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Abstract. Degree constrained spanning tree problems are known and
deeply analyzed when the graph nodes are provided with limited budgets.
We examine the constrained spanning problem supposing heterogeneous
degree bounds on nodes representing limited momentary capacities. In an
undirected graph, different positive integer upper bounds are associated
with nodes to limit their degree for each visit. The exact formulation of
finding the minimum cost connected spanning structure satisfying these
degree constraints is the subject of our work. The capacity constrained
spanning problem with homogeneous constraints has been solved using
spanning hierarchies which can be different from spanning trees. Here the
case with non uniform constraints is analyzed, and we present an ILP
based solution to this NP hard problem. The gain of applying hierarchies
is demonstrated running ILPs for hierarchies and trees.
Keywords: Graph theory, spanning problems, degree constrained min-
imum spanning tree, hierarchy, degree constrained minimum spanning
hierarchy, non uniform constraints, exact solution, ILP

1 Introduction

The construction of Minimum Spanning Trees (MSTs) in graphs is a well known
polynomially solvable problem. The interest of such a solution is for instance
in the diffusion of messages in networks, finding connections in VLSIs, etc. The
Degree Constrained Minimum Spanning Tree (DCMST) was introduced as a
spanning tree in which the degree of the nodes is limited by an integer value B
and the sum of the edges (the cost) is the minimum possible. Finding a DCMST
is one of the NP-hard problems mentioned in [6]. The interest of this problem re-
sides in diffusion, where the nodes are doted by a limited duplication’s/branching
possibility. When the bound is equal to 2, the problem corresponds to the mini-
mum Hamiltonian path problem and it is known the path does not always exist.
More generally, it is not always possible to find a DCSMT [2]. The resolvability
and the approximation of several degree constrained spanning tree and partial
spanning tree problems have been analyzed based on two criteria : the degree of
the nodes and the cost in [16]. Two versions of degree constraints were consid-
ered: uniform and non uniform degree constraints. Negative results have been
formulated: constant factor approximations do not exist for the analyzed cases.



In most of the work, the degree constraints express a definitive limitation
of the branching possibility of nodes. This kind of limitation is not always the
case. In some real cases in communication, the limited capacity of the nodes is
related to an instantaneous (momentary) capacity. For example, in a switch the
number of copies of an incoming message can be limited, but if the same message
returns several times to the switch, a new duplication is done. To distinguish the
two limitations, we talk about limited budget in the case of definitive limitation
and limited (momentary) capacity when the limitation concerns each individual
passage. Since the spanning structure (the route) can return to nodes and can
pass several times by some edges, a new graph related structure different from
tree was needed to describe the solution. For this, hierarchies have been pro-
posed using graph homomorphism in [11]. In the case of momentary capacities
under uniform constraints in the node set, the hierarchy based solution has been
presented in [13]. The analysis of the presented NP-hard problem shows that
the hierarchy based solution always exists and the minimum spanning hierarchy
can be approximated. In the recent paper the analysis of the cases where the
momentary capacity constraints are not uniform but heterogeneous is analyzed
and we propose the exact formulation of the problem based on an ILP.

In the following sections we rapidly present the used concepts and notation,
followed be the related work (cf. Section 3) and some properties of the spanning
hierarchies to help the exact formulation (cf. Section 4). The ILP based compu-
tation is presented in Section 5 and the results with their analysis is in Section 6.
The last section gives the conclusion and some perspectives.

2 Notations and Definitions

At first, we recall the definition of a graph related structure. The homomorphic
mapping between a tree T and a graph G defines an eventually non-elementary
tree in G called hierarchy [11].

Definition 1 (Hierarchy) Let GE = (V,E) be a graph and let T = (W,F )
be a tree. Let h : W → V be a homomorphic function which associates a node
v ∈ V to each node w ∈W . The application (T, h,G) defines a hierarchy in G.

Fig. 1 illustrates the mapping and the resulted hierarchy in an undirected
graph (cf. Fig. 1/a). Some nodes (namely the nodes c and d) are present several
times in the hierarchy illustrated by the labeled tree in Fig. 1/b).

Hierarchies generalize trees. Trees are hierarchies without repetition of nodes
(applying an injective mapping h) and consequently inherit the properties of
hierarchies. Let us notice that the sub-graph of G generated by a hierarchy
(its image) can contain cycles in G but the hierarchy itself preserves important
properties of trees. In the following, we use the term hierarchy to reference the
defined tree-like structure and we use the term image of the hierarchy for the
sub-graph implicated in the original graph.

Since a node v ∈ V can be associated with several nodes in W , a hierarchy
can ”return” several times to nodes and pass several times edges in G (as it may
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Fig. 1: Example of a hierarchy in a undirected graph

be the case in walks): it corresponds to a ”non-elementary tree” in the graph
G. In hierarchies some nodes are eventually branching nodes (they are the node
occurrences corresponding to the branching nodes of the tree T ). Hierarchies can
be directed or not. In directed cases both the basic graph and the hierarchy (the
tree associated with nodes) are directed and the mapping function preserves the
direction of arcs. More details can be found in [11].

Two definitions follows before the problem formulation. Let H1 = (T1, h1, G)
and H2 = (T2, h2, G) two hierarchies related to the same graph.

Definition 2 (Independence) H1 and H2 are independent each from other if
no node of G is associated with T1 and T2.

In other words, H1 and H2 do not cover any common node.

Sub-hierarchies of a hierarchy can be independent or not.

