
HAL Id: lirmm-03765254
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03765254v1

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

qprof: a gprof-inspired quantum profiler
Adrien Suau, Gabriel Staffelbach, Aida Todri-Sanial

To cite this version:
Adrien Suau, Gabriel Staffelbach, Aida Todri-Sanial. qprof: a gprof-inspired quantum profiler. ACM
Transactions on Quantum Computing, 2023, 4 (1), pp.1-28. �10.1145/3529398�. �lirmm-03765254�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03765254v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

qprof: a gprof-inspired quantum profiler

ADRIEN SUAU, CERFACS, France and LIRMM, University of Montpellier, France
GABRIEL STAFFELBACH, CERFACS, France
AIDA TODRI-SANIAL, LIRMM, University of Montpellier, CNRS, France

We introduce qprof, a new and extensible quantum program profiler able to generate profiling reports of
quantum circuits written using various quantum computing frameworks. We describe the internal structure
and working of qprof and provide practical examples on quantum circuits with increasing complexity along
with benchmarks of the tool execution time on large circuits. This tool will allow researchers to visualise
their quantum algorithm implementation in a different and complementary way and reliably localise the
bottlenecks for efficient code optimisation.

CCS Concepts: • General and reference→ Performance; • Computer systems organization→Quan-
tum computing.

Additional Key Words and Phrases: quantum, computing, profiler

ACM Reference Format:
Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial. 2022. qprof: a gprof-inspired quantum profiler. ACM
Trans. Quantum Comput. 1, 1, Article 1 (January 2022), 30 pages. https://doi.org/10.1145/3529398

1 INTRODUCTION
The quantum computing field has been evolving at an increasing rate in the past few years and
is currently gaining more traction. Several quantum chips, the underlying hardware that enable
researchers and companies to run quantum algorithms, have been announced by different research
teams. The error rates and number of qubits provided by these chips greatly improved in the last
few years, with quantum hardware that have up to 127 qubits in the end of 2021 [4].

Software has also seen a tremendous rise with the emergence of several quantum computing
frameworks and languages such as Qiskit [2], Q# [38], PyQuil [8], Cirq [7] or myQLM [37] to name
a few. These frameworks help in speeding-up the process of implementing a quantum algorithm
by providing their own “standard library”. Most of them also include specialised libraries whose
purpose is to facilitate the development and testing of new quantum algorithms. For example,
all the quantum computing frameworks cited previously include a library to simulate quantum
circuits, some even implement several simulation algorithms such as a full state-vector simulator,
a simulator for stabiliser circuits [1, 18] or a simulator using matrix-product states [33, 39]. Most
of the frameworks that target real quantum chips also include libraries to characterise a given
quantum hardware, using for example randomised benchmarking [9, 13, 17, 24, 29] methods, or
hardware noise mitigation [5, 25].

Authors’ addresses: Adrien Suau, adrien.suau@cerfacs.fr, CERFACS, 42 Avenue Gaspard Coriolis, Toulouse, France, 31057
and LIRMM, University of Montpellier, 161 rue Ada, Montpellier, France, 34095; Gabriel Staffelbach, gabriel.staffelbach@
cerfacs.fr, CERFACS, 42 Avenue Gaspard Coriolis, Toulouse, France, 31057; Aida Todri-Sanial, aida.todri@lirmm.fr, LIRMM,
University of Montpellier, CNRS, 161 rue Ada, Montpellier, France, 34095.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2643-6817/2022/1-ART1
https://doi.org/10.1145/3529398

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0002-2412-7298
HTTPS://ORCID.ORG/0000-0002-0843-743X
HTTPS://ORCID.ORG/0000-0001-8573-2910
https://doi.org/10.1145/3529398
https://orcid.org/0000-0002-2412-7298
https://orcid.org/0000-0002-0843-743X
https://orcid.org/0000-0001-8573-2910
https://doi.org/10.1145/3529398

1:2 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

Finally, a large majority of the quantum computing frameworks provide a way to automatically
optimise a quantum circuit. This optimisation is often performed during compilation, when the
abstract quantum circuit representation is translated to be compliant with the targeted hardware.
Automatic optimisation of quantum circuits is a broad area of research with algorithms based on
pattern-matching [22, 27, 30], gate optimisation algorithms [3, 16] or even pulse-level optimisa-
tion [12, 19, 34].

But even though automatic optimisation has already been shown to be successful in optimising
complex quantum circuits [6], most algorithms only perform local optimisations, most of the time
on a flattened quantum circuit, without prior knowledge of the algorithms used to construct the
circuit.

Identifying the usage of a non-optimal algorithm in the implementation and replacing it with a
more efficient one is, for example, an optimisation that cannot be performed in general by auto-
matic optimisers. This improvement should rather be spotted and optimised by the developer.

Currently, the only way one has to optimise a given quantum implementation beyond what is
provided by automatic methods is “trial and error”. First, try to locate a “hot spot” (i.e. a subroutine
that takes a considerable amount of resources) in the implementation, either by a tedious theoret-
ical analysis or a manual counting of the routine calls. Then, optimise the hot spot found, either
by improving the implementation or using a better algorithm. Finally check if the optimisation
performed improved the overall performance of the implementation. This process has a severe
drawback that makes it impractical on real-world implementations: the first step that consists in
finding the hot spots is either imprecise or potentially very long, tedious and error-prone on large
implementations.

qprof aims at replacing this manual, tedious and error-prone step by automatically generating a
report with all the useful information needed to find the hot spots of the given quantum program
implementation. The qprof tool has been strongly inspired by classical profilers such as gprof [14,
20] which try to solve the exact same issue but in classical (non-quantum) programming.

The paper is organised as follows. In Section 2, we review the related work around classical
profilers and quantum resource estimation. Section 3 explains the internals of qprof and details
its architecture, the design choices made, and their impact on the tool efficiency, extensibility and
usability. We then include in Section 4 a theoretical and practical analysis of the tool runtime. Code
snippets and practical examples are provided in Section 5 to illustrate the tool usage. Finally, we
discuss some of the limitations and potential improvements of qprof in Section 6.

2 RELATED WORK
2.1 Classical profilers
Classical profilers are tools that are used since the beginning of programming languages back
in the 1970 decade. One of the first profiler was prof, included in the Linux kernel in 1972 [32].
gprof [20] came out in 1982, extending prof by performing a complete call-graph analysis. Since
then, a lot of different profilers using different methods to profile programs were introduced, each
of the profiling methods having its strengths, weaknesses and compromises.

For example statistical profilers, that sample the program call-stack at regular intervals in times,
are imprecise due to their finite sampling rate but have a very low overhead on the profiled pro-
gram execution time (reported to be typically between 1 and 3% by themaintainers of OProfile [26],
a statistical profiler, on the tool’s FAQ). On the other side of the spectrum, instead of executing
the profiled program directly on the target hardware, “Instruction Set Simulators” can be used to
run the program to be profiled in an isolated and entirely controlled environment. Profilers using
this technique have the advantage of being very accurate and to allow the collection of a large

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:3

void D(void) {
for(unsigned count = 0; count < 0xFFFF; count ++);

}

void C(void) {
for(unsigned count = 0; count < 0xFF; count ++)

D();
}

void B(void) {
for(unsigned count = 0; count < 0xFFFF; count ++)

D();
}

void A(void) {
B();
C();
for(unsigned count = 0; count < 0xFF; count ++)

D();
}

int main(void) {
A();
return 0;

}

(a) C code to be profiled by gprof and compiled with gcc -pg -o
profile-exec profile.c.

0.39%
255×

99.23%
1×

0.39%
1×

99.23%
65535×

0.39%
255×

100.00%
1×

D
100.00%

(100.00%)
66045×

A
100.00%
(0.00%)

1×

B
99.23%
(0.00%)

1×

C
0.39%

(0.00%)
1×

main
100.00%
(0.00%)

(b) Profiling report ob-
tained with gprof and
post-processed with the
gprof2dot tool.

Fig. 1. Example of call graph that can be generated with gprof on a trivial classical program written in C
and compiled with gcc. Even though one could count manually the number of operations performed by each
functions on such a trivial program, using gprof is less error-prone and outputs a clear view of the program
hot spot: the function D. Someone wanting to optimise the execution time of this simple program can directly
see on gprof report that there are only 3 potential approaches to reduce the program runtime: optimise D
directly, reduce the number of times B is calling D or remove the unique call to B from A and replace it with
something more efficient.

variety of indicators, but they add a considerable overhead to the profiled program runtime. An-
other technique used by some profilers such as gprof [20] is to instrument the code by adding or
modifying its instructions, in order to gather data about its execution. The information that can
be gathered by this kind of profilers is less exhaustive than the instruction set simulator method,
but the overhead they add to the program runtime execution is in general relatively low. Finally,
some profilers use static analysis in order to gather data without even executing the program.
For classical computers, these profilers are limited to information such as the instruction count
and variations thereof due to the highly complex way current classical processors are executing
instructions.

