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Optimization of Data and Energy Migrations in
Mini Data Centers for Carbon-Neutral

Computing
Marcos De Melo da Silva, Abdoulaye Gamatié, Gilles Sassatelli, Michael Poss and Michel Robert

Abstract—Due to large-scale applications and services, cloud computing infrastructures are experiencing an ever-increasing demand
for computing resources. At the same time, the overall power consumption of data centers has been rising beyond 1% of worldwide
electricity consumption. The usage of renewable energy in data centers contributes to decreasing their carbon footprint and overall
electricity costs. Several green-energy-aware resource allocation approaches have been studied recently. None of them takes
advantage of the joint migration of jobs and energy in green data centers to increase energy efficiency.
This paper presents an optimization approach for energy-efficient resource allocation in mini data centers. The observed momentum
around edge computing makes the design of geographically distributed mini data centers highly desirable. Our solution exploits both
virtual machines (VMs) and energy migrations between green compute nodes in mini data centers. These nodes have energy
harvesting, storage, and transport capabilities. They enable the migration of VMs and energy across different nodes. Compared to VM
allocation alone, joint-optimization of VM and energy allocation reduces utility electricity consumption by up to 22%. This reduction can
reach up to 28.5% for the same system when integrating less energy-efficient servers. The gains are demonstrated using simulation
and a Mixed Integer Linear Programming formulation for the resource allocation problem. Furthermore, we show how our solution
contributes to sustaining the energy consumption of old-generation and less efficient servers in mini data centers.

Index Terms—Mini data center, distributed computing, carbon neutrality, renewable energy, resource allocation, optimization,
energy-aware systems, workload allocation and scheduling

✦

1 INTRODUCTION

C LOUD computing and other large-scale applications
and services have caused an increase in energy needs

for infrastructures such as data centers over the past decade.
According to [1], the annual energy consumption of data
centers is estimated to be 200 terawatt-hours (TWh). This
corresponds to around 1% of the worldwide electricity
consumption [2] and 0.3% of global CO2 emissions. Given
the rising energy demand in data centers, innovative tech-
nologies (e.g., hyperscale infrastructures) and renewable
energies will become crucial. Major industrial actors such
as Google, Amazon, and Facebook claim to operate carbon-
neutral data centers thanks to Renewable Energy Credits [3],
which are non-physical assets linked to renewable energy
projects. Although this strategic incentive does contribute to
developing renewables, it does not imply that data centers
themselves are powered by renewables. Recently, however,
Google announced its intention to match its global data
center energy consumption to renewable energy production.
Its ultimate objective is to make its data centers operate on
decarbonized energy 24/7, 365 days a year [4]. Facebook
declared in its report on sustainability that its global opera-
tions will be 100% supported by renewable energy in a few
years [5]. Amazon has set the same goal for 2025; it plans to
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Poss and Michel Robert are with LIRMM, Univ. Montpellier and CNRS,
Montpellier, France.
E-mail: marcos.de-melo-da-silva@lirmm.fr, abdoulaye.gamatie@lirmm.fr,
sassatelli@lirmm.fr, michael.poss@lirmm.fr, michel.robert@umontpellier.fr

Manuscript received September 2021; revised May, 2022.

achieve net-zero carbon emissions by 2040 [6].
The above trend of incorporating renewable energies

into the power supply mix of data centers will keep on
developing. It does not only reduce the total power con-
sumption, but also the carbon emissions. To successfully
achieve this goal, the design of conventional grid-connected
data centers must be revisited. The new designs should be
robust to the intermittent nature of renewable energies while
minimizing the use of utility electricity. They should also
be scalable with respect to energy harvesting and workload
execution capabilities. Finally, they should guarantee low
response times to requests from client devices and users, as
expected in the edge computing context.

1.1 Limitations of current approaches

A notable part of state-of-the-art approaches [7] [8] consid-
ers data center designs consuming power from both the
utility grid and renewable sources. Each of the sources is
connected to the data center infrastructure via its centralized
entry point. Renewable energy is either directly used or
stored in large-capacity batteries for later usage [9]. The
key challenge consists in maximizing the use of renewable
energy, while minimizing that from the utility grid. It is
usually solved through various energy-aware scheduling
techniques applied to tasks, workloads or virtual machines
(VMs) [10]. In this paper, we claim that acting only upon
mapping and scheduling of software objects (tasks, work-
loads or VMs) has limited optimization potential in terms of
energy consumption.
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Indeed, data migrations required between computing
nodes are often I/O intensive as they usually involve several
operations on tasks and VMs: context saving before migra-
tion, transfer towards remote nodes, and context restoration
before resuming execution on destination nodes. Beyond
additional latencies, these operations incur a significant
energy consumption overhead of the server network [11]. As
shown in our study, combining energy migration with VM
migration between distributed servers, equipped each with
local energy harvesting and storage facilities, helps lowering
the required brown or non-green energy consumption.

1.2 Our solution : distributed mini data centers
Mini data centers (1–10 racks within 1–25 square meters
compute space [12]) are very promising solutions to meet
the aforementioned requirements, i.e., energy-efficiency,
scalability and low latency. They can execute up to 100
VMs each thanks to their efficient servers. Application do-
mains typically include industrial automation, environmen-
tal monitoring, oil and gas exploration, and, in general,
urban applications requiring local and real-time data pro-
cessing [13].

Tens of such mini data centers can be deployed and
interconnected at the city district level to form a powerful
data center. They can operate through a dedicated electrical
grid, and promote the use of renewable energy [14]. In
the present work, we extend this concept by exploiting the
opportunity to migrate both the workload and energy across
different computing nodes.

We consider a novel design approach for green data
centers, which is composed of distributed green nodes. The
green nodes are interconnected by two kinds of links, as
shown in Figure 1: i) a data link (in blue color), typically
Gigabit Ethernet, used for task or VM migrations between
the nodes; and ii) a power link (in red color), for energy
transfer between green nodes connected by a power cross-
bar [15], [16]. The power crossbar is a central component
in the design that makes it possible to control the electrical
topology of the energy network via software.

Fig. 1. Mesh network of green nodes in a mini data center.

Each green node includes a compute system, an en-
ergy harvester, a local energy storage, and a custom pro-
grammable power electronics system handling the energy
transfer between the different nodes.

To demonstrate the relevance of our solution, we address
the following questions:

• Q1): given a workload profile, how to dimension the main
energy harvesting and storage components of our proposed
system design to ensure its energy neutrality over a
whole year? Here, by energy neutrality, we mean how
the non-green energy used by a system to execute
a workload in scarce green energy periods can be
compensated for by the surplus of green energy
harvested in more favorable periods. This surplus
can be typically re-injected into the grid when the
energy storage is already full.

• Q2): how much non-green energy can be saved when
executing typical data center workloads in our proposed
system, i.e., supporting both data and energy migration
between execution nodes? The resulting non-green en-
ergy savings have a beneficial impact on the electric-
ity bill of data centers. The related expense can reach
several million dollars every year, representing a non
negligible percentage of the data center exploitation
costs. For this reason, electricity cost reduction for
data centers is still a major challenge [17].

• Q3): how does these non-green energy savings vary ac-
cording to i) different solar irradiation conditions (low
versus high irradiation), and ii) according to less energy-
efficient servers, typically relying on old-generation power
management technologies?