Definition 3 (Inclusion) H1 includes H2 if T1 includes T2 including labels:
the common nodes reference the same nodes in G.

In other words, H2 is a sub-hierarchy of H1.

In the paper we use the following notation.



G = (V,E) : an undirected graph (to span)
V : the set of nodes in G
E : the set of edges in G
{n,m} ∈ E : an edge between nodes n and m

GA = (V,A) : a directed graph equivalent to G in which two arcs
−−−→
(a, b) and

−−−→
(b, a) ∈ A correspond to the edge {n,m} ∈ E

A : the set of arcs in GA
(n,m) ∈ A : an arc from node n to m
T = (W,F ) : a tree
W : the set of nodes in T
F : the set of edges in T
c(n,m) : a positive cost associated with the edge {n,m} ∈ E

(in digraphs: c(, n,m) == c(m,n)
D(v) : a positive integer associated with the node v ∈ V ;

upper bound for the node degree in any spanning structure
M : the highest degree bound in V
Vm ⊆ V : the sub-set of nodes with degree bound m
dG(v) : the degree of the node v in G
vi : the i-th occurrence of v ∈ G in a hierarchy (i.e. in the tree T )
Θ(v) : the set of nodes in W corresponding to the node v in G
Wm ⊆W : the sub-set of nodes with degree bound m in the tree
Γ−(v) : the set of predecessor nodes at the node v in GA
Γ+(v) : the set of successor nodes at the node v in GA

As usual, |X| is the number of elements in X. Trivially: |V | =
∑M
m=1 |Vm|

and |W | =
∑M
m=1 |Wm| (generally they are different).

3 Degree Constrained Spanning Problems

It is important to highlight how the constraints on the degree of the nodes can
be interpreted. Usually they are considered as budgets. A node can participate
to the span until the exhaustion of its budget as it is presented in the following
sub-section.

3.1 Minimum Spanning Trees under Degree Budget Constraints

The degree-constrained spanning problem was formulated for the first time in [5]
and the mnimum spannng tree under degree constraints is one of the NP-hard
problems listed in [6]. The nodes in an undirected graph G = (V,E) are assigned
positive integer values corresponding to limits representing the degree budget of
the node. The degree bounds represents the maximum number of neighbors
connected to the node in any spanning structure. They can be homogeneous or
not in the node set. Often a cost or length function is also given. The problem of
Degree (budget) Constrained Minimum Spanning Tree (DCMST) is to find the



minimum cost tree spanning the node set and satisfying the budget constraints.
If it exists, the minimum cost solution is a spanning tree, since cycles are useless.

When the degree bound B is homogeneous, the maximum degree of any node
in the spanning tree is at most B. In the case of B = 2, the solution (if it exists)
is the minimum Hamiltonian path. In [16], the authors present the problem as a
bi-criteria optimization and negative results are presented on the approximation
of the optimum. Heuristic solutions were proposed in several works (cf. [3] [16]
[7] [8] [15] [17] [18]).

The solution is different when the degree constraints correspond to momen-
tary capacity limitations of the nodes. In this case the limited capacity is avail-
able for each visit of the node. So the (optimal) solutions can return several
times in the nodes and profit from their available capacities.

3.2 Degree Capacity Constrained Spanning Problems

If the constraints are due to limited instantaneous capacities of the nodes, the
minimum cost spanning structure is always a hierarchy [11]. Fig. 2 illustrates
the interest of the hierarchies in the case of capacity constrained spanning. We
are looking for the minimum cost connected spanning of this graph such that
the degree of the nodes for each visit is limited to three. Trivially, there is no
spanning tree but there is a spanning hierarchy satisfying the constraints. It uses
the node b twice, and each occurrence of this node respects the degree constraint
as it is shown in Fig. 2/b).
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Fig. 2: A minimum cost spanning hierarchy

In [13] it has been demonstrated that the cost optimal solution with uniform
capacity bounds corresponds to a spanning hierarchy. The problem is NP-hard
but the solution always exists and an ILP based formulation has been proposed
in [10]. Here, we examine the optimal solution with non uniform degree bounds.

Definition 4 (Node Capacity Constrained Minimum Spanning Problem)
Let G = (V,E) be an arbitrary connected graph with positive integer degree
bounds D(v) representing the instantaneous maximum capacity for each node
v ∈ V . Eventually positive costs c(e) can be associated with edges e ∈ E. The
problem is in finding the minimum cost hierarchy spanning the node set V s.t.
the degree constraints are respected for each visit of the nodes.



In the case of non uniform bounds, even the spanning hierarchy does not
always exist. The conditions of existence for the solution have been analyzed
in [12]. The following theorem formulates necessary and sufficient conditions for
their existence in loop-free graphs.

Theorem 1. A hierarchy spanning the whole node set of a connected graph and
respecting heterogeneous degree constraints can be found, iff
a) there is no separator in V1 (separator nodes having a degree bound 1) and
b) |V1| ≤ 2 (there are at most two nodes with degree bound 1) or
c) |V1| > 2 and these nodes are neighbor nodes of a node w ∈ Vm s.t. m ≥ |V1|
respect the degree constraints or
d) |V \ V1| ≥ 2 (there are at least two nodes with degree bound greater than 1)
and |V \ V2 \ V1| ≥ 1 (there is at least one node with degree bound greater than
2).
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Fig. 3: Illustration of Theorem 1

Fig. 3 illustrates a spanning hierarchy corresponding to the condition d)
of Theorem 1. The occurrences of the node c (having a degree bound 3) are
the central nodes of spiders which are connected by paths through the node b.
Trivially it is not the ”best” spanning hierarchy. In some cases, one can easily find
hierarchies containing less edges. Notice that loops on nodes with degree bound
greater than 2 make possible the construction of the spanning hierarchies.