Independently of the method used by the profiler, its goal is to gather data about the profiled
program execution in order to give a synthetic and readable report to the user.This report will most
of the time be used to find one or several “hot spots”, which are portions of code or functions that
take a considerable amount of an important resource, frequently the total execution time. Finding
hot spots is a necessary step to optimise the implementation of the profiled program as it allows
to isolate small portions of code that should be improved in order to lower down the amount of
resources needed by the program.

A profiling report obtained thanks to the gprof profiler has been included in Figure 1 with a
simple C code in Figure 1(a) and the resulting profiling report in Figure 1(b).

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

2.2 Quantum profilers
qprof is, to the best of our knowledge, the first cross-framework profiler for quantum programs.
However, most of the quantum computing frameworks provide at least some basic resource esti-
mate procedures.

This is for example the case of Qiskit that performs a shallow analysis of its QuantumCircuit
instances by using the count_opsmethod, returning a dictionary containing the number of times
each subroutine is called. Note that this method is limited as it does not recurse into the sub-
routines called by the main routine. The myQLM framework provides the same features with its
Circuit.statistics method.
The ScaffCC compiler [23] provides a little bit more information than Qiskit and myQLM by

computing the gate count (for the gates {X ,Z ,H ,T ,T †, S, S†,CX }) for each routine encountered
in the compiled quantum program. This report is useful to perform cost estimation, but the list of
basis gates used does not seem to be modifiable and the information about which routine is calling
which subroutine is lost.

Quipper [35], a quantum computing framework written in Haskell, has been created specifically
to perform resource estimations on huge quantum circuits in an efficient manner. However, even
though very efficient, the Quipper framework seems limited to compute simple features such as
the total number of gates, total number of qubits or total number of ancillary qubits.

Finally, Q# has some interesting proofs of concepts on one specific implementation of Shor’s
algorithm. Using Q# Trace Simulator, a Flame graph [21] exporter has been built. This exporter is
only able to count one type of gate from a fixed set.

Each of the four examples provided in this section are limited to one specific quantum computing
framework and cannot be easily re-used to analyse quantum circuits built with other frameworks.
Moreover, half of the frameworks are only performing a shallow exploration, stopping at the first
level (i.e. stopping at the subroutines called directly by the profiled routine and not recursing
into deeper subroutines). Finally, none of the profiling features provided by the four frameworks
presented above have a direct way to deal with gates of variable execution time that can be found
in real hardware.

Note 1. Q# profiles quantum programs by “executing” them on a fake quantum processor that
will track and record data on the execution of the quantum program. Consequently, Q# profiler
should, in theory, be capable of handling dynamic quantum circuits (quantum circuits that contains
quantum measurements and that adapt the gates executed according to the measurement result).
Due to its static approach, and as discussed in Section 6.6, qprof is not able to analyse dynamic
quantum circuits yet.

3 HOW DOES QPROF WORKS?
3.1 General structure
Thegeneral structure of qprof is composed of 3main parts that interactwith each other: a framework-
agnostic quantum circuit representation, core data structures and logic, and several exporters. The
framework-agnostic representation of a quantum circuit has been outsourced to another Python
package named qcw.

The overall workflow of qprof is schematically explained in Figure 2. In this workflow, qprof
can be seen as a black-box that takes a “quantum circuit” as input and returns a “profiler report”.
This black-box view should be enough for users that only want to use the qprof tool, but experi-
enced users or plugins developers might need more details on the internals of qprof in order to
understand how it works.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:5

Framework-specific
quantum circuit

Framework-agnostic
quantum circuit

Call-graphProfiler report

Framework
plugins

Core logic

Exporters

qprof internals

qcw

qp
ro

f.p
ro

fil
e

Fig. 2. Schematic representation of qprof workflow. Internally, qprof uses qcw to recover a framework-
agnostic representation of the quantum circuit. Then, this “universal” representation is used to profile the
given quantum circuit. Finally the profiling results are exported using one of qprof exporters and returned
to the user.

The following sections will introduce in details the three different parts that compose qprof.
Section 3.2 describes qcw and the framework-agnostic quantum circuit representation it provides
and that is used by qprof. A description of the core data structures and core logic is then provided
in Section 3.3. Finally an explanation of the different exporters natively provided by qprof is given
in Section 3.4.

3.2 The qcw package
The qprof tool aims at being the standard for profiling quantum circuits, independently of the
framework they are written with. In order to be versatile and support as many current and future
quantum computing frameworks as possible, qprof uses a package named qcw that is presented
in this section.

3.2.1 The qcw package. qprof extensibility is achieved via a companion Python package called
qcw and whose purpose is to abstract away all the specificities of the framework used to represent
the quantum circuit and provide a unified interface for all the implemented frameworks. To fulfil
its goals of being framework-agnostic and easily extensible, qcw provides a plugin mechanism that
allows anyone to implement a wrapper for a specific framework and make it available through the
qcw package. This high-extensibility is obtained thanks to the fact that plugins do not have to be
part of the main qcw package to be recognised by qcw: they can be developed, used and published
by anyone. This allows several situations that may help improving qcw (and consequently qprof)
compatibility with quantum computing framework and extensibility. For example, users might
decide to roll-out their own plugin to support a new framework they are using internally. Another
important situation that is made possible by qcw and its architecture is that framework vendors
have the opportunity to provide a qcw plugin along with their framework and to maintain it as

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

qiskit.QuantumCircuit

qat.lang.AQASM.gates.AbstractGate

RoutineWrapper
__init__(framework_circuit)
name() -> str
is_base() -> bool
__iter__() -> iterator

qprof processing

qiskit plugin

framework plugin

my
ql

m plu
gin

unique
interface

Fig. 3. Schematic overview of the framework architecture used in qcw. Each framework-specific represen-
tation is wrapped by a RoutineWrapper. Each supported framework should have a corresponding qcw plu-
gin that implements the RoutineWrapper interface. The __init__ method initialises a RoutineWrapper
instance with an instance of the framework-specific quantum circuit representation. The name method re-
turns the name of the currently wrapped routine. is_base returns True if the routine is a native routine as
defined in Definition 3, else it returns False. Finally, the __iter__ method returns an object that can be
iterated on and whose iterates are the different subroutines called by the current routine.

an official plugin, effectively making qprof compatible with their framework without having to
support a code base outside of their framework.

Finally, such an architecture based on an external package that accept plugins allows the user to
only install the plugins and frameworks needed instead of installing all of them along with qprof.
This simple side improvement greatly reduces the installation time, installation size and plugin
discovery time as it avoids installing and loading unused quantum computing frameworks.

3.2.2 Framework support. The goal of qcw is to provide a unique interface to access information
about quantum programs that can be written using a variety of different frameworks. Taking into
account that several of the most successful quantum computing frameworks such as Qiskit, Cirq,
PyQuil or myQLM are Python libraries, and in order to ease its integration with these already
existing frameworks, qcw has naturally been designed as a Python library too. It is important to
note that this does not impede the capacity of qcw to support non-Python frameworks such as
XACC, QCOR, Q# orQuipper.

In order to be as generic as possible, qcw uses an abstract common interface to represent the
concept of “quantum (sub)routine”. This concept is formally defined in Definitions 1 to 3.
Definition 1. Quantum routine: a possibly parameterised, named, sequence of quantum subrou-
tines.
Definition 2. Quantum subroutine: a quantum routine that is part of a higher-level quantum
routine (i.e. that is called by another quantum routine).
Definition 3. Native quantum subroutine: a quantum routine that represents a native hardware
operation and that does not call any quantum subroutine.

Using Definitions 1 to 3, a common interface for the concept of “quantum routine” emerges.
First, a quantum routine should have a name that can be retrieved. Secondly, we should be able
to distinguish between native quantum routines and non-native ones. Finally, for each non-native
quantum routines, we need a way to iterate over all the subroutines composing it.

This interface, schematised in Figure 3, is the core abstraction layer of qcw that allows it to be
as independent as possible from the underlying quantum computing framework used to represent
the profiled quantum circuit and to provide a unified interface across a wide range of different
frameworks.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:7

Currently, qcw has been used to successfully access quantum circuits built with the Qiskit and
myQLM frameworks. OpenQASM 2.0 support is also implemented using Qiskit translation capa-
bilities by building a qiskit.QuantumCircuit instance from the given OpenQASM 2.0 code and
using the Qiskit wrapper of qcw. Using the same idea, an experimental XACC wrapper has been
implemented by exporting XACC code to OpenQASM 2.0. Finally, Q# andQuipper support is cur-
rently being envisioned and should be implementable as both framework implement either Python
bindings or a method to export to OpenQASM 2.0 code.

3.3 Core data structures and logic
Now that the issue of adapting qprof to the various quantum computing frameworks has been
solved, we can start considering the main problem of profiling a quantum circuit.

