYSIS ON DETECTED UAR FAULTS

STL1 STL2 STL3

Detected UARs 6, 578 23, 912 2, 864
Total UARs 6, 591 23, 922 2, 900

%Detected UARs 99.80 99.96 98.76

Code size [kB] 6.34 4.17 3.53

This improvement comes with an increase of the final
code size, which amounts to an additional 22.21% for STL1,
14.97% for STL2, and 21.16% for STL3. This proves that our
strategy is able to systematically test not-observed transition
delay faults whose effects reached user accessible registers.

Moving on to Table IV, it is possible to see that the results
we achieved thanks to our methodology are quite dependent
on the considered STL.

TABLE IV
ANALYSIS ON DETECTED HR FAULTS

STL1 STL2 STL3

Detected HRs 643 183 608
Total HRs 6, 741 3, 599 3, 955

%Detected HRs 9.54 5.08 15.37

Code size [kB] 2.60 0.92 0.92

For this group of faults, the worst case scenario is repre-
sented by STL2, for which 5.08% HR faults can be detected,
while the best case scenario is represented by STL3, with a
total of 15.37% faults detected. Although the results are not
as high as for UARs, it is still worth mentioning that our
methodology allows to automatically detect these faults, thus
not requiring any manual effort from the test engineer. For
this latter group, the increase in the code size is rather small,
amounting to an additional 9.52% for STL1, 3.30% for STL2,
and 5.52% for STL3, respectively. It is also worth mentioning

that some of the undetected faults may belong to the group of
FUFs.

Table II describes the information regarding sub-modules of
the tested processor core in details, reporting the contributions
in terms of detected faults, total faults and added instructions
for each sub-module and STL. All the pipeline stages columns
belong to the hidden registers category, while general purpose
registers (GPRs) and special purpose registers (SPRs) are user
accessible registers. Starting from the UAR group, the table
shows how all GPRs have been tested, while only a small
minority of SPRs is left undetected. When talking about UAR
faults, it is also worth mentioning how many fall within the
single-cycle and multi-cycle groups. Concerning STL1, out of
all the 4, 359 GPR faults 1, 366 are related to single-cycle
instructions and 2, 993 to multi-cycle instructions, while the
2, 232 SPR faults are divided into 2, 219 single-cycle and 13
multi-cycle related faults. STL2, on the other hand, has a
total of 23, 814 UAR faults, of which 22, 683 are related to
single-cycle instructions and 1, 131 are related to multi-cycle
instructions, and the 108 SPR faults can be grouped into 98
single-cycle and 10 multi-cycle related faults. Finally, STL3
has 2, 853 faults of which 1, 367 are related to single-cycle
instructions and 1, 486 multi-cycle instructions; of all 47 SPR
faults, 11 are single-cycle and 36 are multi-cycle related faults.
The distinction between single-cycle and multi-cycle related
faults impacts the number of added instructions required to
detect the faults as well. As mentioned in Section III-A, single-
cycle related faults only need a store instruction to be detected,
with an additional overhead of one instruction for SPR faults
consisting in moving the value of the special register into
a general purpose register so that it can be stored. Multi-
cycle related faults, on the other hand, require to duplicate the
related multi-cycle instruction and change its operands to make
sure that the fault’s effects are propagated towards the final
cycles of said instruction, plus a store instruction to observe
the aforementioned effects at the primary outputs. Most not-
detected SPR faults belong to the multi-cycle category, due
to the fact that finding the correct operands to propagate the
error can be non trivial.

Looking at the HR group, the best results are achieved in the
pipeline registers in between the decode and the execute stage,
while the other stages pose some challenges. The main reason



for having a lower fault coverage stems from the fact that it
is not always possible to find the right set of instructions that
propagates the values from the pipeline stages to the primary
outputs. As for the number of added instructions, experimental
data shows that the best results are achieved when adding 5
instructions from the stuck-at fault related test program. It is
worth iterating the fact that not every detected fault needs
additional instructions, as some faults may cause errors at the
same register in the same time instant, thus requiring only one
set of added instructions.

V. CONCLUSIONS

This work introduces an automated and systematic method-
ology to detect transition delay faults whose effects have been
excited but not observed by already available STLs. Starting
from a library of self-test programs developed for stuck-at
faults, our approach defines strategies to detect faults based
on where their effects propagated and stopped inside the DUT,
dividing them into user accessible registers and hidden register
groups. Experimental results gathered on a RISC-V test case
show that we are able to detect almost every fault affecting
UARs, with the worst case scenario being a 98.76% UAR
fault coverage. Data on HR faults, on the other hand, show
that we are capable of detecting from 5% to more than 15%
of all HR faults. Such increase in fault coverage comes with
a reasonably small increase of the code size, with the worst
case scenario consisting in about 22% added code size for
UAR faults, while the contribution for HR faults is practically
negligible. The main strength of this work resides in the fact
that it is completely automated, hence not requiring any effort
from the test engineer, and can drastically enhance the quality
of the available STL.