1.3 Our contribution
The contribution of the current work consists of an opti-
mization approach to maximize the use of renewable energy
by exploiting the unprecedented energy and data migration
capability of the proposed design. We answer the aforemen-
tioned questions by characterizing the energy gains across
different design scenarios.

• First, questions Q1) and Q2) are addressed by consid-
ering a battery and photovoltaic panel sizing model,
detailed in Appendix A. This model is used to solve
the energy optimization problem for four representa-
tive workload execution policies in the system: i) VM
execution without any migration, ii) VM execution
with data migration only, iii) VM execution with
energy migration only, and iv) VM execution with
both data and energy migration. These policies are
compared according to their efficiency in terms of
non-green energy usage, i.e., from the utility grid.

• To answer question Q3), we evaluate the above mi-
gration policies while considering low and high solar
irradiation conditions used in the south of France.
The irradiation data are obtained from a well-known
database [18]. We also assess the same scenarios
while modeling old-generation servers dissipating
more static power due to inefficient power manage-
ment mechanisms. Finally, we explore the impact of
energy harvesting and storage resource reduction on
the considered system. In particular, we reduced the
solar panels and battery capacity by 25% in the initial
energy neutral dimensioning.

• Given the outcomes of the above evaluations, we
show that execution policies with energy migration
can reduce by more than 50% the non-green energy
usage over a year in favorable and realistic solar
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irradiation conditions. This tendency is preserved
with either server wear or a reduction by 25% of
energy harvesting and storage resources w.r.t. a ref-
erence energy-neutral dimensioning. These results
offer interesting insights into the trade-off between
the cost and sustainability of data centers against
their expected energy-efficiency after deployment.

1.4 Outline of this paper
The remainder of this paper is organized as follows. Section
2 presents some related work on green data centers and
optimization techniques applied to the resource allocation
issues. Section 3 provides more details on the design prin-
ciples of our solution. It also deals with the modeling of
the target distributed computing nodes for the optimization
problem. Section 4 describes an application of Mixed Inte-
ger Linear Programming to formulate the energy-efficient
resource allocation problem in our proposed system design.
Section 5 evaluates the optimization solution through dif-
ferent use cases. Finally, Section 6 gives some concluding
remarks and future works perspectives. Appendices A and
B provide further technical details and complementary re-
sults.

2 RELATED WORK

We first discuss the management of green data centers.
The covered literature focuses on maximizing the use of
renewable energy over utility electricity, which is assumed
to be partly produced by conventional fossil fuels. Then, a
special focus is put on relevant optimisation techniques for
efficient resource allocation in data centers.

2.1 Green data center management
A variety of power management techniques has been inves-
tigated for reducing the energy consumption of computing
systems, from embedded multiprocessor systems to high-
performance computing domains [10]. At the software level,
these techniques cover workload allocation and scheduling
policies as well as dynamic load balancing technologies.
At the hardware level, well-established techniques include
dynamic voltage and frequency scaling (DVFS), dynamic
power management, etc. In the specific case of data centers,
the reduction of the non-negligible cooling-related power
has been also addressed [19], [20], [21].

The survey in [10] provides a comprehensive presen-
tation of so-called green-energy-aware approaches. It dis-
tinguishes workload scheduling from VM management.
The former approach focuses on job scheduling to find
favorable conditions (electricity price, carbon emission level,
renewable power availability) in a data center. Meanwhile,
the latter approach leverages a virtualized environment
through VM migration during execution. Our solution also
applies to VM migration w.r.t. renewable power availability.
It also integrates a supplementary dimension, i.e. energy
migration, which contributes to reducing the overall energy
cost.

Typical green-energy-aware approaches exploit task
scheduling, as illustrated in [22] and [23]. In [22], a multi-
objective co-evolutionary algorithm is advocated during the

scheduling. It enables configuring the execution nodes with
adequate voltage/frequency levels to match the renewable
energy supply. In this way, authors try to maximize both
the renewable energy utilization and the workloads quality
of service (QoS), i.e., higher task execution throughput and
lower energy consumption. In [23], a larger task scheduling
problem is considered for data centers. An evolutionary
multi-objective approach is applied to solve the problem
when both computing and cooling infrastructures are con-
trolled. The solution addresses three optimization dimen-
sions: power consumption, temperature, and QoS.

The problem of VM allocation to servers has also been
addressed by focusing on the server network activity [11].
The aim of this study is to reduce the number of active
switches in the network and balance the data traffic flows.
For this purpose, the relation between power consumption
and data routing is exploited. In [24], another approach
deals with energy-proportionality in large scale data centers
by lowering the power consumption of data center networks
while they are not being used. Different allocation policies
have been evaluated and analyzed through simulations.
An interesting insight from this study is that the size of
the networks plays a central role in achieving energy-
proportionality: the larger the data center networks, the
greater the energy-proportionality.

In [8], the authors propose a methodology for operation
planning to maximize the usage of locally harvested energy
in data centers. They define a mechanism to shift the energy
demand from low renewable energy production time slots
to higher energy production ones. This reduces the power
consumption from the utility grid. The shifting mechanism
relies on energy production prediction according to the
weather variation. The authors show their approach enables
an increase in renewable energy usage by 12%. A similar
study [7] recently shows that this usage can be increased
by 10%, while utility electricity energy consumption can
be reduced by 21%. It adopts a self-adaptive approach for
resource management in cloud computing. In the above
studies, the experimental results are obtained via simula-
tion. More generally, access to suitable tools for studying
data centers integrating renewable energy sources has been
a real challenge. The most popular solutions include the
research platforms proposed by Goiri et al. [25], [26], [27].
They mainly focus on solar energy.

While the aforementioned studies account for both grid
power supply and renewable energy sources, other studies
only consider the latter. For instance, in [28] the authors
deal with independent task scheduling in computing facil-
ities powered only by renewable energy sources. Using a
Python-based simulation environment, they evaluate differ-
ent scheduling heuristics within a predicted power envelope
to minimize the makespan in multicore systems. In [29],
a similar problem is addressed for data centers. A specific
task scheduling module is defined, which aims to maximize
QoS demands. It considers a so-called power envelope esti-
mated from weather forecasts and states of charge of energy
storage components. An interesting insight gained from this
study is more power does not necessarily lead to better QoS,
but knowing when the power is delivered is more relevant
for better outcomes.

The zero-carbon cloud (ZCCloud) project [30] deals with
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the exploitation of the so-called ”stranded power”. This
power is generated by renewable energy sources (e.g. wind,
solar) when the harvested power exceeds power demand
and cannot be stored by the grid due to limited storage
capacity. Instead of discarding this power at the source,
the project proposes an approach for using the stranded
power, hence reducing the carbon footprint of cloud com-
puting. Examples of issues investigated in the framework
of ZCCloud are: compute load shifting to better leverage
carbon-free energy, execution of applications under real-
time requirements (e.g. virtual reality, distributed video
analytics) on serverless cloud computing, and extension of
computing hardware lifetime.

A noteworthy approach is presented in the Datazero
project [9]. It aims at the zero-emission and robust manage-
ment of data centers using renewable energy sources. Unlike
the majority of existing approaches, Datazero advocates
a separate optimization of design objectives: objectives of
the IT services versus electrical management. A negotia-
tion module is defined between both to find a satisfactory
compromise with respect to their respective objectives and
constraints, e.g., high availability of IT services under the er-
ratic behavior of renewable energy sources. By doing so, the
authors avoid a challenging global optimization problem.