Section 3.3.1 introduces the different quantities that might be interesting to include in a quan-
tum program profiling report, comparing with classical computing quantities when appropriate.
Then, Section 3.3.2 explains the main graphical representation used through this paper and in
qprof: the call-graph representation. Finally, Sections 3.3.3 and 3.3.4 introduce respectively the
data-structures and the algorithms used internally by qprof to profile a quantum circuit imple-
mentation.

3.3.1 Interesting data to profile. Profiling a program is the action of gathering data on its execution.
For classical programs and profilers, the list of data that can be gathered is quite extensive ranging
from high-level quantities such as the time spent in a given function or the memory used during
the program execution to low-level information recovered via hardware counters such as cache
misses or branch-prediction-misses.

But for quantum computing, the quantities of interest need to be adapted as several classical data
such as cache-miss or branch-prediction-miss do not have any meaning anymore. Nevertheless
some classical quantities have a quantum analogue that may be useful for optimisation purposes.

This is the case for the classical “instruction number” quantity, that translates trivially to its
quantum counterpart “native gate number” (or “hardware gate number”). The number of native
gates executed by a quantum routine is a useful information for several reasons: it is simple, the
routine worst-case execution time can be computed from it and a lower-bound of the routine error
rate can also be devised using this information.

Another classical quantity that can be translated to quantum computing is the “time spent in
routine”. This quantity can be subdivided in two more specific figures: the “time spent exclusively
in routine” (sometimes called “self time”) and the “time spent in subroutines called by the routine”.
This separation is often done in classical profiling programs as having these two execution times
gives very useful information about the profiled routine that cannot be obtained from the “time
spent in routine” only.

The last classical quantitywith ameaningful quantum counterpart is the “memory usage”, which
may be translated as “number of qubits needed” when using quantum computers.

About quantities without a clear classical parallel but potentially useful, one can cite the “routine
depth” as an approximation of the total execution time of the routine, the “T-count” for error-
correction estimates, the “idle time” to estimate the potential effects of qubit decoherence on the
routine, the needed “chip topology” in order to execute the routine, the “quantum gate parallelism”
the implementation is able to reach, etc.

3.3.2 Graph representation (call-graph). Following Definitions 1 to 3 and the RoutineWrapper
interface we defined in Section 3.2.2, a graph-like representation of a quantum program seems to
be particularly well suited. In this representation, nodes are quantum routines and an oriented
edge from node A to node B means that the quantum routine represented by A calls the quantum

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

Grover’s algorithm

H … H oracle diffusion

X … X ccx ccx X H … H X … X CnX X … X H … H

Fig. 4. Call-graph representation of one possible implementation of Grover’s algorithm. Dashed squares with
dots within them mean a repetition of the two gates around the dashed node. Dashed arrows starting from
the two ccx nodes and the CnX node represent a sub-graph that has not been included here for readability
reasons.

Grover’s algorithm

oracle diffusion

ccx X CnX H

×1

×
1

×
n

×2

×
(n
+
1)

×2n

×
1

×2n

Fig. 5. Call-graph representation of one possible implementation of Grover’s algorithm. Each node repre-
sents one routine rather than one call to the routine. Edges have been regrouped and labelled with the num-
ber of calls for readability purposes. In the internal representation used by qprof, edges are not regrouped
and are ordered to account for the original quantum program subroutine call order.

subroutine represented by B. This representation of a program is called a call-graph in classical
computing.
Figure 4 shows a call-graph representation of one possible implementation of Grover’s algo-

rithm. Even though this representation is valid according to the general definition of a call-graph,
it contains a lot of redundant information that scrambles the useful data in visual noise. Because
of this, most of the call graph representations avoid the duplication of nodes, i.e. create one node
for a specific routine and re-use this node whenever the routine is called.

Figure 5 shows another possible call-graph representation of the same implementation of Grover’s
algorithm. Here, a graph node represents a unique routine and is re-used whenever this routine is
called.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:9

RoutineNode
subroutines: List[RoutineNode]
cost: double
T-count: integer
topology: Topology

Fig. 6. Example of a possible RoutineNode containing information on the cost, theT -count and the required
topology of the routine it represents. Text on the left of each line represents the name of the stored in-
formation and is followed by the type that stores this information. RoutineNode instances always store a
(possibly empty) list of subroutines that are called by the represented routine. This list encodes the edges of
the call-graph, i.e. if the RoutineNodeA has B in its subroutines, an edge fromA to B will be present in the
call-graph.

3.3.3 Data structures. To profile a given quantum circuit (or equivalently a given call-graph),
qprof will naturally have to explore it and gather data through the exploration. The exploration is
performed using a data structure inspired from graph exploration: RoutineNode.
A RoutineNode represents one node of the call graph (i.e. one routine of the quantum circuit)

and stores information about the represented node. An example of a possible RoutineNode is given
in Figure 6.

In order to be as efficient as possible on a wide class of quantum circuits, qprof does its best
to reduce the number of call-graph nodes it has to explore. To do so, qprof caches instances of
RoutineNode: the first time a routine is seen, its corresponding RoutineNode will be created and
saved in order to be re-used without having to re-create the RoutineNode instance each time the
routine is encountered.

This cache mechanism is implemented using a factory pattern: a RoutineNode should only be
created indirectly through a dedicated RoutineNodeFactory instance. The RoutineNodeFactory
instance keeps track of all the RoutineNode it has already created and implements the cache using
Python dict data structure, internally implemented as a hash table. The cache implemented by
RoutineNodeFactory has nomaximum size, meaning that it will keep each RoutineNode instance
created.This absence of cache invalidation is not an issue as every cached routine is already present
in the profiled quantum circuit, meaning that qprof memory usage is at worse equivalent to the
profiled quantum circuit memory usage.

Due to the requirements of the hash table data structure, RoutineNode instances should be
hashable and comparable with other RoutineNode instances. These requirements are offloaded by
qprof to the qcw RoutineWrapper data structure to leave the possibility to use hash and equality
operators provided by the wrapped framework. The final interface of the RoutineWrapper data
structure is shown in Figure 7.

Note 2. The implementation of the hash and equality operators should be performed with care
as their characteristics are crucial for qprof runtime and accuracy. The main requirements are
imposed by the hash table data structure used by qprof: hash and equality operators should have
a complexity in O (1), and the hash operator should have the best quality possible (i.e. the lowest
collision rate possible).

Implementing correct hash and equality operations with a complexity of O (1) may be non-
trivial, as the constant complexity requirements prevents the operators from exploring each of the
gates contained in the tested routine. qcw implements the hash and equality operators using the
name and the parameters of the routine at hand, with the assumption that two routines with the

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

RoutineWrapper
__init__(framework_circuit)
name() -> str
is_base() -> bool
__iter__() -> iterator
__eq__(other_routine) -> bool
__hash__() -> int

Fig. 7. Final RoutineWrapper interface. __init__, name, is_base and __iter__ methods are described in
Figure 3. The __eq__ method tests if other_routine is equal to the current instance. __hash__ computes
an integer hash of the currently wrapped routine.

same name and the same parameters will contain exactly the same gates (and consequently, are
equal). This assumption might be invalidated in the case of randomised routines.

3.3.4 qprof algorithms. The main procedure and only function accessible from qprof interface,
qprof.profile, is described in Algorithm 1.

Algorithm 1: qprof.profile, the main qprof function
Input: main_routine a quantum circuit, gate_costs a dictionary-like data-structure

storing the cost for each native quantum gate, exporter the qprof exporter to use,
framework_arguments arguments forwarded to the quantum computing
framework used to represent main_routine

Output: exporter_report the report returned by the given exporter
1 factory← new RoutineNodeFactory() ;
2 qcw_routine← qcw.Routine(main_routine, framework_arguments) ;
3 tree_root← factory.get(qcw_routine, gate_costs) ;
4 return exporter.export(tree_root) ;

This procedure calls the method RoutineNodeFactory.get that is detailed in Algorithm 2. A
study of the runtime complexity of Algorithm 2 is provided in Section 4.1.

Algorithms used by the different exporters to summarise the call-graph built with RoutineNode
instancesmay use internal data structures and other algorithms in order to generate a report.These
are specific to the exporter and Section 3.4.1 gives an example with some details and a description
of the data structure used by the gprof-compatible exporter along with the limitation it imposes
to the quantum circuits that can be handled by the exporter.

3.4 Exporters
qprof also implement several exporters that will transform the abstract quantum program repre-
sentation described in Sections 3.3.2 and 3.3.3 to a more usable format.

Exporters should implement a specific interface schematised in Figure 8. qprof natively imple-
ments two textual exporters: one that outputs a gprof-compatible format and another that returns
a JSON-formatted string that directly represents a flat call-tree structure used internally by the
gprof exporter.