To find the cost minimum is an NP-hard problem.

Theorem 2. The minimum cost spanning hierarchy problem respecting non-
uniform degree constraints is NP-hard.

Proof. Let G′ = (V ′, E′) be the graph obtained from G by connecting D(v)− 2
new leaves to each vertex v ∈ V s.t. D(v) > 2 as it is illustrated in Figure 4.
Let L be the newly added set of leaves. Following the construction: V ′1 = V1

⋃
L

and V ′i = Vi,∀i > 1.



Let us suppose that the solution exists in G. Consequently, it exists also in G′

Adding the new leaves does not create separators in V ′1 . If —Vi| = 0,∀i > 2, G
admits a solution iff |V1| ≤ 2. Trivially, no new leaves are added and |V1| = |V ′1 |
The degree constrained minimum spanning hierarchy of G′ contains all edges
leaving to the new leaves. If |V1| > 2, since G admits a solution, there exists at
most one node in Vi, i > 2 and a second node with degree bound greater than 1,
and the solution exists also in G′.

The degree constraints in the attachment vertices in G′ are respected, iff G
is covered by a Hamiltonian walk, in which the degree of nodes is at most 2. The
computation of this latter is NP-hard [14].
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Fig. 4: The initial graph G and the completed graph G′

Several algorithms can be used to compute the optimal solution. Before the
presentation of an ILP based procedure for finding it, we propose some useful
properties of the spanning hierarchies.

4 Some Properties

Properties 4.1. - 4.3 in [10] have been formulated for the problem under uniform
degree bounds and can be generalized as follows. The first property is true in all
trees containing at least one edge.

Property 1. Let T be an arbitrary tree with at least two nodes. Let us suppose
that the degrees of nodes are in [1..M ]. The number of leaves in the tree is:

|W1| =
M∑
m=2

|Wm| · (m− 2) + 2

Proof. The proof is trivial by induction. In the tree with only one edge, there
are two leaves and the property is true. Let us suppose that the property is true



for k nodes. By adding a new node with degree m′, new leaves are added to the
tree (the simplest new sub-graph is a star). When the star is added at a leaf,
m′ − 1 new leaves are created and an old leaf becomes an intermediate node. If
the star is added between two existing ones, the number of new leaves is m′−2.

In the following we suppose that hierarchies spanning G and respecting the
degree constraints exist (i.e. the conditions in Theorem 1 are met).

Property 2. In an optimal hierarchy let Θ(v) = {vi, i = 1..|Θ(v)|} be the set of
nodes in T corresponding to v ∈ Vm and let dT (vi) be the degree of the node
occurrence vi in T . For the number of neighbors of v (all occurrences taken
together) in the hierarchy the following inequality is held:

|Θ(v)|∑
i=1

dT (vi) > m · (|Θ(v)| − 1) + 1

Proof. cf. the proof of Properties 4.2. in [10].

Trivially, to always respect the degree constraints the inequality can be com-
pleted:

|Θ(v)|∑
i=1

dT (vi) ≤ m · |Θ(v)|

Property 3. Let H be the set of optimal hierarchies covering G. There exists an
optimal hierarchy H∗ = (T ∗, h∗, G) ∈ H s.t. ∀v ∈ Vm,m > 2, there are at least
|Θ(v)| − 1 occurrences in T ∗ with degree m and related to v.

Proof. cf. the proof of Properties 4.3. in [10].

With other words, there exists an optimal hierarchy in which all occurrences
except eventually one related to a node v ∈ Vm have the maximum capacity
degree m of v.

Property 4. The maximum number of sub-hierarchies delimited by k occurrences
of a node v ∈ Vm,m > 1 is equal to nv(k) = m+ (k− 1) · (m− 1). Consequently,
the number of occurrences |Θ(v)| related to v to connect nv sub-hierarchies
delimited by these occurrences in a hierarchy is at least nv−m

m−1 + 1.

Proof. By induction, one can calculate the maximum number of sub-hierarchies
delimited by occurrences of v ∈ Vm. Let nv(k) be the maximum number for k
occurrences. One occurrence of v connects at most m sub-hierarchies that do
not contain v.

nv(1) = m

Let us suppose that a hierarchy contains nv(k − 1) sub-hierarchies delimited by
k − 1 occurrences of v. By adding a new occurrence of v with the maximum



number of sub-hierarchies to the hierarchy, the number of sub-hierarchies is
incremented by m− 1. The following recurrence shows the incremental:

nv(k) = nv(k − 1) +m− 1

which explicitly gives:

nv(k) = m+ (k − 1) · (m− 1)

Inversely, if nv is the number of sub-hierarchies delimted by the occurrences of
v, at least k = |Θ(v)| ≥ nv−m

m−1 +1 occurrences of v are needed to connect them.

Figure 5 illustrate the property. The sub-hierarchies delimited by node b are
illustrated in Figure 5/b) in a degree constrained hierarchy spanning the graph
shown with the degree bounds in Figure 5/a).
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Fig. 5: A degree constrained spanning hierarchy and its sub-hierarchies delimited
by node b

Property 5. Let v ∈ Vm,m > 1 be a node in G. If an occurrence v1 related node
in T ∗ is leaf in the optimal hierarchy, it is the only occurrence related to v.