2.2 Optimization for data center resource allocation
An important optimization problem in cloud data centers
is the consolidation of VMs to physical servers. It consists
in placing VMs in as few servers as possible and putting
in sleep mode or shutting off idle servers. This reduces
the global power consumption without sacrificing QoS. The
objective is to enable high performance while ensuring that
Service Level Agreement (SLA) levels are met and operational
costs are minimized. Approaches for the VM placement
need to effectively answer the following questions: i) which
node(s) should host new VMs as well as VMs that are
being migrated? ii) when should a VM be migrated? iii)
which VMs should be migrated? The last two questions
are addressed by techniques that detect underutilized and
overloaded servers [31]. Finally, tackling the first question
requires the solution to an optimization problem involving
the allocation of limited server resources to the VMs.

The VM placement problem is usually formulated as
a multi-dimensional bin-packing problem, where servers are
modeled as bins and VMs as items. Multiple server re-
sources, e.g., CPU, memory, disk space, network bandwidth,
are allocated to the VMs. Despite their limited practical
applicability, some authors have proposed exact approaches
based on Integer Linear Programming (ILP) to solve the
problem [32], [33]. However, given the dynamic nature
of the problem, most approaches are heuristic algorithms.
Among those, [34], [35], [36] developed algorithms based on
classical bin-packing heuristics, e.g., first-fit decreasing and
best-fit decreasing. Meanwhile, as mentioned in the previous
section, [22], [23] investigated evolutionary algorithms. We
refer the interested reader to recent surveys [31], [37], [38]
for a more exhaustive literature coverage.

When comparing the existing ILP-based resource alloca-
tion solutions with ours, we observe that the adopted for-
mulations are often presented with the purpose of describ-
ing the problem. The formulations are actually not solved

in practice. Instead, the authors prefer to use heuristic
procedures. The main reason is the higher execution times
required by ILP solvers. In addition, such formulations only
tackle the problem of assigning VMs to servers and allocat-
ing the necessary resources at a given moment. They do not
take into account how the resource utilization change over
time. This last observation can be applied to the heuristic
approaches as well. In our case, we need to properly model
and simulate the whole computing infrastructure so that
we are able to capture its dynamic behaviour, i.e., how
the resource utilization and server states evolve over time,
which implies solving the problem for an extended period of
time. For that, we employ a time-indexed formulation that
not only performs the VMs placement and tracks resources,
but also models energy consumption and its flow.

2.3 Summary

Table 1 summarizes some relevant features of the discussed
studies in comparison with the present work. While our
approach aims at leveraging renewable energy sources in
mini data centers, it fundamentally differs from the above
studies in its additional optimization dimension brought by
energy transfer. The ability to trigger on-demand energy
transfers between distributed nodes is an important lever
(beyond data/workload migrations) for achieving the best
possible energy-efficient trade-offs depending on the node
requirements. This enables us to propose an optimization
model capable of finding the most favorable execution
of the system. By applying suitable data and energy mi-
grations between the nodes, we seek to minimize utility
power consumption, up to solely using renewable energy
for system execution. This matches expectations in mini
data centers [14]. In a seminal work [39], we leveraged the
energy migration principle to address the formal modeling
and analysis of a safety-critical application on a multicore
embedded system, under energy neutrality conditions. The
present work rather focuses on the optimization problem of
resource allocation for a different kind of system.

3 DESIGN PRINCIPLES OF OUR PROPOSAL

Our energy-neutral system design consists of n intercon-
nected green nodes, N = {1, . . . , n}. Each green node (see
Figure 2) includes a computing system such as a server blade,
an energy harvester consisting of photo-voltaic (PV) solar
panels, a battery for local energy storage, and a logic board
for managing the energy generation and storage, as well as
the transfer of energy between nodes.

A node operates primarily on the harvested energy. In
periods of low solar irradiation (e.g., night time, cloudy
and rainy days) in which the average energy demand is
higher than PV production, nodes consume the energy
accumulated in their batteries. In the event that a node has a
near-empty battery, which prevents continuing operation, it
can either transfer its workload to other green nodes or fetch
energy from remote green nodes (see Figure 3). Nodes can
therefore wire power ports together (or conversely isolate),
thereby connecting electrically remote components, e.g. a
given node’s battery with a distant node’s compute system.
This, in essence, means that energy can be migrated, i.e.
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TABLE 1
Summary of related work on green data center management
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Xu et al. (2020) [7] + + + + +
Cioara et al. (2015) [8] + + + + +
Pierson et al. (2019) [9] + + + + + +
Kong et al. (2012) [10] + + + + + + +
Wang et al. (2014) [11] + + +

Abbasi et al. (2012) [19] + + + +
Ganesh et al. (2013) [20] + + +

Li et al. (2020) [21] + + +
Lei et al. (2016) [22] + + + +

Nesmachnow et al. (2015) [23] + + + +
Goiri et al. (2013) [25]
Goiri et al. (2014) [26]
Goiri et al. (2015) [27]

+ + + + + +

Kassab et al. (2017) [28] + + + +
Caux et al. (2018) [29] + + + +
Chien et al. (2015) [30] + + + +

Ismaeel et al. (2018) [31] + + +
Ruiu et al. (2017) [24] + + +

Hwang et al. (2013) [32] + + + +
Tseng et al. (2015) [33] + + +

Beloglazov et al. (2011) [34] + + +
Jangiti et al. (2020) [35] + + +

Liu et al. (2020) [36] + + +
This work + + + + + + + + +

(a) Conceptual view

(b) On-roof prototype view

Fig. 2. Green node: server + batteries + solar panels + control logic.

the power can be either supplied remotely, or transferred
and stored before use. This is a main difference with energy
packet networks [40], which support the latter option only.

As last resort, in case none of the previous actions are
possible, the nodes will be forced to purchase energy from
the utility grid to which they are connected. We assume
that the nodes are connected through Ethernet wires to a
switch (see Figure 3). This allows inter-node communication
and ensures the connectivity to the existing computing and
storage infrastructure, e.g., database servers, file servers,
cloud managing servers.

The above energy-neutral system operates outdoor, for

Fig. 3. Simulated infrastructure for energy-neutral distributed computing.

instance placed on a rooftop for maximum solar irradiation.
The outdoor installation alongside the rather low compute
density (required for matching harvesting and compute
power consumption) makes for a cooling-friendly design,
in contrast to conventional data centers which require heavy
climate control equipment (HVAC). Experiments show that
even under high outside temperature a clever node thermal
design (using the enclosure as heatsink and having proper
positioning of vents) alongside few temperature-controlled
fans enables the system to maintain operation at tempera-
tures below 70°C under heavy stress.

In addition, the advocated design inherently favors a
modular system extension. Any new green node is inserted
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locally, thereby reducing drastically the necessary system-
wide modifications. Finally, a failure of any green node
could be easily bypassed through data or energy re-routing
within the networked system, according to its topological
connections. This naturally increases the resilience of the
whole system [16].

3.1 Modeling the system behavior

Beyond the physical infrastructure and its various compo-
nents, i.e., the static elements of our design, we also need to
model their behaviour and how they evolve over time, i.e.,
the dynamics of the system.