3.4.1 Flat call-tree representation. Before the profiler report generation, it is convenient to sum-
marise the information contained in the generic call-graph structure presented in Sections 3.3.2

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:11

Algorithm 2: factory.get, qprof processing applied for each node of the call-graph. Gate
cost is the only information computed by qprof for the moment. Making qprof compatible
with other information such as topology or program parallelism will require to update this
algorithm.
Input: routine a quantum circuit wrapped by qcw, factory a qcw routine factory,

gate_costs a dictionary-like data-structure storing the cost for each native
quantum gate

Output: routine_node an instance of RoutineNode, the internal qprof data structure to
represent one node of the call-graph

/* 1. Try to find the routine in the cache and return it if found */

1 if routine in factory.cache then
2 return factory.cache[routine] ;
3 end
/* 2. The node has never been encountered yet, build it and add it to the

cache */

4 routine_node← RoutineNode() ;
5 routine_node.self_cost← 0 ;
6 routine_node.subroutine_costs← 0 ;
7 routine_node.subroutines← list () ;
8 routine_node.routine_name← routine.name() ;
/* 3. Test if the explored node is a leaf (native gate) */

9 if routine_node.routine_name in gate_costs or routine.is_base() then
10 routine_node.self_cost← gate_costs[routine_node.routine_name] ;
11 return routine_node ;
12 end

/* 4. Else, if the explored node is not a leaf, recurse into its children
*/

13 foreach subroutine in routine.__iter__() do
14 child_node← factory.get(subroutine, gate_costs) ;
15 routine_node.subroutines.append(child_node) ;

/* Important note: the following line assumes that the ``cost'' is an
additive quantity. It will have to be updated for non-additive
quantities such as error rates or topology. */

16 routine_node.subroutine_costs← routine_node.subroutine_costs +
child_node.self_cost + child_node.subroutine_costs ;

17 end
/* 5. Update the cache with the computed routine before returning */

18 factory.cache[routine]← routine_node ;
19 return routine_node ;

and 3.3.3. To do so, the gprof and JSON exporters both rely on a flat structure that represents a
directed call-tree (i.e. a directed call-graph without loops).

This structure puts an additional restriction to the quantum programs that can be profiled using
these exporters: the interdiction to have recursive subroutines (a subroutine that ends up calling
itself). It is important to realise that this restriction does not have a huge impact on the area of

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

BaseExporter
__init__(**args)
export(RoutineNode) -> Any

Fig. 8. Exporter interface. Any plugin that implements an exporter should be a derived from the
BaseExporter class and implement this interface. The return type of the export method is not specified
and can be anything. The main profile function will return the output of the exporter.

application of qprof because, as of today, recursive subroutine calls do not seem to be widespread
in quantum computing programs and the restriction only applies to the gprof and JSON exporters,
the core logic of qprof being capable of handling recursive subroutine calls without any issue.

The flat call-tree structure stores, for each subroutine A encountered in the call-graph explo-
ration, a list of all the subroutines B called by A. Along with each called subroutine B, the structure
stores the number of times B has been called by A and the cost associated with these calls. Finally,
in order to simplify the report generation, each called routine B will also store a list of the rou-
tines A it has been called by. Within this list is also stored the number of calls to B that have been
performed from each A and the cost associated with these calls.

3.4.2 gprof output. The gprof exporter aims at generating a profiler report that is compatible
with the profiler report returned by gprof, a well-known classical profiler. Being compatible with
a tool that has been around for decades and is still actively used has several advantages.

First and foremost, the fact that a tool that has been stable for decades and is still actively used
shows that it provides satisfaction to its users, meaning that the output format includes enough
information and is sufficiently easy to read and use in practice.

Secondly, a decades-old, largely used, output format is likely to have a lot of official or user-
contributed tools to help analysing and representing it in the best way possible. This is the case
for the gprof format that can be translated to a call-graph using the gprof2dot tool and the dot
executable from Graphviz library.

Finally, the gprof output is simple to generate: it is a textual file with a simple and regular
format.

3.4.3 Reading a gprof-based call-graph. As explained in Section 3.4.2, gprof output (and qprof
output when used with the gprof-compatible exporter) can be visualised as a call-graph using the
gprof2dot tool and the dot executable from the Graphviz library. Such a call-graph is depicted
in Figure 9.

Each node of the graph represents a unique quantum routine.The name of this quantum routine
can be read on the first line of text inside the node. The second line of text in the node is the
percentage of the total cost associated with the routine represented by the node, including the
cost of subroutines called by the routine (also called total_time when the considered cost is the
execution time). The third line represents the total cost of the routine represented by the node,
but excluding subroutines (also called self_time when the considered cost is the execution time).
The fourth line represents the number of times the routine is called in the program. Finally, each
node is coloured according to the total time spent in the routine it represents from dark-red for
high-cost routines to light-green for low-cost routines.

Each directed edge of the graph represents a subroutine call: if a directed edge that goes from
node parent to node child is present, it means that the routine represented by node parent is
calling the subroutine represented by node child at least once. Each edge is annotated with the

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:13

1.09%
2×

98.91%
6×

0.00%
3×

0.00%
4×

1.09%
2×

0.00%
3×

0.00%
4×

ccx
100.00%
(0.00%)

1×

h
1.09%

(0.00%)
2×

cx
98.91%

(98.91%)
6×

tdg
0.00%

(0.00%)
3×

t
0.00%

(0.00%)
4×

u2
1.09%

(1.09%)
2×

u1
0.00%

(0.00%)
7×

Fig. 9. Example of a simple call-graph generated with the help of gprof2dot and the dot tool from the
Graphviz library.

H T † T

T

T † T

T

T †

H

Fig. 10. Standard representation of a quantum circuit. Time goes from left to right, giving the order in which
quantum gates are applied. Horizontal lines represent qubits. Gates are represented by rectangles, with the
notable exception of the CNOT gates that has a control qubit (small black dot) and a target qubit (circle with
a cross in the inside) linked together by a straight line.

percentage of the total cost transferred from parent to child (i.e. the cost that was consumed
calling child from within parent) and the number of times parent is calling child.
With these definitions, and provided that the cost used is an additive quantity, the main routine

will always have an execution time of 100% and the sum of the percentages of each outgoing edge
of a given node should be equal to the total_time of this node.

3.4.4 Advantages of the call-graph visualisation. There are several advantages to the call-graph
representation used in Figure 9 when compared to the other possible representations of a quantum
circuit.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

One of the most widespread way of representing a quantum circuit in the quantum computing
community is depicted in Figure 10. This representation has the advantage of being simple to
understand and precise with respect to which quantum operation should be applied and when.
One of the disadvantages of this representation is that it becomes quickly unreadable for quantum
circuits containing a lot of quantum gates. It is also a shallow representation: the only way of
representing a main quantum circuitC that calls the subroutine R without inlining the call to R in
C is by representingC and R separately.This becomes quickly unmanageable for complex quantum
circuits that may call tens of nested subroutines.

The call-graph representation has the advantage of complementing the standard quantum cir-
cuit representation of Figure 10: its main strength is its ability to represent very large and deeply
nested quantum circuits in one synthetic and concise graph, providing a readable and global rep-
resentation of the whole quantum circuit. In the call-graph representation, all the routines of the
profiled quantum circuit are represented and the relationship between each routine (which one
calls and which one is called) is explicit.

4 COMPLEXITY AND RUNTIME ANALYSIS
4.1 Asymptotic complexity of qprof
The runtime efficiency of qprof is one of its strength: it will be very efficient on most of real-world
quantum circuit implementation.

Let first recall that qprof only access a quantum circuit through the interface provided by qcw
and summarised in Figure 7. This means that computing the asymptotic complexity of profiling a
given quantum circuit depends on the complexity of the qcw methods and on the number of call
to such methods qprof needs to perform.
Algorithm 2 details the algorithm used by qprof to initialise its internal data structures. This

algorithm is only applied once, on the routine to profile (the call-graph root, i.e. the only node that
does not have any incoming edge), and then recurses into the call graph to explore all the nodes
needed.

qcw interface is implicitly or explicitly called on six lines of Algorithm 2. First on lines 1 and
2, the hash and equality operators are called in order to perform hash table operations. Then, on
line 8, the name of the currently explored routine is retrieved once. A test to check if the routine
is considered as “native” is performed with a call to the is_basemethod at line 9. The for-loop on
line 13 is also calling the __iter__ method once. Finally, line 18 is calling the hash and equality
operators again to add an entry in the cache implemented as a hash table.
Note 3. The __iter__ method is only called once but will iterate over all the subroutines of
the current routine even those that have already been seen and cached by qprof. The already
cached subroutines will simply end the recursion for this branch of the call-graph in the call to
factory.get without exploring their subroutines.

A summary of the number of calls to the differentmethods provided by qcw interface is provided
in Table 1.
Even though c in Table 1, the average number of calls to __eq__, seems hard to bound in general,

Python documentation provides guarantees on the asymptotic complexity of the operations on a
dict instance: access and modification of the data structure, which are the 2 operations performed
by qprof, are O (1) on average and O (n) on amortised worst case.This mean that for each explored
nodes of the call-graph, qprof will only have to perform O (1) operations on average.
In the end, qprof asymptotic complexity depends entirely on the number of nodes of the call-

graph it needs to explore. This number depends on the profiled circuit and no general formula that
include the number of gates in the profiled quantum circuit can be devised.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:15

Table 1. Number of calls of qprof implementation to the qcw interface for each explored node of the call-
graph. Note that a few optimisations that do not appear on Algorithm 2 for readability purpose have been
performed in the implementation. This table provides the counts of the optimised implementation. c is a
number that depends on the implementation of the hash table and the quality of the hash function used
and that represents the expected average number of equality tests that should be performed at each access
to the hash table. “Nodes” in the last column encompass both “Leafs” and “Non-leafs”.