Proof. Let us suppose that a second occurrence v2 exists in the hierarchy (i.e.
in the tree T ∗). In this case, v1 and its adjacent edge can be deleted and the
coverage of the node is held. H∗ can not be optimal.

Since a node v ∈ V1 should be leaf in any DCMSH, and there is only one
(leaf) occurrence corresponding to v in the DCMSH.

The following lemma resumes the upper bounds on the number of occurrences
of nodes in DCMSHs.



Lemma 1. In an MCDSH, the number |Θ(v)| of occurrences of a node v is (or
bounded by):

a) |Θ(v)| = 1, if v ∈ V1,
b) |Θ(v)| = |V | − 1, if v ∈ V2 ∧ V \ V1 \ V2 = ∅,
c) |Θ(v)| ≤ B(v) = d |V |−4m−2 e, if v ∈ V2 ∧ V \ V1 \ V2 6= ∅,
d) |Θ(w)| ≤ B(w) = |V |−4

m−2 + 1, if w ∈ Vm ∧ V \ V1 \ V2 6= ∅.

Proof. a) Trivial. A leaf can not be present twice in an optimal hierarchy (cf.
Property 5).

b) In this case, there is no node with degree bound greater than two: V \
V1 \ V2 = ∅. At most two nodes in V1 may exist in G and the optimal spanning
hierarchy is a walk that can cross a node v ∈ V2 several times. The maximum
number of crosses is equal to |V | − 1, supposing that after visiting another node
in V2, the walk returns to v.

c) and d) Here V \V1\V2 6= ∅. Let us suppose that only one node w ∈ Vm,m >
2 exists and V2 = ∅. Following Theorem 1), if |V1| ≤ D(w), a single occurrence
of w is sufficient in a DCMSH (which is a star). This case is very limited. Let us
suppose that the number of nodes is large enough and several occurrences of w
are needed. To cover the node set and to use multiple occurrences of w, at least
a node v ∈ V2 is needed. We propose the construction of an extreme topology
that implicates the maximum participation of w and v (each of the nodes in
V1 has only one leaf occurrence). The maximum number of occurrences of w is
obtained, when only occurrences of w are branching nodes in the hierarchy. (Let
us suppose that there is another branching node w′. In this case, some nodes
are connected to the occurrences of w′ without passing by w and the number of
occurrences of w in the hierarchy is not maximal. In summary, w is the unique
node with degree bound greater than 2.) In the extreme topology, there is only
one node v ∈ V2. If each path delimited by occurrences of w and leaves contains
also v, the number of occurrences of v is maximum. The number of leaves in the
extreme solution is equal to L = |V | − 2. Since w is the only branching node,
following Property 1, the maximal number of leaves is |Θ(w)| · (m− 2) + 2. The

smallest integer value satisfying this condition is: |Θ(w)| = d |V |−4m−2 e.
Let us consider the paths between occurrences of w and leaves in the DCMSH.
The maximum number of occurrences of v is given when v is part of all paths.
The set of paths are the sub-hierarchies delimited by the occurrences of w. In the
extreme case, there are as many occurrences of v as sub-hierarchies. Following
Property 4, a limit can be formulated: |Θ(v)| ≤ m+ (|Θ(w)| − 1) · (m− 1).

Finally: |Θ(v)| ≤ |V |−4m−2 · (m− 1) + 1.

The expression in Lemma 1 shows that the maximum possible numbers of
node occurrences depend also on the degree bound of the branching nodes. The
extreme bounds related to the size |V | of the graph can be obtained when m = 3.
In this case: B(v) = 2 · |V | − 7, v ∈ V2 and B(w) = |V | − 4, v ∈ V3.

Figure 6 shows such a graph with a ∈ V3 and b ∈ V2. The corresponding
minimum cost spanning hierarchy is plotted using a labeled tree. Each occurrence
of a except of two covers m− 2 = 1 leaf passing by the node b.
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Fig. 6: A particular graph and its coverage by the DCMSH

The following property indicates an upper bound on the number of occur-
rences of an edges in optimal hierarchies.

Lemma 2. The number of occurrences of an edge in an optimal hierarchy H =
(T, h,G) is limited by EB = maxi∈{3...M}maxv∈Vi [(i− 1) · |Θ(v)|].

Proof. Let us suppose that each occurrence of a node v ∈ Vm has exactly m
adjacent edges in T . Moreover, m − 1 adjacent edges of each occurrence of v
correspond to the same edge e ∈ E. This edge e is associated to (m− 1) · |Θ(v)|
edges in T . An upper bound for the edge duplications in a DCMSH of G is the
maximal value of the possible duplications:
EB = maxi∈{3...M}maxv∈Vi

(i− 1) · |Θ(v)|.

The following trivial propoerties allow the computation of the solution as
presented here after.

Let G = (V,E) be an arbitrary graph with capacity like degree constraints
and let GA = (V,A) be the equivalent digraph (defined on the same node set,
and replacing each edge of G by a couple of arcs, one of both direction). Let the
degree constraints be the same in the two graphs and let the length of arcs be
the same as the one of the corresponding edge. Let s be an arbitrary (root) node
in GA. The directed degree constrained minimum hierarchy spanning GA exist
(without loss of generality, one can suppose that there is only one optimum).
The length of this directed optimal hierarchy is the same as the length of the
DCMSH in G.

Let IA be the set of arcs in the image of a hierarchy in a digraph. A positive
integer value is associated with each arc in IA, indicating the number of occur-
rences of the arc in the hierarchy. This valuated image permits the definition /
reconstruction of the directed hierarchy.