Indeed, each component mentioned above presents an
interdependent dynamic behaviour, for instance,

• the amount of energy generated by the PV pan-
els varies with the solar irradiation levels, which
depends on weather conditions, time of day, and
season;

• the amount of energy in the batteries varies as it is
consumed by the computational system or is charged
by the PV panels; and finally,

• the amount of energy drained by the computing
elements changes in response to the workload.

To represent this inherent dynamic behaviour of the
system, we define a planning time horizon H , which we
discretize into T time steps. Each time step corresponds to
an interval of τ seconds.

In the following sections we provide further details on
the elements that compose the proposed green computing
infrastructure, as well as introduce some of the notation
used in the remainder of the paper.

3.2 Modeling of solar panels and batteries

The amount of energy generated by the solar panels is
influenced both by the weather conditions (which affect the
local solar irradiation levels) and the physical characteristics
of PV panels, e.g., power conversion efficiency, dimensions,
etc. We apply the following equation to compute the energy,
in Watts-hour (Wh), produced in node i ∈ N by ρn solar
panels, each one having an area of ρs m2 and conversion
efficiency of ρe, during time step t ∈ H , with a solar
irradiation of ιt W/m2:

Gt
i = ιt × (ρe × ρn × ρs)× (τ/3600) (1)

The energy generated by the energy harvester is used
primarily to power the computational system. The produc-
tion surplus is stored in the batteries, whose capacity is
equal to Ui for each node i ∈ N . Furthermore, in order
to avoid excessive battery wear, we ensure that batteries
cannot be discharged below a safety level of Li = 0.15×Ui,
i.e., we always keep the batteries charged at least 15% of
their maximum capacity.

3.3 Modeling of energy migration efficiency

The migration of energy between nodes involves a chain
of different power electronics components (e.g., sev-
eral DC/DC converters, wires) with variable efficiencies

(DC/DC converters) and losses (wires resistances, solid-
state MOSFET switches, etc.). In our physical system proto-
type, all unit efficiencies have been measured so as to be able
to accurately model energy transfer losses for any arbitrary
path in the system.

Fig. 4. Energy migration paths among green nodes.

Figure 4 depicts two possible paths when transferring
energy between two nodes. In our physical system im-
plementation, the direct connection path (c1 → c2 → c3),
in which the energy stored in the battery of node 1 is
transferred directly to supply the computational module
of node 2, has an efficiency of 85.8%, which is rather high
in a source-to-sink configuration as typical industrial grade
AC/DC PSUs achieve similar efficiency at node-level only.
The indirect connection path (c1 → c2 → c4 → c5), in which
the energy stored in the battery of node 1 is transferred to
supply the computational module of node 3 using node 2 as
intermediary, has efficiency of 84.3%. Furthermore, for each
additional intermediary node the efficiency drops by 1.8%.
Overall, the actual energy migration capability incurs little
additional losses compared to node-local functioning, which
itself has efficiency similar to that of conventional compute
nodes.

3.4 Modeling of computing resources and workloads
The computing system installed in a green node is char-
acterized by its available processing, storage and network
resources and an idle power consumption and a dynamic
power consumption that vary with the computational load
being executed. Each node i ∈ N has RM

i MB of RAM,
RD

i GB of disk storage, a network bandwidth of RB
i Mb/s,

and CPU load capacity RC
i . Please note that instead of

representing the CPU resource capacity in MIPS (million
instructions per second), as in [34], [36], we define an
utilization ratio in the interval [0.0, 1.0], where 0.0 means
that the machine is idle and 1.0 means that the CPU is
100% utilized. Furthermore, for the sake of simplicity, this
utilization measure is not applied in a per-core basis, but
for the whole processing unit. As a consequence, a VM can
utilize 100% of all the cores available in a computing node.
With respect to the energy consumption of a node, for a
given idle and full load power profile and a time interval of
τ seconds, the idle energy consumption is equal to εI Wh
and, the dynamic consumption is equal to εP Wh. We note
that the green nodes considered in a mini data center can be
either homogeneous or heterogeneous in terms of compute
resources, solar panel and battery capacities.

The computational workload to be executed on the green
nodes consists of m VMs, J = {1, . . . ,m}. Each VM j ∈ J
has a requirement in terms of processing capacity, as well
as memory, disk, and network bandwidth resources. We
denote V r

j , for r ∈ {M,D,B}, the memory, disk, and
bandwidth resources, respectively, required by VM j ∈ J .



DRAFT MANUSCRIPT ACCEPTED IN JUL. 2022 FOR PUBLICATION IN IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 7

As for the CPU resources, the amount of computational
work carried by each VM changes over time; hence, we have
that Ct

j is the average CPU load imposed by VM j ∈ J
during time step t ∈ H .

4 MILP FORMULATION FOR THE ENERGY-
EFFICIENT RESOURCE ALLOCATION PROBLEM

The energy-neutral resource allocation optimization prob-
lem we need to solve concerns the distributed computing in-
frastructure designed according to the principles described
in the previous section. It consists in allocating m VMs to
n green-energy nodes, such that the processing, memory,
disk, and bandwidth resource demands of each VM are met
without overloading the machines. Nodes are allowed to
share energy among themselves or buy it from the utility
in order to process their workloads. Acceptable levels of
QoS are ensured by allowing VMs to be migrated between
nodes. The objective is to minimize the amount of non-green
energy bought from the utility grid and avoid energy waste
by performing unnecessary VMs and energy migrations
between nodes.

In this section we propose a Mixed Integer Linear Pro-
gramming (MILP) [41], [42] formulation for the resource
allocation problem. We first present our working assump-
tions. Next, we summarize the model parameters, define
the decision variables and introduce the mathematical for-
mulation of the problem. Then, we describe the energy cost
estimation related to VM migrations used within the model.
Finally, we explain how different variants of the problem
can be obtained by incorporating or eliminating certain
families of constraints from the formulation. In addition, we
provide implementation details and solution approaches.

4.1 Working assumptions
Considering the dynamic nature of the modeled system and
the need to represent how its component’s states change
over time, we formulate the resources allocation problem as
a time-indexed MILP. To complement the problem descrip-
tion, and for ease of presentation, we list below our working
assumptions on the system’s components.

1) We model the changing aspects of the system by
considering the optimization problem over a plan-
ning horizon H = {1, . . . , T}.

2) The VMs exist during the whole planning horizon.
Those that are not performing any work are as-
sumed to be in an idle state in which they do not
consume resources.

3) The CPU utilization Ct
j of each VM j ∈ J is known

∀t ∈ H .
4) The dynamic energy consumption of each node is

based on CPU utilization level, which is directly
affected by the computational load of the VMs as-
signed to the node.

5) The initial energy Ii stored in the battery of each
node i ∈ N is known.

6) The safe discharge limit Li and the maximum storage
capacity Ui of the battery installed in the node i ∈ N
are known.

7) The energy gain Gt
i of each node i ∈ N is known

∀t ∈ H .

8) The efficiency when transferring energy among nodes
Eik, ∀i, k ∈ N is know.

9) VMs can be migrated among nodes, and the energy
cost for the source and target servers are µs and
µd, respectively. In other words, the costs of VM
context saving and restoring during VM migrations
are captured. We do not take into account the energy
consumed by switches and other network equip-
ment, as it would complicate the problem even fur-
ther. ILP optimization provides high-quality results
at the expense of high computation time. It is a
good fit for moderate complexity problems, which
correspond to the mini data centers and workloads
targeted in this paper (5 nodes and 25 VMs). Larger
scale systems are more tractable with heuristics as
found in some of related works.