RoutineWrapper method Leafs, non-cached Non-leafs, non-cached Nodes, cached
name () -> str 1 1 0
is_base () -> bool 1 1 0
__iter__() -> iterator 0 1 (see Note 3) 0
__eq__(other) -> bool c 2c c
__hash__() -> int 1 2 1

Algorithm 1: get_linear_circuit
Input: n an integer
Output: circuit a quantum circuit

1 if n == 1 then
2 return H gate ;
3 end
4 circuit ← empty_circuit(name = n) ;
5 circuit.append(get_linear_circuit(n− 1))

;
6 return circuit ;

(a) Pseudo-code of the algorithm to generate the linear
quantum circuit.

n

n− 1

. . .

2

H

(b) Call-graph representation of the linear quantum cir-
cuit.

Fig. 11. Example of quantum circuit that contains a constant number of quantum gates (here only 1) but
that will require qprof O (n) operations to analyse and output a profile report.

To illustrate this claim, two example quantum circuits are provided. Figure 11 provides an ex-
ample of a quantum circuit that contains only 1 quantum gate but that will require qprof to visit
an arbitrarily large number N of nodes in the call-graph. On the other side, Figure 12 shows a
quantum circuit that contains N = 2n quantum gates but that will only require qprof to explore
O (log2 N) nodes of the call-graph.
We can still have an upper-bound of the number of operations qprof will have to perform on

a given quantum circuit by restricting each routine to call at most Nsubroutine subroutines and by
using the number of unique quantum gates Nu used in the circuit. For example, the quantum
circuit depicted in Figure 12(b) has Nu = 4 because it contains 4 unique gates: {H , 2, 3, 4} and the
quantum circuit depicted in Figure 11(b) has Nu = n unique quantum gates: {H , 2, . . . ,n − 1,n}.
For a quantum circuit in which routines are restricted to call at most Nsubroutine subroutines, qprof
will explore at most (Nsubroutine × Nu) nodes of the call-graph.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

Algorithm 1: get_binary_tree_circuit
Input: n an integer
Output: circuit a quantum circuit

1 if n == 1 then
2 return H gate ;
3 end
4 circuit ← empty_circuit(name = n) ;
5 circuit.append(get_binary_tree_circuit(n− 1)) ;
6 circuit.append(get_binary_tree_circuit(n− 1)) ;
7 return circuit ;

(a) Pseudo-code of the algorithm to generate the
binary_tree quantum circuit.

4

3

2

H H

2

H H

3

2

H H

2

H H

(b) Call-graph representation of the binary_tree quan-
tum circuit for n = 4. Nodes drawn in grey are not
processed by qprof thanks to the caching mechanism de-
scribed in Section 3.3.3.

Fig. 12. Example of quantum circuit that contains an exponential number of quantum gates (here 2n) but
that will require qprof only O (n) operations to analyse and output a profile report.

4.2 Real-world execution time
We benchmarked the execution time of qprof on several well-known use-cases. These benchmarks
were performed on one core of a Intel Xeon Platinum 8260M cadenced at 2.40GHz. Table 2, Table 3
and Table 4 give the average and standard deviation of the profiling time for quantum circuits
implementing three different use cases. The “Profiling time” and “Saved time” measurements have
been performed 100 times and each table contains the average time and the standard deviation
observed over the 100 executions.
“Saved time” is an estimation of the execution time saved thanks to the caching mechanism

implemented. It is computed by saving the time needed to profile a routine when it is first en-
countered and then incrementing a counter by this exact same time each time the routine is seen
again and the cache is used. This methodology tends to produce noisy results because an impreci-
sion in the first measurement will lead to an accumulation of errors, but the computed standard
deviations are always relatively low compared to the average which is a good indicator that the
obtained “Saved time” is close to the real saved time.

5 CODE EXAMPLES AND PRACTICAL APPLICATIONS
This section includes several examples of qprof usage on various quantum circuits ranging from a
simple Toffoli gate decomposition in Section 5.1 to more complex algorithm implementations such
as Grover’s algorithm in Section 5.2. All these benchmarks are performed on circuits generated
using the qiskit framework. An example of benchmarking a quantum implementation of a 1-
dimensional wave equation solver written using the myQLM framework is finally provided in
Section 5.3.

5.1 Benchmarking a simple program
One of the most simple quantum program that can be benchmarked is the implementation of a
Toffoli gate. Such a benchmark has the benefit of being simple enough to be studied by hand which
means that we will be able to verify qprof results by hand-computing them.

The decomposition of a Toffoli gate as implemented in the qiskit framework is depicted in
Figure 13. A complete example using qprof to profile the default Toffoli gate decomposition in
qiskit is shown in Listing 1.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:17

Table 2. qprof observed runtime on quantum circuits generated using the quantum algorithm described
in [36] and also used in Listing 3. The evolve_1d_dirichlet function was used with an evolution time of 0.1,
a desired precision ϵ = 10−3, a trotter order of 1 and a varying number of discretisation points given in the N
column. The nearly instantaneous generation times have to do with how the myQLM framework is working:
the circuit is generated lazily when needed. Consequently, the Profiling time and Saved time column also
include the time needed to construct the quantum circuits. Profiling time and Saved time columns provide
average ± standard_deviation numbers obtained by profiling 100 times the generated circuit.

N #Qubit Gate number Generation (s) Profiling time (s) Saved time (s)
23 4 126846 0.000 0.01 ± 0.00 0.82 ± 0.01
24 5 528768 0.000 0.02 ± 0.00 2.99 ± 0.03
25 6 1953720 0.000 0.04 ± 0.01 10.17 ± 0.14
26 7 6773868 0.000 0.09 ± 0.02 33.26 ± 0.31
27 8 22575672 0.000 0.24 ± 0.03 106.92 ± 1.52
28 9 73323792 0.000 0.66 ± 0.03 333.43 ± 4.26
29 10 233816544 0.000 1.90 ± 0.04 1043.10 ± 14.02
210 11 735473520 0.000 5.48 ± 0.07 3215.83 ± 44.62
211 12 2289028896 0.000 15.73 ± 0.15 9914.92 ± 132.58
212 13 7063525944 0.000 45.77 ± 0.42 30473 ± 275
213 14 21643231428 0.000 132.21 ± 1.15 92083 ± 1133
214 15 65922050880 0.000 383.65 ± 6.79 270824 ± 5494

Table 3. qprof observed runtime on quantum circuits generated using the function
qiskit.algorithms.HHL. The linear system matrices were constructed with the function
qiskit.algorithms.linear_solvers.matrices.TridiagonalToeplitz(N , 1, 0.5) and the
right-hand side b has been picked randomly. Profiling time and Saved time columns provide
average ± standard_deviation numbers obtained by profiling 100 times the generated circuit.

N #Qubit Gate number Generation (s) Profiling time (s) Saved time (s)
21 5 1049 0.087 0.02 ± 0.01 0.06 ± 0.05
22 9 8759 0.465 0.03 ± 0.00 0.19 ± 0.00
23 13 34866 1.523 0.09 ± 0.02 0.45 ± 0.03
24 16 192104 7.572 0.18 ± 0.00 1.56 ± 0.01
25 20 581170 21.881 0.63 ± 0.09 4.14 ± 0.33
26 24 1744225 63.612 2.09 ± 0.25 11.63 ± 0.79
27 28 4937772 175.546 7.23 ± 0.89 31.41 ± 1.09
28 32 12310383 441.949 25.67 ± 0.73 91.72 ± 3.58
29 36 33471747 1234.263 98.59 ± 0.12 289.60 ± 3.76

The output of qprof, which is here in a gprof-compatible format, can then be analysed. For
the sake of readability and brevity, the full gprof-compatible profiler report will not be included
verbatim in this paper and will rather be visualised using the gprof2dot tool that allows represent-
ing gprof reports as call-graphs. The call-graph obtained from the report generated in Listing 1 is
depicted in Figure 14.
From the call-graph depicted in Figure 14, it is clear that the cost of a Toffoli gate comes from its 6

controlled-X gates, that account for more than 98% of the total execution time. It is also interesting

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

Table 4. qprof observed runtime on quantum circuits generated using the function
qiskit.algorithms.Shor trying to factor the number N . Profiling time and Saved time columns
provide average ± standard_deviation numbers obtained by profiling 100 times the generated circuit.