5 Computation of the Exact Solution

Similarly to the computation in [10], we propose an ILP-based computation
of the solution. Remember that the optimal spanning hierarchy, if it exists,
can return several times to some nodes and can pass several times by some



edges. Since the solution is not a sub-graph, the proposed ILP computes the
image of the solution and in an equivalent digraph. The computation associates
with each arc of the image an integer value indicating how many times the
arc is used in the solution. Taking these values into account, the cost of the
image corresponds to the cost of the spanning hierarchy. The computed image is
with minimal cost and permits the reconstruction of the optimal hierarchy. This
reconstruction separates the eventual different passes in the nodes such that each
pass corresponds to a separated node occurrence in the solution and the degree
constraints are always respected.

The computation has four steps and illustrated by Fig. 7.
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Fig. 7: The steps of the construction of a DCMSH

the details of the steps follow.

5.1 Verification for the Existence

Theorem 1 gives the necessary and sufficient conditions for the existence of span-
ning hierarchies under non uniform degree constraints. Before the computation
of an eventual solution, these conditions must be verified. The verification is
based on three steps.



– At first, it must be controlled that there is no separator in V1. If there is at
least one node in V1 all the neighbors of which are in V1, this node remains
isolated, the computation exits without solution.

– Even if there is no separator inside V1, subsets of V1 can be separators for
the graph. If there is a separator subset in V1, trivially V1 is also a separator.
This latter can be verified using a DFS algorithm. After the deletion of V1
from G, the number of connected components can be calculated. If it is
greater than 1, there is a separator and the solution does not exists.

– If there is a single node v ∈ Vm s.t.m < |V1|, there is no solution.
– If |V1| > 2 and the other nodes are in V2, there is no solution.

After the verification, if the solution exists, the next phase prepares a directed
graph for the computation of the optimal image of the spanning hierarchy.

5.2 Creation of an Equivalent Directed Graph

A hierarchy can passe by edges and nodes several times. To facilitate the control
of the constraints, we propose a directed graph in which each edge of G is
duplicated and replaced by two arcs, one in each direction and having the same
cost as the original edge. In the proposed directed model incoming and outgoing
flows can be distinguished in the nodes. and the number of the flows transiting an
arc can be represented by an integer value associated with (cf. Subsection 5.3).
Using these valeus, a simple verification to respect the degree constraints is
possible. For an incoming flow crossing a node v ∈ Vm, at most m− 1 outgoing
flows can correspond.

The computation of the image uses flows, one flow to each destination from
an arbitrary chosen root s. The selection of s influences the simplifications of
the digraph. The following simplifications are made. If s ∈ V1, it can have only
one successor and consequently only outgoing arcs. The other nodes in V1 can
have only incoming arcs (there is no departure from a leaf). Useless incoming
and outgoing arcs for nodes in V1 can be deleted before the computation of the
solution.

The initial values of the variables can influence the rapidity of the computa-
tion. For this reason, we propose the initialization of the flows corresponding to
a spanning tree which can be computed in polynomial time. 1

The simplified digraph of the example is illustrated in Fig. 7/b).

5.3 Computation of the Image of the Minimum Flow

In this section, the ILP formulation of the valued image of the solution in the
directed auxiliary graph is proposed. Remember, the values associated with the

1 It is the Minimum Spanning Tree with Spacified (desired) Leaves. In this tree the
degree constrains are respected only in the nodes of V1. In the rest of the graph, a
simple MST is computed and the leaves are connected with their best cost adjacent
edges.



arcs of the result mean the number of occurrences of the arcs in the directed
hierarchy.

ILP variables:
x(m,n) : Integer variable. Equal to the number of the occurrences of the

arc (m,n) in the resulted hierarchy
F (m,n) : Commodity flow variable. Denotes the quantity of flow transiting

on the arc (m,n).
Objective:
We minimize the cost of the spanning structure respecting the constraints.

Minimize
∑
m∈V

∑
n∈Γ+

m

x(m,n) · C(m,n) (1)

The values associated with the arcs make it possible to follow the number
of incoming and outgoing arcs in all the nodes. The degree constraints can be
formulated as follows.

At the arbitrary selected source s, there are returns iff the degree D(s) is not
sufficient to be the start point of the outgoing messages:∑

n∈Γ+
s

x(s, n) ≤ D(s) + (D(s)− 1) ·
∑
n∈Γ−s

x(n, s) (2)

If the degree bound of the source is equal to one, there is only one outgoing
arcs.

At the other nodes, since each occurrence of the node m can be the start
point of D(m)− 1 outgoing messages:∑

n∈Γ+
m

x(m,n) ≤ (D(m)− 1) ·
∑
n∈Γ−m

x(n,m) ∀m ∈ V \ {s} (3)

Notice that for nodes with degree bound one, there is no outgoing arc used.
In an optimal hierarchy there is a strictly minimal number of occurrences

of any node. In our directed model, the number of occurrences of a non source
node is equal to the number of its predecessors. For the source node this value
is incremented by one (if there are several occurrences of the source, the first
one has not predecessor). The number of occurrences should be sufficient for the
outgoing messages. We can establish the following (not necessary but practical)
inequalities. At the source:

∑
n∈Γ+

s

x(s, n) > D(s) + (D(s)− 1) ·
∑
n∈Γ−s

x(n, s) (4)

In an other nodes m with degree bound (D(m) > 1 the following inequality
is true):