4.2 Problem formulation

We summarize in Table 2 the parameters tied to the sys-
tem’s components described in the previous sections, and
introduce the sets and new parameters that are specific to
our formulation.

TABLE 2
Sets and parameters used in the problem formulation

Sets Description

H Planning horizon
T Number of time step in planning horizon H
N Set of nodes
J Set of VMs
Ri Resources set of node i ∈ N
Vj Resource requirements set of VM j ∈ J

Parameters Description

Ct
j CPU utilization of VM j ∈ J at time step t ∈ H

Eik Energy transfer efficiency between nodes i, k ∈ N
Gt

i Energy generated in node i ∈ N at time step t ∈ H
Ii Initial amount of energy stored in node i ∈ N
Li Safety discharge level of battery in node i ∈ N
Ui Maximum capacity of battery in node i ∈ N
εI Node’s idle energy consumption
εP Additional energy consumption when node’s at 100%
λ Energy loss for transferring 1 Wh between nodes
µ Total energy cost for migrating a VM
µd Target server energy cost for migrating a VM
µs Source server energy cost for migrating a VM
ν Penalization for server CPU overloading
ϕ Energy loss for injecting 1 Wh in the utility grid

Decision variables. We define the following decision
variables:

• xt
ij =


1, if VM j ∈ J is running on node i ∈ N

during time step t ∈ H.

0, otherwise

• ztikj =


1, if VM j ∈ J is transferred from node
i ∈ N to node k ∈ N at the beginning
of time step t ∈ H.

0, otherwise
• f t

ik ≥ 0, indicates the amount of energy transferred
from node i ∈ N to node k ∈ N during time step
t ∈ H .
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• Li ≤ wt
i ≤ Ui, indicates the level of energy on the

battery of node i ∈ N at the end of time step t ∈
H ∪ {0}.

• bti ≥ 0, indicates the amount of energy bought by
node i ∈ N during time step i ∈ H .

• qti ≥ 0, indicates the amount of energy injected into
the utility grid by node i ∈ N during time step i ∈
H .

• vti ≥ 0, measures the amount of CPU capacity over-
load in node i ∈ N during time step i ∈ H .

Objective function and constraints. Our mathematical
formulation consists of the objective function defined below:

Minimize λ
∑
t∈H

∑
i,k∈N

f t
ik + µ

∑
t∈H

∑
i,k∈N

∑
j∈J

ztikj∑
t∈H

∑
i∈N

bti + ϕ
∑
t∈H

∑
i∈N

qti + ν
∑
t∈H

∑
i∈N

vti
(Obj1)

which is subject to the following constraints:

wt
i = wt−1

i + bti +Gt
i +

∑
k∈N

Ekif
t
ki

−
∑

k ̸=i∈N

f t
ik − µs

∑
k∈N

∑
j∈J

ztikj − µd

∑
k∈N

∑
j∈J

ztkij

− (εI + εP
∑
j∈J

Ct
jx

t
ij)− qti ∀t ∈ H, i ∈ N

(2)

w0
i = Ii ∀i ∈ N (3)∑

j∈J

Ct
jx

t
ij ≤ RC

i + vti ∀t ∈ H, i ∈ N (4)∑
i∈N

xt
ij = 1 ∀t ∈ H, j ∈ J (5)

ztikj ≥ xt−1
ij + xt

kj − 1 ∀t ≥ 2, j ∈ J, i ̸= k ∈ N (6)

Li ≤ wt
i ≤ Ui ∀t ∈ H, i ∈ N (7)

xt
ij , z

t
ikj ∈ {0, 1} ∀t ∈ H, j ∈ J, i ̸= k ∈ N (8)

bti, q
t
i , v

t
i , f

t
ik ≥ 0 ∀t ∈ H, i ̸= k ∈ N (9)

The objective function (Obj1) seeks to minimize the
energy losses incurred when performing energy and VM
migrations among nodes, the total amount of energy bought
from the utility grid, the energy losses associated with the
surplus energy generated that is injected into the utility
grid, and the penalties for over-utilization of processing
resources, respectively.

Constraints (2)-(7) model the characteristics of the prob-
lem related to resources allocation/VM scheduling, battery
charge levels, energy generation/consumption, and energy
flow conservation. More specifically, constraints (3) set up
the initial state of each node’s battery, i.e., the batteries
charge levels at the beginning of the simulation period. Sim-
ilarly, constraints (2) define how the charge of the batteries
vary between two consecutive time steps (∀t ∈ H , t ≥ 1)
by taking into account the batteries state in the previous
time step (t − 1) and the flow of energy from other sources
during the current time step (t), i.e., the energy generated
by the solar panels, the energy transferred among nodes, the
energy bought from and inject in the grid, and the energy
utilized by the computational workload.

CPU resource allocation is modeled by constraints (4).
Note that we are not explicitly enforcing the allocation of
other computational resources as memory, disk and network
bandwidth. The reason is that we are interested mainly in
correctly modeling the additional energy consumption due
to increased CPU utilization. Nevertheless, these additional
resources can be easy incorporated by adding the following
constraints:∑

j∈J

V r
j x

t
ij ≤ Rr

i ∀t ∈ H, i ∈ N, r ∈ {M,D,B} (10)

The scheduling of the VMs to nodes is ensured by con-
straints (5), i.e., they ensure that during all time steps
t ∈ H , each VM j ∈ J should be assigned to one of the
computational nodes i ∈ N . The number of VM migrations
among nodes is accounted for in constraints (6), which
checks whether a VM changes from computational node
between time steps t − 1 and t. The batteries’ maximum
capacity and discharge safety levels are enforced by con-
straints (7). Finally, constraints (8)-(9) define the domains of
the variables.

In the energy flow conservation constraint (2), a node’s
computational energy consumption (εI + εP

∑
j∈J Ct

jx
t
ij) is

described using the model proposed by [43]. This model
assumes that the server power consumption and CPU uti-
lization have a linear relationship.

4.3 Estimating the energy cost of VM migration

Several authors have proposed models for estimating the
energy cost of migrating VMs in cloud environments [44],
[45], [46], [47]. Such models present varying levels of pre-
cision and modeling complexity, with the more descriptive
and complex ones achieving better precision at the expense
of extra parameter estimation and model tuning efforts [47].

Due to its simplicity and reasonable precision, we chose
to implement the model by [45]. As pointed out by the
authors, VM migration is an I/O intensive task and also the
most energy expensive one when transmitting and receiving
data over the network. Indeed, their model is based on
the assumption that the energy cost of performing VM
migrations can be determined by the amount of data that
is transferred during the migration process. The energy
consumption by the source and destination hosts increases
linearly with the network traffic, as described in the follow-
ing equation:

Emig = Esour + Edest = (γs + γd)Vmig + (κs + κd) (11)

where Esour is the energy consumed by the source host and
Edest is the energy (in joules) spent by the destination host
for transferring Vmig megabytes of data. γs, γd, κs, and κd

are model parameters to be trained. Equation (11) can be
further simplified if both source and destination hosts are
homogeneous:

Emig = Esour + Edest = γVmig + κ (12)

Then, the MILP formulation (Obj1), (2)-(9) parameters re-
lated to VM migration are defined as µ = Emig , µs = Esour ,
and µd = Edest. In addition, in our simulations we use
γ = 0.512, κ = 20.165, as in [45].
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4.4 Resource problem variants and implementation

The formulation (Obj1), (2)-(9) can be adjusted to tackle
different variants of the resource allocation problem in our
proposed distributed infrastructure. In the following, we
describe how these variants are obtained and how we solve
them.