N #Qubit Gate number Generation (s) Profiling time (s) Saved time (s)
15 18 35049 2.644 0.07 ± 0.00 0.44 ± 0.00
77 30 216651 11.840 0.21 ± 0.03 2.15 ± 0.45
221 34 340817 17.460 0.26 ± 0.00 2.96 ± 0.02
437 38 511039 24.161 0.30 ± 0.00 3.84 ± 0.04
899 42 737301 34.197 0.36 ± 0.00 4.89 ± 0.06
2021 46 1030547 42.204 0.44 ± 0.00 6.69 ± 0.07
4087 50 1402681 58.869 0.51 ± 0.01 8.50 ± 0.10
6557 54 1866567 76.888 0.59 ± 0.16 10.03 ± 1.31
14351 58 2436029 98.285 0.62 ± 0.01 11.29 ± 0.14
30967 62 3125851 109.153 0.73 ± 0.01 14.47 ± 0.12
38021 66 3951777 142.007 0.81 ± 0.01 16.85 ± 0.20

=

H T † T

T

T † T

T

T †

H

Fig. 13. Standard decomposition of a Toffoli gate into 1− and 2− qubit gates.

Code Listing 1. Python code needed to use qprof on the Toffoli gate implementation and save the profiler
report in a gprof-compatible format in a file named toffoli.qprof.

from qiskit import QuantumCircuit

from qprof import profile

Circuit construction

circuit = QuantumCircuit(3, name="one_ccx_circuit")

circuit.ccx(0, 1, 2)

Profiling

gate_costs = {"u1": 0, "u2": 10, "u3": 30, "u": 30, "cx": 300}

gprof_output = profile(

circuit , gate_costs , "gprof", include_native_gates=True

)

with open("toffoli.qprof", "w") as f:

f.write(gprof_output)

to note that theT gate, known to be very costly when error-correction is needed, is “free” on IBM
Quantum chips when error-correction is not needed as it is equivalent to a phase change.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:19

100.00%
1×

1.09%
2×

98.91%
6×

0.00%
3×

0.00%
4×

1.09%
2×

0.00%
3×

0.00%
4×

one_ccx_circuit
100.00%
(0.00%)

1×

ccx
100.00%
(0.00%)

1×

h
1.09%

(0.00%)
2×

cx
98.91%

(98.91%)
6×

tdg
0.00%

(0.00%)
3×

t
0.00%

(0.00%)
4×

u2
1.09%

(1.09%)
2×

u1
0.00%

(0.00%)
7×

Fig. 14. Call-graph for the Toffoli gate implementation.Quantum gates included in the gate_costs variable
(here u, u1, u2, u3 and cx) are considered as native gates. Only native gates have a non-zero self-time as they
are the only gates that are really executed on the hardware.

5.2 Grover’s algorithm
The Toffoli gate is a good example to start and understand the meaning of qprof’s output but the
end goal of qprof is to be able to profile large and complex quantum circuits. A good first candidate
to show how qprof performs on a more complex circuit is Grover’s algorithm.

In this example we use Grover’s algorithm on four qubits to find the three quantum states that
verify the following formula:

(q0 ∨ ¬q1) ∧ (¬q2 ∧ q3). (1)
The only three 4-qubit quantum states verifying Equation (1) are |0001⟩, |1001⟩ and |1101⟩, q0
being the left-most qubit in the bra-ket notation.

The code needed to generate the gprof-compatible output for Grover’s algorithmwith the oracle
presented in Equation (1) is given in Listing 2. The resulting call-graph, included in Figure 15,
clearly shows that the controlled-X gate is still the major contributor to the total cost. But this
time, contrarily to the Toffoli example shown in Section 5.1, the controlled-X gate is called by
three different subroutines that all contribute significantly to the overall cost: c3z, ccz and mcx.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

Code Listing 2. Python code needed to use qprof on the Grover implementation and save the profiler report
in a gprof-compatible format in a file named grover.qprof.

from qiskit.algorithms import AmplificationProblem , Grover

from qiskit.circuit.library import PhaseOracle

from qprof import profile

Circuit construction

oracle = PhaseOracle("(v0 | ~v1) & (~v2 & v3)")

problem = AmplificationProblem(oracle , is_good_state=oracle.evaluate_bitstring)

grover = Grover(iterations=1)

circuit = grover.construct_circuit(problem)

Profile

gate_costs = {"u1": 0, "u2": 10, "u3": 30, "u": 30, "cx": 300}

gprof_output = profile(circuit , gate_costs , "gprof", include_native_gates=True)

with open("grover.qprof", "w") as f:

f.write(gprof_output)

Thanks to qprof it is now easy to understand the subroutines that contribute the most to the
total cost. More importantly, the gprof-compatible report and the call-graph representation give
very insightful information about subroutines calls that are crucial for circuit optimisation. Such
information can be used to weight the impact of a given optimisation and then decide whether or
not it is worth applying it.

For example, knowing that the ccz subroutine takes 18.61% of the total time, it is easy to deduce
that a 20% improvement in the implementation of ccz will translate into a tiny 18.61%

5 = 3.72%
improvement to the overall cost, which might not be worth the effort. On the other hand, opti-
mising the c3z subroutine to reduce its cost by 20% improves the overall cost by 9.22%, which is
nearly 10% and might be an interesting optimisation target. Finally, the call-graph visualisation
conveys clearly the information that the cx gate is the most costly subroutine of the Grover’s cir-
cuit, meaning that even a slight optimisation of the cx cost will have a high impact on the overall
implementation cost.

5.3 Quantum wave equation solver
Finally, we include in this paper a more complex example that has been implemented in a previ-
ous work with myQLM, a quantum computing framework maintained by Atos. The code used to
generate the benchmarked quantum program is available at https://gitlab.com/cerfacs/qaths/ and
is explained in [36].
This example demonstrates that, as can be seen in Listing 3, qprof interface stays nearly the

same even though the framework used is now completely different. The only exceptions are some
additional parameters (such as linking_set in Listing 3) that are directly forwarded to the frame-
work plugin used and additional gate definitions in the gate_costs data structure because of the
way gate decomposition is handled in myQLM.

The call graph obtained by running Listing 3 is reproduced in Figure 16. In order for the call-
graph to be readable on a paper format, negligible subroutines and calls (i.e. nodes and edges
respectively) have been discarded from the graphical representation. The call-graph clearly shows
that most of the execution time is spent in the oracle implementation. Moreover, multi-controlled-
X gates are the major contributors to the total execution time.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://gitlab.com/cerfacs/qaths/

qprof: a gprof-inspired quantum profiler 1:21

0.28%
4×

99.72%
1×

1.10%
16×

0.69%
10×

46.52%
1×

1.60%
8×

19.41%
1×

31.49%
1×

0.40%
2×

46.12%
1×

2.80%
14×

0.80%
4×

18.61%
1×

0.14%
2×

3.04%
15×

28.32%
14×

2.83%
14×

2.83%
14×

40.46%
20×

7.08%
35×

1.21%
6×

1.21%
6×

16.18%
8×

Grover circuit
100.00%
(0.00%)

1×

h
1.10%

(0.00%)
16×

Q
99.72%
(0.00%)

1×

u2
1.10%

(1.10%)
16×

c3z_o3
46.52%
(0.00%)

1×

x
2.80%

(0.00%)
14×

ccz_o0
19.41%
(0.00%)

1×

mcx
31.49%
(0.00%)

1×

c3z
46.12%
(0.00%)

1×

u3
2.80%

(2.80%)
14×

ccz
18.61%
(0.00%)

1×

p
7.08%

(0.00%)
35×

cx
84.96%

(84.96%)
42×

u
11.13%

(11.13%)
55×

Fig. 15. Call-graph for the Grover’s algorithm implementation.Quantum gates included in the gate_costs
variable (here u, u1, u2, u3 and cx) are considered as native gates. Only native gates have a non-zero self-time
as they are the only gates that are really executed on the hardware. Some percentages might not add up to
exactly 100% due to rounding errors.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

100.00%
151332×

100.00%
151332×

100.00%
453996×

65.54%
605328×

3.44%
907992×

1.06%
453996×

29.96%
302664×

65.54%
605328×

1.37%
9987912×

2.07%
9987912×

1.04%
1815984×

29.96%
302664×

0.21%
6658608×

18.76%
4237296×

0.24%
1210656×

23.09%
605328×

23.09%
605328×

0.75%
126513552×

24.70%
5750616×

69.28%
1815984×

34.64%
907992×

0.87%
27845088×

23.73%
121670928×

1.59%
50847552×

10.15%
52058208×

57.54%
32687712×

0.62%
19975824×

0.75%
9987912×

1.95%
9987912×

0.12%
19975824×

0.10%
3329304×

6.70%
1513320×

11.55%
302664×

11.55%
302664×

evolve_1d_dirichlet
100.00%
(0.00%)