∑
n∈Γ+

m

x(m,n) > (D(m)− 1) · (
∑
n∈Γ−m

x(n,m)− 1) ∀m ∈ V \ {s}, D(m) 6= 1 (5)



Every node except the source has a predecessor in the hierarchy. This condi-
tion guarantees the full coverage.∑

n∈Γ−m

x(n,m) ≥ 1 ∀m ∈ V \ {s} (6)

Full coverage does not mean full connectivity. Flows can be used to express
the connectivity. The arbitrary source is the start point of one flow per destina-
tion. T he destinations are the other |V | − 1 nodes.∑

n∈Γ+
s

F (s, n) = |V | − 1 (7)

Each non source node is the destination of one and only one flow.∑
n∈Γ+

m

F (m,n) =
∑
n∈Γ−m

F (n,m)− 1 ∀m ∈ V \ {s} (8)

Flows transit by the occurrences of arcs.

F (m,n) = 0 ∀m,n ∈ V if x(m,n) = 0 (9)

F (m,n) > 0 ∀m,n ∈ V if x(m,n) > 0 (10)

If an arc does not belong to the solution, it does not carry any flow. Moreover
each arc should carry non-zero flow if it is used in the output graph, and the
value of this flow should not be beyond the total flows transmitted by m.

The number of occurrences of edges (and consequently of arcs) is limited by
the value EB presented by Lemma 2. Notice that EB is constant and can be
calculated beforehand.

x(n,m) ≤ EB ∀m,n ∈ V (11)

Obviously, solving our linear program does not give a DCMSH. A last step
is needed to construct the optimal ”non-elementary tree”.

Fig. 7/c) illustrates the valued image of the solution in our example.

5.4 Reconstruction of the Optimal Hierarchy

The ILP returns the image of the solution in the auxiliary directed graph. The
arcs in the image have values corresponding to the number of their occurrences
in the solution: the variables x(n,m) indicate, how many times the arc (n,m) is
traversed from n to m. From this image a DCMSH can be built. First, a directed,
labeled tree can be reconstructed. Several directed trees can correspond to the
image, even if the number of occurrences / traverses of arcs are known. The
properties discussed previously (cf. Section 4) permit the construction. Here, let
us resume their application.



Each node occurrence has one and only one predecessor (except the source).
If a node n has i =

∑
m∈Γ−(n) x(m,n) predecessors, then n must be duplicated i

times in the tree (i.e. in the optimal hierarchy) To each occurrence of n there is
one and only one incoming arc. For the arbitrary chosen source, one occurrence
has no predecessor and the number of occurrences is i+ 1.

o =
∑
m∈Γ+(n) x(n,m) indicates the number of outgoing arcs in the tree

for all occurrences of n taken together. To respect the degree constraints, each
occurrence of n can have at most D(n) outgoing arcs. Property 3 indicates that
for a node n, there exists an optimal hierarchy in which all occurrences of n
except one have the maximal degree D(n). Following this property, the outgoing
arc occurrences can be distributed between the occurrences of n s.t. D(n) − 1
outgoing arc occurrences are connected to the first o− 1 occurrences of n.

1. At first, the successors of the nodes is computed. Let suc[] be the vector
of successors s.t. suc[n] corresponds to the set of successors of the node n.
For each node n this set suc([] is computed based on Γ+(n) and on the
values x(n,m). For each successor node m ∈ Γ+(n) x(n,m) occurrences of
m should be added to suc[n].

2. The construction of the tree starts at the source node s and follows a Depth
First Search (DFS) like construction.
(a) For the source node s, the first occurrence has no predecessor. If the

number of successors is greater than D(s), the first occurrence of the
source have D(s) successors and outgoing arcs which are added to this
first occurrence. The remaining arcs are associated with the following
occurrences in the same way as for the other nodes.) The computation
continues with the first successor of the source (current node).

(b) If the current node n is a leaf without successors, the algorithm returns
to the predecessor. Otherwise, the set Suc(n) of successors is processed
as follows:

The outgoing arc occurrences can be distributed between the occurrences
of n. To respect the degree constraints, each occurrence of n can have at
most D(n) neighbor arcs. Property 3 indicates that for a node n, there
exists an optimal hierarchy in which all occurrences of n except one have
the maximal degree D(n). Following this property, the outgoing arc oc-
currences can be distributed between the occurrences of n s.t. D(n)− 1
outgoing arc occurrences are connected to the first |Γ+(n)| − 1 occur-
rences of n. The remaining arcs are associated with the last occurrence
of n.

The procedures are presented by Algorithm 1 and 2.
Omitting the direction of arcs, a tree Tu is obtained. Since the tree Td re-

turned by Algorithm 1 (and consequently Tu) refers to the nodes in G, H =
(Tu, h,G) is a hierarchy. The mapping h associates a node of G to each node of
Tu corresponding to the labels in Tu.



Algorithm 1 Computation of a directed tree labeled by the node occurrences
of GA and following the optimal flows

Require: The graph GA = (V,A,D), with degree D(n) associated to n ∈ V , the
source s and the matrix X with values x(n,m) computed by the ILP

Ensure: A labeled directed tree Td
global variables
Td tree
suc[|V |] vector of sets of node occurrences
end of global variables
begin
Td ← ∅ {initialize an empty tree}
for all n ∈ V do
suc(n)← ∅ {set of successor node occurrences}
for all m ∈ Γ+(n) do

for i = 1, . . . , x(n,m) do
suc[n]← suc[n] ∪ {mi}

end for
end for

end for
Construct (s,D(s)) {start from the first occurrence of the source}
return Td
end

Algorithm 2 Performs a DFS construction of a sub-tree rooted at n

Require: A node n and the number DS of its successors
Ensure: A labeled directed sub-tree in Td

procedure Construct(n,DS)
local variables
curr node
DS integer
end of local variables
begin
for i = 1, . . . , DS do
curr ← suc[n].first()
ADD suc[n].first() to n in Td {Add the first successor of n to the tree}
suc[n]← suc[n] \ suc[n].first()
DS ← min (|suc[curr]|, D(curr))
Construct (curr,DS)

end for
end



Theorem 3. The result H is a DCMSH.