Resource allocation problem variants. By adding or
removing variables and constraints from the model (Obj1),
(2)-(9) such that energy/data migrations are permitted or
not generates four variants of the problem:

• Energy+Data Migrations: this is the default formu-
lation and includes all variables, objective func-
tion (Obj1) and constraints (2)-(9).

• Data Migration Only: this variant is obtained by re-
moving variables f t

ik,∀t ∈ H, i, k ∈ N . This model
is a suitable baseline for the majority of state-of-the-
art solutions.

• Energy Migration Only: in this variant no data migra-
tion is allowed. This is defined by removing the vari-
ables ztikj ,∀t ∈ H, i, k ∈ N, j ∈ J and constraint (6),
while adding the binary variables yij ,∀i ∈ N, j ∈ J ,
and the following constraints:∑

i∈N

yij = 1 ∀j ∈ J (13)

∑
t∈H

xt
ij = Tyij ∀i ∈ N, j ∈ J (14)

which together ensure that each VM is assigned to a
node for the whole planning horizon. Each variable
yij is equal to 1 if VM j ∈ J is assigned in to node
i ∈ N , 0 otherwise.

• No Migration: this is the simplest one. It includes the
two previous modifications, i.e., removing variables
f t
ik, and ztikj ,∀t ∈ H, i, k ∈ N, j ∈ J , and con-

straints (6), while adding variables yij ,∀i ∈ N, j ∈ J
and constraints (13)-(14).

Rolling-Horizon heuristic. While the scenarios with no
migrations or energy migration only can be solved in a
couple of hours when simulating an infrastructure with 5
nodes and 25 VMs for a planning horizon of one week, the
solution times become prohibitively high for the other two
scenarios which involves data migration. The reason is the
large number of variables ztikj ,∀t ∈ H, i, k ∈ N, j ∈ J
and constraints (6) being generated. To cope with such large
models, we decided to apply a rolling-horizon heuristic
approach [48], [49]. This heuristic consists in splitting the
planning horizon in smaller pieces, and solving them se-
quentially. We call each planning horizon fragment a frame.

Implementation details. The formulations, heuristic and
other algorithms were coded in Julia1 (version 1.5.4) using
the embedded modeling language for mathematical opti-
mization JuMP2 [50] and executed on an Intel® Xeon®
2.2 GHz CPU, with 64.0 GB of RAM running under
GNU/Linux Ubuntu 14.04 (kernel 4.4.0). Gurobi3 9.0.3 was
used as the LP and MILP solver. Four computation threads

1. https://julialang.org
2. https://jump.dev/
3. https://www.gurobi.com/

were used when simulating each scenario. In our rolling-
horizon heuristic, each frame has 24 time steps.

We present in Figure 5 the average computational times
obtained when solving the proposed formulations, either
by using the rolling-horizon heuristic or applying the MILP
solver directly, for all the case studies analysed in the next
sections. As expected, the scenarios without any migrations
are the fastest, and the optimal solutions are obtained in less
than 10 minutes. Next, using the rolling-horizon heuristic,
on average one hour is needed to compute the solutions
for the scenarios with energy and data migrations. In these
two scenarios, no significant variation can be observed for
different periods of the year. The most time consuming sce-
narios are those with data migration only. On average, five
hours of computation using the rolling-horizon heuristic
are necessary for a complete solution. The scenarios with
energy migration only take on average two hours to prove
the optimality of solutions. Those with both energy and data
migrations require four hours. We note that the solutions in
the former scenarios are optimal, while those in the latter
are heuristic, i.e., approximate and not necessarily optimal.

Fig. 5. Average solution times of the four formulations considering all
study cases.

5 CASE STUDY

In this section, we evaluate our resource allocation solution
through different use cases4. We first describe the exper-
imental setup. Then, we evaluate the gains in non-green
energy enabled by four execution policies.

5.1 Experimental setup
For our case studies, we simulated a mini data center
consisting of 5 nodes, whose maximum power consumption
is 500 W and the idle power consumption is either 50 W or
100 W. The nodes are connected as depicted in Figure 3. We
selected 5 nodes in our experiments for simulation complex-
ity reasons. This is due to the costly constraints resolution
induced by the applied global ILP optimization problem.
The other infrastructure and formulation parameter values
are described in Table 3.

Beyond the above 5 nodes, a centralized computer is
used to perform the ILP solver. The cost of this computer
is considered as constant and is ignored in the remainder of
this case study.

Irradiation and VMs CPU utilization data. Historical
irradiation data was retrieved with the aid of the European

4. Some complementary evaluation scenarios of the use cases are
presented in Appendix B.
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TABLE 3
Parameter values used in our simulations

Model parameters Values

n 5 nodes
m 25 VMs
τ 5 minutes
T 2016 time steps (7 days)

Vmig 8192 MB (Equation 12)
λ 1− (

∑n
i=1

∑n
k=1,k ̸=i Eik)/n(n− 1)

µ Emig (Equation 12)
µd Edest (Equation 12)
µs Esour (Equation 12)
ν 1000
ϕ 0.5

Nodes parameters Values

εI 4.17 Wh (50 W)
εP 37.50 Wh (500 W)
Ii 0.5× Ui,∀i ∈ N

PV panels1 parameters Values

ρs 1.59 m2

ρe 0.19
(1) Corresponds to panels NeON 2 by LG, model LG325N1C-A5.

Photo-voltaic Geographical Information System (PVGIS) [18].
The hourly irradiation datasets for Montpellier, France (Lat.
43.611, Long. 3.876) for the period 2005-2016 (Database
PVGIS-SARAH, all available years) were used to compute
the energy generated by each node. We also performed
additional studies for a location in Africa: Mali (Lat. 17.159,
Long. -3.340). Please note that the irradiation data points
in these datasets have a one hour interval to make it com-
patible with our time step interval τ of 5 minutes we used
piece-wise linear interpolation.

The workload of the VMs are simulated using real VMs
workload traces from the CoMon project, a monitoring
infrastructure for PlanetLab [51]. We used the same traces
dataset5 as [34], [36]. This traces dataset consists of the CPU
utilization by a few thousand VMs from servers located at
more than 500 places around the world that were recorded
in the period of Mars and April of 2011. Each data point in
a VM trace corresponds to a 5 minutes interval of utilization
measurement.

From the thousand of traces available in this dataset,
we selected 25 for which the associated VMs are active for
at least the simulated time horizon, i.e., 7 days (2016 time
steps). It is worth noting that our time step duration τ is
the same as the measurement interval used when creating
those traces, i.e., 5 minutes. The 25 VMs we chose for our
simulation have a mean of 2.23, a standard deviation of 0.50
and a variance of 0.25.

Batteries and PV panels sizing. Using the MILP sizing
formulation (Obj2)-(25) presented in Appendix A combined
with the CPU and irradiation database described above,
we computed the optimal sizing of batteries capacities and
amount of PV panels to be installed so that the proposed
computational infrastructure would be neutral in terms of
non-green energy.