Future works will include the refining of strategies to test
HR faults, in order to match as closely as possible the upper
bounds in recoverable fault coverage presented in [21].

REFERENCES

[1] P. Bernardi et al., “On-line functionally untestable fault identification
in embedded processor cores,” in Design, Automation & Test in Europe
Conference Exhibition (DATE), 2013.

[2] M. Psarakis et al., “Systematic software-based self-test for pipelined
processors,” in ACM/IEEE Design Automation Conference (DAC), 2006.

[3] ——, “Microprocessor Software-Based Self-Testing,” IEEE Design &
Test of Computers, 2010.

[4] N. Hage et al., “On Testing of Superscalar Processors in Functional
Mode for Delay Faults,” in International Conference on VLSI Design
and International Conference on Embedded Systems (VLSID), 2017.

[5] A. S. Oyeniran et al., “Implementation-Independent Functional Test for
Transition Delay Faults in Microprocessors,” in Euromicro Conference
on Digital System Design (DSD), 2020.

[6] K. Christou et al., “A Novel SBST Generation Technique for Path-Delay
Faults in Microprocessors Exploiting Gate- and RT-Level Descriptions,”
in IEEE VTS, April 2008.

[7] C. H. . Wen et al., “On a software-based self-test methodology and its
application,” in IEEE VTS, 2005.

[8] V. Singh et al., “Instruction-Based Self-Testing of Delay Faults in
Pipelined Processors,” IEEE Transactions on VLSI Systems, Nov 2006.

[9] P. Bernardi et al., “Development Flow for On-Line Core Self-Test of
Automotive Microcontrollers,” IEEE Transactions on Computers, 2016.

[10] Wei-Cheng Lai et al., “Test program synthesis for path delay faults in
microprocessor cores,” in IEEE ITC, 2000.

[11] P. Bernardi et al., “A Deterministic Methodology for Identifying Func-
tionally Untestable Path-Delay Faults in Microprocessor Cores,” in
International Workshop on MTV, Dec 2008.

[12] M. Grosso et al., “Software-Based Self-Test for Transition Faults: a Case
Study,” in IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), 2019.

[13] R. Cantoro et al., “In-field functional test of can bus controllers,” in
IEEE VTS, 2020.

[14] A. Apostolakis et al., “Test Program Generation for Communication
Peripherals in Processor-Based SoC Devices,” IEEE Design & Test of
Computers, vol. 26, no. 2, 2009.

[15] A. van de Goor et al., “Memory testing with a RISC microcontroller,”
in DATE, 2010.

[16] Hitex, “Microcontroller self-test libraries.” [Online]. Avail-
able: https://www.hitex.com/tools-components/software-components/
selftest-libraries-safety-libs/pro-sil-safetlib/

[17] ARM, “Enabling Our Partnership to Bring Safer Solutions to
the Market Faster.” [Online]. Available: https://developer.arm.com/
technologies/functional-safety

[18] Microchip Technology Inc., “16-bit CPU Self-Test Library
User’s Guide,” 2012. [Online]. Available: http://ww1.microchip.com/
downloads/en/DeviceDoc/52076a.pdf

[19] STMicroelectronics, “Guidelines for obtaining IEC 60335 Class B
certification for any STM32 application,” Mar 2016. [Online]. Available:
http://www.st.com/content/ccc/resource/technical/document/application\
_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/
jcr:content/translations/en.CD00290100.pdf

[20] J. Perez Acle et al., “Observability Solutions for In-Field Functional
Test of Processor-Based Systems,” Microprocessors and Micros., 2016.

[21] R. Cantoro et al., “Self-test libraries analysis for pipelined processors
transition fault coverage improvement,” in 2021 IEEE 27th International
Symposium on On-Line Testing and Robust System Design (IOLTS),
2021.

[22] C. Y. Chen et al., “Reinforcement-Learning-Based Test Program Gen-
eration for Software-Based Self-Test,” in IEEE Asian Test Symposium
(ATS), 2019.

[23] A. Ruospo et al., “On-line Testing for Autonomous Systems driven
by RISC-V Processor Design Verification,” in IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2019.

[24] A. Jasnetski et al., “On automatic software-based self-test program
generation based on high-level decision diagrams,” in IEEE LATS, 2016.

[25] ——, “Automated software-based self-test generation for microproces-
sors,” in International Conference MIXDES, 2017.

[26] A. Riefert et al., “A flexible framework for the automatic generation
of sbst programs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, pp. 3055–3066, 2016.

[27] ETH Zurich and Università di Bologna, “PULPino microcontroller
system.” [Online]. Available: https://github.com/pulp-platform/pulpino

[28] Silvaco, “Silvaco 45nm open cell library.” [Online]. Available: https:
//www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/