Proof. Each node in V is associated with at least one node of Tu, the hierarchy H
spans the node set V . By construction, the nodes in the tree Tu respect the degree
constraints (a node occurrence of the node n ∈ V has at most D(n) neighbors).
So, H is a degree constrained hierarchy spanning V . It is with minimum cost.
Its cost is the sum of the cost of edge occurrences. An edge {m,n} is present
x(m,n) + x(n,m) times in H (in the tree Tu).

c(H) =
∑

{m,n}∈E

c(m,n) · (x(m,n) + x(n,m))

This sum is minimized by the ILP.

6 Evaluation of the Solutions

In this section we compare the different values (mainly the costs) of four solutions
(if they exist): the MSTSL, the DCMSH, the DCMST and the result of the
heuristic [12].

For this comparison and analysis, random graphs based on the model of
Albert-Barabási [1] were generated following the usual two steps:

– Creation of a connected small graph of m0 nodes (a tree for example)
– Randomly add mf nodes s.t. each node is connected to at most m old:

the probability of an edge from the newly added node to an old one is
proportional with the degree of this latter

Pi =
ki∑
j kj

The implementation used the Leda library in C++ [9].
The computation of the MSTSLs and the heuristic were implemented in

C++ in the generated graphs and the exact solutions DCMSHs and DCMSTs
were computed using the CPLEX Ilog server [4] to implement the corresponding
ILPs. The heuristic and the computation of the MSTSL are in polynomial time,
but the exact solutions need expensive computations. Fortunately, in the tested
random graphs the computation of the exact solutions asked from some seconds
to some hours and were realizable.

The simulation settings and results are presented in the following.

6.1 Simulation Settings

In the experimentation, some parameters were variable: the number of nodes in
the random graphs, the distribution of the degree bounds on the nodes and the
costs of the edges.



We used medium size topology: started from a small tree of 5 nodes and using
the BA algorithm, the final random graphs contained 80 - 170 nodes. Notice that
the number of edges in the graphs were not deterministic, since the edges were
generated randomly. In each experimentation presented here after, we indicate
the average number of edges in the different graphs.

The degree bounds were set randomly. In each case, an interval [Dmin, Dmax]
were given, and the integer values in this interval were associated with the nodes
using an equi-probable (uniform) distribution. Often, the interval corresponded
to [1, Dmax]. Consequently the bounds 1, 2, ..., Dmax were randomly but uni-
formly associated with the nodes.

The cost of edges were also randomly and uniformly associated with edges
from the interval [1, Cmax].

The detailed parameter settings of the experiments can be found in the cor-
responding sub-sections.

6.2 Runs and Results

Effect of the maximal degree bound In a first experimentation, we propose
the analysis of the maximal degree bound and consequently the distribution of
the applied bounds. In each run 100 random graphs with 100 nodes were created.
The edge costs were randomly generated with Cmax = 5. The following table
resume the average properties of the graphs and also the number of cases in
which trees and hierarchies corresponding to the constraints exist.

Dmax |V | |V1| conditions |V SG| hierarchies trees

3 463.36 34.06 86 613.06 86 50
4 463.75 25.14 96 689.67 96 96
5 464.29 19.29 100 751.69 100 100
6 462.97 17.1 100 768.76 100 100
7 463.4 14.01 99 797.2 99 99
8 463.07 12.9 100 807.07 100 100
9 463.77 11.54 100 822.09 100 100

10 463.54 9.92 99 835.36 99 99
11 463.48 9.12 100 841.31 100 100
12 463.6 8.32 100 849.74 100 100

Figure 8 shows the evaluation of the costs of the four examined solutions.
The cost of the optimal hierarchies is always better or equal to the cost of the
optimal tree (if these solutions exist). Since the degree bounds are equi-probably
associated with nodes, by increasing the value of Dmax, the probability of degree
bounds one (and also of the other low degree bounds imposing real constraints on
the degrees) decreases. Consequently, the difference between trees and hierarchies
decreases and they costs tend to the cost of the MSTSL. Notice also that the
heuristic offers also good costs.

The solutions do not exist in an important percent of the cases when Dmax

is low. For instance, with Dmax = 3, only 50 / 100 trees exist.
To examine the effect of the cardinality of V1 on the number of failed solution,

the following scenario was realized. The probability of the nodes in V1 varied from



Fig. 8: The cost according to the degree bounds

5% to 50%. The following table resumes the results. With low number of leaves
in V1, trees and hierarchies exist. When there are at most 20% of nodes with
degree bound one, the conditions for the existence of the solution are hardly
fulfilled. There is no significant difference for trees and hierarchies (probably in
the examined special random graphs).

|V1|/|V | % |E| |V1| conditions |ESG| nb(h) nb(t)

5 462.92 4.89 100 881.39 100 100
10 462.81 10.02 100 833.73 100 100
15 464.02 14.19 100 796.76 100 100
20 464.13 19.45 99 748.05 99 99
25 463.65 24.6 98 698.36 98 98
30 463.46 30.08 93 648.23 93 93
35 463.1 34.62 84 604.95 84 84
40 463.43 40.19 71 552.8 71 71
45 463.87 43.86 63 518.62 63 62
50 463.15 49.77 37 466.09 37 32

Effect of the edge costs In this case, the number of nodes was fixed to 100
and Dmax was equal to 3. The edge costs were randomly generated from the
interval [1, Cmax] and the value of Cmax varied as it is indicated in the following
table.