For the system consisting of 5 nodes, each with an
idle power consumption of 50 W and maximum power

5. https://github.com/beloglazov/planetlab-workload-traces

consumption of 500 W, planning horizon of one week (2016
time steps with a 5 minutes granularity) and the average
irradiation for Montpellier (Lat. 43.611, Long. 3.876), using
all the 624 weeks (2005-2016) of available data, the optimal
sizing for the whole system consists of 20 PV panels and a
combined battery capacity of 25 kWh.

In the next, we evaluate the resource allocation policies
introduced in Section 4.4. The simulated workloads are exe-
cuted in a best-effort manner: the makespan of the execution
is identical for all policies, while the computational load of
the computing nodes may vary slightly depending on the
VM migrations applied by the optimizer. The energy trans-
fer between the five nodes has an impact on the amount of
non-green energy used from the utility grid, when batteries
are empty. Thus, we compare the four resource allocation
policies based on the amount of non-green energy needed
to fulfill the makespan.

5.2 Use case 1: energy-neutral heterogeneous system
We discuss the results obtained with the optimally sized
heterogeneous system consisting of 5 nodes, each with an
idle power consumption of 50 W and maximum power
consumption of 500 W, the PV panels and batteries are
distributed as follows: 2 big nodes with 7 PV panels and
battery capacity of 8 kWh in each one, and 3 little nodes
with 2 PV panels and battery capacity of 3 kWh in each one.

(a) Low irradiation

(b) High irradiation

Fig. 6. Use case 1: normalized results for low and high irradiation
periods.

The results for a planning horizon of one week and
periods of low and high irradiation over a whole year are
presented in the plots depicted in Figures 6a-6b. In both
irradiation conditions, the execution policies integrating
energy migration provide the best outcome in terms of non-
green energy reduction, compared to the policy without
any migration. In particular, the high irradiation scenario
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(a) May (b) November

Fig. 7. Use case 1: scheduling of VMs to nodes with high irradiation, during two different months.

enables up to 82.5% reduction on average over the year
thanks to the larger amount of harvested green energy. In
the same scenario, the execution policy relying merely on
data migration provides only up to 59.8% reduction on
average over the year. This corresponds to 22% less savings
than the energy migration based execution policy.

We should point out that the marginal savings observed
when using only data migration, for the period of low
irradiation in the months of January and April, are due
to errors introduced when applying the rolling-horizon
heuristic approach. If solved to optimality, the model which
employs both energy and data migrations would have at
most the same cost as the model using data migration only,
as the former is more general than the latter in terms of
migration options. Table 4 shows the annual energy bought
from and injected into the utility grid by each one of the
four tested policies, considering both periods of low and
high irradiation.

TABLE 4
Annual average energy bought from and energy injected into utility grid

for periods of low and high irradiation.

Energy (kWh) E.+D. D. Only E. Only None

Bought - Low 810.23 838.18 796.02 933.27
Bought - High 56.52 130.03 56.50 323.57

Total 866.75 968.22 852.52 1256.84
Injected - Low 206.90 269.86 206.08 359.60

Injected - High 690.50 830.02 691.09 1031.81
Total 897.40 1099.89 897.17 1391.40

Energy Migrated – Low 259.03 - 178.39 -
Energy Migrated – High 370.07 - 370.91 -

Total 629.10 - 549.30 -
VM Migrations – Low 2018 5570 - -

VM Migrations – High 2036 5773 - -
Total 4054 11343 - -

More generally, when the amount of harvested green
energy is lower, the generated scheduling solution exploits

VMs migration as much as possible to meet the system ex-
ecution requirements. For illustration, let us consider again
the high irradiation scenario depicted in Figure 6b, where
both energy and VMs migrations are enabled.

Figures 7a-7b detail the scheduling of the 25 VMs on the
five nodes for the months of May and November, under
their best energy harvesting conditions. Note that May and
November are two typical months during which the solar
irradiation is respectively high and low in Montpellier. As
a result, we can observe, through the figures, the system
behavior in the presence of potential surplus and deficit of
energy production.

Here, each row describes the temporal execution of a
VM on the five nodes. For instance, in Figure 7b VM 13
is executed on Node 04 without any migration, while in
Figure 7a it is migrated three times during its execution (on
Node 04, Node 03 and Node 02).

Globally, we observe that VMs migrations tend to be
more frequent in the right-hand half of the execution time-
line for both months. This can be explained by the fact that
the overall VMs average CPU utilization for the first 84
hours, increases by 26% (from 1.98 to 2.49) when compared
to second half of the simulated period. For instance, let us
focus on the activity on Node 02, one of the two biggest
nodes in terms of energy harvesting and storage capacity.
Figures 8a and 8b show the CPU load and energy evolution
profiles for this node in the scenario with energy and VMs
migrations, and high irradiation period for the months of
May and November. We observe an increase in its asso-
ciated average load after the 84th hour, by 27% and 23%,
respectively, in these two months. This is mainly due to the
increase in the VMs average CPU utilization, which forces
frequent migrations of VMs to avoid CPU over-assignment
in some nodes. In addition, to compensate for the extra
energy production and storage capacity, CPU intensive VMs
may be migrated to Node 02 from the other nodes with less
energy storage to successfully achieve VM execution.
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(a) May (b) November

Fig. 8. Use case 1: node 2 load and energy evolution profiles for May and November under high irradiation.

Figure 8a shows that due to the higher and stable ir-
radiation in May there is no need to buy energy from the
utility grid. On the other hand, for November, as illustrated
in Figure 8b, we obtain a mixed profile in which energy is
both bought and injected back into the utility grid.

5.3 Use case 2: accounting for old-generation servers
Most data center operators, such as those mentioned in
the introduction section, regularly update the IT hardware,
notably for benefiting from higher energy efficiency of last-
generation silicon. This indeed results in higher mid-term
benefits, i.e. lesser power consumption for similar sold
compute service. Nevertheless, this may not be a problem
if the ”free” harvested renewable energy enables to sustain
the full utilization of these old generation servers.

In the current use case, we therefore explore the out-
comes of the previous energy-neutral system dimensioning
when considering old generation servers. The rest of the
system is kept identical as in the use case 1 (see Section 5.2).
However, we degrade the static power consumption of each
server by increasing its idle power consumption to 100 W,
while keeping its maximum power consumption of 500 W.

The results for a planning horizon of one week and
periods of high irradiation over a whole year are presented
in Figure 9. We observe that despite the degradation of the
static power consumption of the servers, the overall energy-
efficiency of the system is almost preserved thanks to the
energy migration scheduling policies. The current design
enables up to 77.5% reduction of the bought energy on
average over the year compared to the no-migration policy.
On the other hand, the policy based on data migration
reduces this energy by only 49% on average over the year,
compared to the no-migration policy.

Fig. 9. Use case 2: results for high irradiation period.

5.4 Use case 3: cost-effective heterogeneous system

To devise an energy-neutral system over a whole year, we
consider the same sizing of batteries and PV panels as in
Section 5.1. In this new use case, we are interested in the cost
reduction of the considered energy infrastructure. For this
purpose, we explore an alternative system dimensioning by
reducing the battery and PV panel components compared
to use case 1 (see Section 5.2). Therefore, the total amount of
PV panels and battery capacities installed in use case 1 are
now reduced by 25%.

These energy resources are now distributed in the fol-
lowing way: 2 big nodes with 5 and 4 PV panels, respec-
tively, and battery capacity of 6 kWh in each one, and 3 little
nodes with 1 PV panel and battery capacity of 1 kWh in
each one.