1×

evolve_1d_dirichlet_no_repetition_no_time_adjustment
100.00%
(0.00%)
151332×

simulate_using_trotter
100.00%
(0.00%)
151332×

simulate_signed_integer_weighted_hamiltonian
100.00%
(0.00%)
453996×

oracle1
65.54%
(0.00%)
605328×

A
3.44%

(0.00%)
907992×

exp_ZZFt
1.06%

(0.00%)
453996×

oracle2
29.96%
(0.00%)
302664×

oracle_dirichlet1_1d_wave_equation
65.54%
(0.00%)
605328×

W
1.37%

(0.00%)
9987912×

toffoli_10
2.07%

(0.00%)
9987912×

CCPH
1.04%

(1.04%)
1815984×

oracle_dirichlet2_1d_wave_equation
29.96%
(0.00%)
302664×

CNOT
3.39%

(3.39%)
108656376×

compare_const
25.45%
(0.00%)

5750616×

CCNOT
36.25%

(36.25%)
185835696×

Cadd_const
69.28%
(0.00%)

1815984×

Csub_const
34.64%
(0.00%)
907992×

X
1.04%

(1.04%)
173729136×

high_bit_compute
24.70%
(0.00%)

5750616×

CADD_CONST
69.28%
(0.00%)

1815984×

CCCNOT
57.54%

(57.54%)
32687712×

CH
0.75%

(0.75%)
9987912×

Fig. 16. Call-graph of the quantum wave equation solver. Nodes (i.e. quantum routines) that account for less
than 0.5% of the total execution time are not plotted. Edges (i.e. subroutine calls) that account for 0.1% or
less of the total execution time are also discarded for readability purposes.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:23

Code Listing 3. Python code needed to use qprof with the QatHS library, on top of myQLM, and save the
profiler report in a gprof-compatible format in a file named qaths.qprof.

from qaths.applications.wave_equation.evolve_1D_dirichlet import

evolve_1d_dirichlet

from qaths.applications.wave_equation.linking_sets.arithmetic_adder import

get_linking_set as arith_linking_set

from qprof import profile

Circuit generation

time = 0.1

discretisation_size = 2 ** 10

epsilon = 1e-3

trotter_order = 1

routine = evolve_1d_dirichlet(time , discretisation_size , epsilon , trotter_order)

Gate execution time definition

G = {"u1": 0, "u2": 89, "u3": 178 , "cx": 930}

gate_costs = {

"cu1": 2 * G["cx"] + 2 * G["u1"],

"cu2": 2 * G["cx"] + 2 * G["u3"],

"X": G["u3"],

"H": G["u2"],

"CNOT": G["cx"],

"CCNOT": 6 * G["cx"] + 2 * G["u2"] + 7 * G["u1"],

"CH": 2 * G["cx"] + 2 * G["u3"],

"PH": 3 * G["u1"] + 2 * G["cx"],

"CPH": 3 * G["u1"] + 2 * G["cx"],

"CCPH": None ,

}

gate_costs["CCPH"] = 3 * gate_costs["CPH"] + 2 * gate_costs["CCNOT"]

gate_costs["CCCNOT"] = 6 * gate_costs["CCNOT"] + 2 * gate_costs["cu2"] + 7 *

gate_costs["cu1"]

Profiling

result = profile(

routine ,

gate_costs ,

linking_set=arith_linking_set(discretisation_size),

exporter="gprof",

)

with open("qaths.qprof", "w") as f:

f.write(result)

6 DISCUSSION
Now that we have described qprof internals and how to use it on quantum circuits, we can compare
the insights it provides with the current state-of-the-art. We also discuss the current limitations
of the tool and potential improvements that could be added in the future.

6.1 Comparison with the state-of-the-art
A description of the profiling or resource estimate capabilities of several widely used quantum
computing frameworks have been provided in Section 2.2.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

One of the first advantages provided by qprof comparatively with the frameworks presented in
Section 2.2 is its framework agnostic interface. As explained in Section 3.2 and shown in Listings 1
to 3, qprof can handle nearly transparently different quantum computing frameworks and provide
a standardised report. The fact that qprof has been architectured as shown in Figure 2 allows it to
decouple entirely the framework used to represent the profiled quantum circuit from the output
format. It means that if a new exporter is implemented in the future, it will be available for all
the implemented frameworks. Conversely, if a new framework adapter is added to qcw, qprof will
directly be able to generate reports using all the already existing exporters.This decoupling, crucial
due to the increasing number of quantum computing frameworks, has not been implemented by
any of the existing resource estimation features listed in Section 2.2, each framework providing
features that are only compatible with its own quantum circuit representation.

Additionally qprof already provides a more detailed report thanmost of the quantum computing
frameworks listed in Section 2.2. The Q# Flame graph exporter provides the same type of informa-
tion by using a different visualisation format (Flame graphs [21]) but seems to be less flexible than
qprof with respect to the quantities that can be profiled.

6.2 qprof and quantum circuit compilation
qprof might be used to understand the impact of quantum compilation on a given quantum circuit
provided that the compilation tool-chain used does not destroy the call-graph structure of the
quantum circuit.

One of the only strong requirement of the qprof tool is that the quantum circuit provided can
be explored using the unified interface provided by qcw. But in order for qprof to generate a useful
report, a few other requirements should be checked.

First, routine names should be informative and human-readable. This requirement seems trivial
at first sight, but quantum program compilers might generate routines, for example using quantum
circuit synthesis algorithms [10, 11, 31], and the name attached to the generated quantum circuit
might not be informative at all.

Secondly, and even more importantly, the profiled quantum program should contain enough
information about the routines and subroutines used. Some compilers such as the one used by
Qiskit at the time of writing (version 0.32.1) start the compilation process by flattening the quan-
tum circuit and unrolling all the quantum gates that are not in the basis provided. As soon as the
quantum circuit has been flattened, all the call-graph information is lost and cannot be retrieved
by qprof anymore, making its report less useful when the profiled circuit has been flattened.
Figure 17 illustrates this issue with an implementation of Shor’s algorithm trying to factorise the

number 15: qprof report before the transpilation provides enough information to plot a meaningful
call-graph as shown in Figure 17(a) whereas qprof report for the exact same circuit but after calling
Qiskit transpiler (Figure 17(b)) contains nearly no useful information.
This means that qprof will only interact nicely with compilers if and only if the compiler used is

able to keep relatively untouched the structure of the call-graph. Currently, only a few compilers
are able to do so but projects like QCOR [28] may help democratising this approach. For compilers
that check this property, qprof will be able to help visualising the effect of compiler on the circuit
costs by plotting the call-graphs of the original and compiled circuits side by side and comparing
the different costs computed.

6.3 qprof and hardware-aware timings
The fact that most of the current compilers are flattening the compiled circuit makes qprof reports
less meaningful and informative as shown in Section 6.2. Not being able to use compilers restrict
the class of quantum circuits that might be sent to qprof: hardware-compliant circuits are not

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:25

99.53%
1×

99.53%
8×

2.23%
16×

46.64%
32×

2.23%
16×

1.78%
32×

46.64%
32×

0.47%
720×

144×

19.58%
1440×

8.91%
64×

8.91%
64×

0.44%
64×

14.14%
64×

7.07%
32×

7.07%
32×

0.47%
720×

144×

19.58%
1440×

0.44%
64×

1.35%
32×

8.91%
64×

8.91%
64×

0.44%
64×

7.07%
32×

14.14%
64×

7.07%
32×

83.07%
12216×

21.22%
480×

7.07%
160×

21.22%
480×

43.52%
3200×

13.06%
1920×

1.31%
192×

7.07%
160×

Shor(N=15, a=2)
100.00%
(0.00%)

1×

2^x mod 15
99.53%
(0.00%)

1×

cmult_a_mod_N
99.53%
(0.00%)

8×

h
0.99%

(0.99%)
1520×

QFT
20.05%
(0.00%)
288×

ccphi_add_a_mod_N
46.64%
(0.00%)

32×

QFT_dg
20.05%
(0.00%)
288×

cswap
1.78%

(0.00%)
32×

ccphi_add_a_mod_N_dg
46.64%
(0.00%)

32×

cp
83.07%
(0.00%)
6108×

cx
98.81%

(98.81%)
14532×

ccphi_add_a
21.22%
(0.00%)

96×

cphi_add_a
7.07%

(0.00%)
32×

ccphi_add_a_dg
21.22%
(0.00%)

96×

ccx
1.35%

(0.00%)
32×

cphi_add_a_dg
7.07%

(0.00%)
32×

mcphase
56.57%
(0.00%)
1280×

(a) Call-graph obtained on the circuit generated using Qiskit implemen-
tation of Shor’s algorithm trying to factorise 15.

0.00%
17433×

0.30%
1490×

99.70%
46430×

0.00%
1×

0.00%
17433×

0.00%
2980×

0.30%
1490×

0.00%
2980×

Shor(N=15, a=2)
100.00%
(0.00%)

1×

rz
0.00%

(0.00%)
17433×

sx
0.30%

(0.00%)
1490×

cx
99.70%

(99.70%)
46430×

x
0.00%

(0.00%)
1×

u1
0.00%

(0.00%)
20413×

sdg
0.00%

(0.00%)
2980×

h
0.30%

(0.30%)
1490×

(b) Call-graph obtained on the circuit
generated using Qiskit implementation
of Shor’s algorithm trying to factorise
15. qiskit.transpile has been used
on the generated quantum circuit
with ibm_cairo as the backend and
optimisation_level=2.