Cmax |EG′
A
| dupl nb(h) nb(t) c(lb) c(Heur) c(h) c(t)

1 100.725 1.24176 91 57 99 144.176 101.143 99
2 102.349 1.54217 83 57 104.675 141.265 111.458 109.088
3 105.556 2.04444 90 63 116.5 154.589 132.644 132.746
4 107.536 2.36905 84 53 132.417 174.774 155.643 158.585
5 108.837 2.5 92 55 147.804 194.859 176.652 181.709
6 109.209 2.81319 91 61 165.934 220.824 197.593 206.541
7 108.965 3.01176 85 63 180.365 240.624 215.153 228.381
8 110.022 3.1978 91 61 199.56 264.835 240.495 259.279
9 109.683 3.59756 82 54 219.646 290.707 263.268 283.13

Independently from the edge costs, the obtained typologies are relatively
stable; |V1| and |ESG| show a small variation. DCMST does not exist in 50−60%
of cases and DCMSH does not exist in 10% of cases. The first lines of the results
need explanation. Let us analyze the first line. If the DCMST exist (in 57 cases
of 100 runs) the cost is equal to 99, which is the cost of the 99 edges needed to
cover the 100 nodes. The average cost of DCMSHs is greater, but it is the average
of 91 cases which contain hierarchies returning several time to some nodes (cases
not covered by trees). The average of the maximal number of usage of an edge
(the number of duplications) is indicated in the column dupl.

Fig. 9: The overall cost according to the distribution of edge costs

DCMST does not exist in 50 − 60% of cases and DCMSH does not exist in
10% of cases. The first lines of the results need explanation. Let us analyze the
first line. If the DCMST exist (in 57 cases of 100 runs) the cost is equal to 99,
which is the cost of the 99 edges needed to cover the 100 nodes. The average cost
of DCMSHs is greater, but it is the average of 91 cases which contain hierarchies
returning several time to some nodes (cases not covered by trees).



Varying the size of the graphs

A third series permits to see the effect of the size of Albert-Barabási random
graphs on the minimum spanning structures. The experimentation is summa-
rized in the following table. The number of nodes M = m0 +mf varied from 80
to 170 nodes. Dmax was equal to 3 and Cmax was 5.

M |E| |V1| |EG′
A
| dupl nb(h) nb(t) c(lb) c(Heur) c(h) c(t)

80 364.5 20.14 543.69 1.7732 97 97 113.381 146.34 122.124 124.351
90 414.71 22.16 625.29 1.81633 98 98 125.673 159.673 135.408 137.969

100 463.67 24.98 694.83 1.86598 97 96 139.897 177.093 150.351 152.802
110 513.32 27.62 768.61 1.77551 98 98 153.735 195.276 165.847 168.888
120 562.41 29.21 849.71 1.82653 98 98 167.571 211.327 180.347 183.306
130 612.35 33.19 912.57 1.90722 97 97 182.34 231.216 196.505 200.412
140 661.74 35.55 990.49 2.03158 95 95 194.853 248.642 210.789 215.632
150 711.2 37.71 1063.44 1.97872 94 94 211.351 265.606 227.915 232.457
160 760.62 40.5 1139.45 1.89796 98 97 223.867 283.52 241.643 246.649
170 810.81 42.95 1212.8 2.08333 96 96 236.906 304.094 257.229 262.969

It can be seen that the observed values increase quasy linearly with the size
of the graphs. For instance, let the lines with 80 and 160 nodes be compared.
The average number of edges, the number of desired leaves in V1, the cost are
almost double. The number of DCMSHs and DCMSTs are mainly the same.
Note that trees are 5 - 10 % more expensive than hierarchies.

Fig. 10: The cost according to the graph size



7 Conclusios and Perspectives

Our analysis shows that
- DCMSHs exists even if DCMSTs do not exist,
- DCMSHs have less costs than DCMSTs,
- the heuristic performs very well,
- the execution time is raisonnable in Albert-Barabási random graphs.
The set of specified leaves with degree bound 1 is crucial for the properties of

the solutions. If this set is large, the solution may not exist and the approximation
within a constant is not trivial (we consider it as an open question). Notice that
the heuristic provides results relatively close of the optimum.

In future works, the approximation of spanning hierarchy problems with dif-
ferent degree constraints in various graphs should be analyzed. We conjecture
that in some cases, depending on positions of leaves in V1, approximations can be
found even if |V1| > 3. Another important perspective is the analysis of partial
spanning problems like degree constrained Steiner problems. We believe that a
good part of the results presented in this paper can be applied in partial span-
ning problems. Applications of the degree constrained spanning hierarchies can
be found, for instance, in optical broadcast / multicast routing. In these appli-
cations, additional constraints (e.g., the uniqueness of the used wavelength in
the fibers, limited length of paths, etc;) exist, and various constraints must be
fully satisfied. Analyzing these issues promises further interesting challenges....
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