The results for a planning horizon of one week during a
period of high irradiation over a whole year is presented in
Figure 10. The lighter system dimensioning considered here
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reduces by 66% the bought energy reduction on average
over the year, compared to the no-migration policy. This is
only 17% less than the energy reduction obtained with the
same policy in use case 1. On the other hand, the policy
leveraging data migration only in use case 3 reduces the
bought energy by 47% on average over the year, compared
to the no-migration policy.

Fig. 10. Use case 3: results for high irradiation period.

6 CONCLUSION AND PERSPECTIVES

In this paper, we presented an optimization approach for
the energy-efficient resource allocation of data centers inte-
grating renewable energy. We promoted a novel distributed
system design where both data (or VMs) and energy migra-
tions are permitted. We formulated and solved the resource
allocation problem by adopting Mixed Integer Linear Pro-
gramming combined with a rolling horizon heuristic. We
validated our proposal on a representative case study, by
analyzing real VMs workload traces and accounting for old
generation and less energy-efficient servers. We showed the
relevance of our solution for reducing non-green energy
consumption and sustaining computing equipment.

In particular, compared to usual resource allocation poli-
cies relying on data migration, our solution provides up
to 22% reduction of the non-green energy consumption
thanks to its energy migration capability. When replacing
the servers of the baseline system with old-generation and
less energy-efficient servers, this reduction can reach up
to 28.5%. This favors the sustainability of the computing
equipment at a reasonable exploitation cost in data centers.
Further gains could be foreseen with system deployment in
geographical areas with higher solar irradiation conditions,
such as the Saharan zone. Appendix B reports the evaluation
in Mali (West-Africa), of the same system design as for use
case 1. Figure 12 shows that even under low irradiation, the
reduction of the non-green energy is notable.

Future work will focus on the reduction of the MILP
resolution complexity used in our approach. In particular,
we plan to extend our resource allocation framework with
further heuristics. On the other hand, investigating self-
adaptive management approaches such as [7], capable of
leveraging energy migration and online prediction of solar
irradiation, is a compelling research direction. More gener-
ally, the solution presented in the current study at a mini
data center level could be extended between multiple mini
data centers. Indeed in a realistic urban setup several such

mini clusters could be within a limited geographical area,
with therefore negligible overheads when exchanging work-
loads. A straightforward abstraction consists in modeling
each entire mini data center as a single green compute node
with an aggregated energy profile. Solving could either be
handled as per the MILP formulation proposed in this paper
or alternatively using heuristics in case the intended number
of participating mini data centers is large.
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APPENDIX A
BATTERY AND PV PANELS SIZING MODEL

In the MILP formulation (Obj1), (2)-(9) presented in Section
4.2, the number of photovoltaic panels used for computing
the amount of solar energy that is injected into the nodes
and the capacity of the batteries installed in each node are
input parameters that need to be informed by the user. We
will now describe an MILP formulation that can be applied
to compute such parameters.

The proposed sizing model can be seen as an extension
of the scheduling MILP model (Obj1), (2)-(9). Therefore, in
addition to the decision variables (f, q, v, x, w, and z), we
also need the following variables:

• ui ≥ 0 : battery capacity to be used in node i.
• gi ≥ 0 : amount of PV panels to be used in node i.

When sizing the batteries we ensure that they cannot be
discharged below a safety level σ = 0.15, i.e., 15%.

The sizing formulation objective function is:

Minimize
∑
i∈N

gi +
∑
i∈N

ui + λ
∑
t∈H

∑
i,k∈N

f t
ik

+ µ
∑
t∈H

∑
i,k∈N

∑
j∈J

ztikj + ϕ
∑
t∈H

∑
i∈N

qti

+ ν
∑
t∈H

∑
i∈N

vti

(Obj2)

and is subject to the following constraints:
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i = wt−1

i +Gt
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− (εI + εP
∑
j∈J

Ct
jx

t
ij) ∀t ∈ H, i ∈ N

(15)
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i ≥ σui ∀i ∈ N (16)

wt
i ≥ σui ∀t ∈ H, i ∈ N (17)

wt
i ≤ ui ∀t ∈ H, i ∈ N (18)
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i ≥ w0

i − φ
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i + vti ∀t ∈ H, i ∈ N (20)∑
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ij = 1 ∀t ∈ H, j ∈ J (21)
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xt
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gi, ui ≥ 0 ∀i ∈ N (24)

bti, q
t
i , v

t
i , w

t
i , f

t
ik ≥ 0 ∀t ∈ H, i ̸= k ∈ N (25)

The objective function (Obj2) seeks to minimize the sum
of battery capacities, the number of installed solar panels,
and similar to the formulation (Obj1), (2)-(9), minimizes: i)
the energy losses incurred when performing energy or VM
migrations between nodes, ii) the energy losses associated
with the surplus energy generated that is injected into the
utility grid, and iii) the penalties for over-utilization of
processing resources, respectively.
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Constraint (15) defines how the state of the batteries is
updated each time step t ∈ H . The batteries initial charge,
safe discharge levels, maximum capacity and remaining
charge levels are enforced by constraints (16)-(19), respec-
tively. The constraints related to CPU resource allocation
(20), and the scheduling of the VMs to nodes (21) and
(22) are the same as in model (Obj1), (2)-(9). Finally, con-
straints (23)-(25) define the domains of the variables.

APPENDIX B
ALTERNATIVE USE CASE EVALUATIONS

In the sequel, we briefly illustrate two additional evalua-
tions of our proposal, under different setups: an homoge-
neous system resource dimensioning and the deployment
of the system on a different geographical zone.

B.1 Homogeneous system under energy-neutrality

We discuss the results obtained with an optimally sized
homogeneous system consisting of 5 green nodes, each with
an idle power consumption of 50 W and maximum power
consumption of 500 W. The PV panels and batteries are
equally distributed among the 5 green nodes: 4 PV panels
and battery capacity of 5 kWh per node. The results for
a planning horizon of one week and periods of low and
high irradiation over a whole year are presented in the plots
depicted in Figures 11a-11b.

(a) Low irradiation

(b) High irradiation

Fig. 11. Homogeneous system design under energy neutrality in the
South of France.

Given the identical resource dimensioning across the
different green nodes, the energy and computing demand
is also identical over the time. Therefore, neither VM nor
energy migration is helpful here. As a consequence, the

four execution scenarios become equivalent in terms of non-
green energy reduction.

This homogeneous system design shows that both data
and energy migrations are mainly relevant in the situations
where the resource availability evolves differently in the
considered nodes, over the time. Therefore, VMs and energy
migrations can help in re-equilibrating the resource utiliza-
tion.

B.2 Use case 1-bis: evaluation for Mali (West-Africa)
We analyse the behaviour of the proposed system for Mali,
a Saharan country in West-Africa, where we expect higher
levels of solar irradiation during the whole year provided
that this country is closer to the equator.

We consider the same heterogeneous system and re-
sources sizing of the use case 1 (see Section 5.2). The results
for a planning horizon of one week and periods of low and
high irradiation over a whole year for Mali are presented in
the plots depicted in Figures 12a-12b.

They show that for the regions of the World with a very
favorable solar irradiation condition, the overall gains in
terms of non-green energy reduction are very significant
over a year.

(a) Low irradiation

(b) High irradiation

Fig. 12. Use case 1 normalized results for low and high irradiation
periods in Mali (West-Africa).