Fig. 17. Effect of using Qiskit transpiler on qprof reports. Using Qiskit transpiler flattens the quantum circuit
and effectively replace every routine call that is not in the transpilation basis by equivalent calls to gates in
the transpilation basis, making qprof report less informative and useful. Note that Qiskit transpiler inserted
CX gates in order to make the quantum circuit compliant with ibm_cairo topology, which is why the gate
cost of the cx gate became even more predominant in the transpiled circuit.

likely to be analysed for the moment. This is due to the fact that to get an hardware compliant
circuit, one should either use a compiler, which is not possible yet as discussed earlier, or build a
hardware-compliant circuit directly, which is an exceedingly complex task for large circuits.

Because hardware-compliant circuits are, for the moment, unlikely to be studied with qprof, the
tool is not yet capable of adapting the costs of a given gate depending on the qubits it is applied
on.

6.4 Limitations of the gprof exporter
Themain output format for qprof reports are based on the output format of gprof [14, 20] for sev-
eral reasons: standard format, widely used during decades, human-readable, availability of external
tools to get visual representations from the textual format, etc. But this output format is inherently
limited to sequential programs, which impose a strong limitation on what it can represent. When
exporting using the gprof-based format, qprof will not take into account gate parallelism, i.e. as

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

if quantum gates were executed sequentially, one at a time. Trying to take into account gate par-
allelism using the gprof-based format leads to percentages not adding up to 100% which was
deemed too confusing to be worth implementing.

6.5 qprof and NISQ circuits
qprof is currently only using a limited set of information on the profiled quantum routines. In par-
ticular, even though the information is available through qcw for some frameworks, qprof ignores
on which qubits a particular routine is applied on for the moment.

By extending qcw public interface in Figure 7 to include a way to access qubits the routine is
applied on and modifying slightly Algorithm 2 (see comment above line 16) to allow non-additive
quantities to be profiled, qprof would be able to include gate error or topology in its profiles.

The gate error estimation would be a nice addition for NISQ algorithms, even though only pro-
viding a lower bound on the real error that would be observed on hardware due to the presence of
other source of errors such a decoherence, cross-talk or “SPAM” (state preparation and measure-
ment) errors.

Reporting on topology has its own challenges, one of them being to find a good format for qprof
report as the gprof format is not adapted to include such information.

6.6 qprof and dynamical circuits
qprof being a static analyser, it does not support dynamical circuits that may use the result of a
previous quantum operation to determine which is the next quantum gate to execute. Moreover,
the features related to dynamic circuits are still not introduced in a lot of quantum computing
frameworks and, for the frameworks that do implement some of them, are relatively new. As such,
the companion package qcw and the unique interface it provides has not been updated to include
information about dynamic circuits.

7 CONCLUSION
In this paper we introduced qprof, an open-source and, to the best of our knowledge, novel tool
that is able to generate profiling reports in well-known formats from a quantum circuit implemen-
tation. Our library is able to natively read quantum circuits from multiple frameworks — currently
Qiskit, myQLM, OpenQASM 2.0 and XACC— and can be easily extended to support more quantum
computing libraries. It generates consistent reports independently of the underlying framework
used. qprof opens new optimisation opportunities for quantum scientists and programmers by al-
lowing them to view their quantum circuit implementation in a well-known, synthetic and visual
representation.

In this paper, we presented the main concepts used in the internals of qprof: how is qprof able to
be framework-agnostic thanks to a unique interface provided by qcw, the processing performed by
qprof in order to compute quantities of interest to profile and how exporters are used to output the
profiling report in a usable and convenient format. We then analysed qprof runtime performance
by providing asymptotic complexity estimates, examples of worst- and best-case quantum circuits,
and benchmarked execution times on several well-known quantum circuit implementations. We
also used qprof on three different quantum circuit implementations of increasing complexity to
demonstrate its features: simplicity of use, adaptability and consistency of the interface and gen-
erated reports.

Finally, we discussed potential improvements and limitations of qprof, opening theway formore
development on the tool. In the future, we plan to extend the set of supported quantum computing
frameworks.The number of exporters can also be improved to handle different output formats such

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

qprof: a gprof-inspired quantum profiler 1:27

as a perf_event [15] compatible format or a Flame graph [21] compatible one, allowing to easily
use new visualisations such as Flame graphs [21].

SUPPLEMENTARY MATERIAL
The qprof tool is available at https://gitlab.com/qcomputing/qprof/qprof. The different qcw pack-
ages are available at https://gitlab.com/qcomputing/qcw.

ACKNOWLEDGMENTS
The authors would like to acknowledge the support from TotalEnergies. The authors would like to
thank Siyuan Niu for proofreading early versions of this paper.

REFERENCES
[1] Scott Aaronson and Daniel Gottesman. 2004. Improved simulation of stabilizer circuits. Phys. Rev. A 70, Article 052328

(Nov 2004), 14 pages. Issue 5. https://doi.org/10.1103/PhysRevA.70.052328
[2] MD SAJID ANIS, Abby-Mitchell, Héctor Abraham, AduOffei, Rochisha Agarwal, Gabriele Agliardi, Merav Aharoni,

Ismail Yunus Akhalwaya, Gadi Aleksandrowicz, Thomas Alexander, Matthew Amy, Sashwat Anagolum, Anthony-
Gandon, Eli Arbel, Abraham Asfaw, Anish Athalye, Artur Avkhadiev, Carlos Azaustre, PRATHAMESH BHOLE, Ab-
hik Banerjee, Santanu Banerjee, Will Bang, Aman Bansal, Panagiotis Barkoutsos, Ashish Barnawal, George Barron,
George S. Barron, Luciano Bello, Yael Ben-Haim, M. Chandler Bennett, Daniel Bevenius, Dhruv Bhatnagar, Arjun
Bhobe, Paolo Bianchini, Lev S. Bishop, Carsten Blank, Sorin Bolos, Soham Bopardikar, Samuel Bosch, Sebastian Brand-
hofer, Brandon, Sergey Bravyi, Nick Bronn, Bryce-Fuller, David Bucher, Artemiy Burov, Fran Cabrera, Padraic Calpin,
Lauren Capelluto, Jorge Carballo, Ginés Carrascal, Adam Carriker, Ivan Carvalho, Adrian Chen, Chun-Fu Chen, Ed-
ward Chen, Jielun (Chris) Chen, Richard Chen, Franck Chevallier, Kartik Chinda, Rathish Cholarajan, Jerry M. Chow,
Spencer Churchill, CisterMoke, Christian Claus, Christian Clauss, Caleb Clothier, Romilly Cocking, Ryan Cocuzzo, Jor-
dan Connor, Filipe Correa, Zachary Crockett, Abigail J. Cross, AndrewW. Cross, Simon Cross, Juan Cruz-Benito, Chris
Culver, Antonio D. Córcoles-Gonzales, Navaneeth D, Sean Dague, Tareq El Dandachi, Animesh N Dangwal, Jonathan
Daniel, Marcus Daniels, Matthieu Dartiailh, Abdón Rodríguez Davila, Faisal Debouni, Anton Dekusar, Amol Desh-
mukh, Mohit Deshpande, Delton Ding, Jun Doi, Eli M. Dow, Patrick Downing, Eric Drechsler, Eugene Dumitrescu,
Karel Dumon, Ivan Duran, Kareem EL-Safty, Eric Eastman, Grant Eberle, Amir Ebrahimi, Pieter Eendebak, Daniel
Egger, ElePT, Emilio, Alberto Espiricueta, Mark Everitt, Davide Facoetti, Farida, Paco Martín Fernández, Samuele
Ferracin, Davide Ferrari, Axel Hernández Ferrera, Romain Fouilland, Albert Frisch, Andreas Fuhrer, Bryce Fuller,
MELVIN GEORGE, Julien Gacon, Borja Godoy Gago, Claudio Gambella, Jay M. Gambetta, Adhisha Gammanpila, Luis
Garcia, Tanya Garg, Shelly Garion, James R. Garrison, Jim Garrison, Tim Gates, Hristo Georgiev, Leron Gil, Austin
Gilliam, Aditya Giridharan, Juan Gomez-Mosquera, Gonzalo, Salvador de la Puente González, Jesse Gorzinski, Ian
Gould, Donny Greenberg, Dmitry Grinko, Wen Guan, Dani Guijo, John A. Gunnels, Harshit Gupta, Naman Gupta,
Jakob M. Günther, Mikael Haglund, Isabel Haide, Ikko Hamamura, Omar Costa Hamido, Frank Harkins, Kevin Hart-
man, Areeq Hasan, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Stefan Hillmich, Hiroshi Horii, Connor Howington,
Shaohan Hu, Wei Hu, Junye Huang, Rolf Huisman, Haruki Imai, Takashi Imamichi, Kazuaki Ishizaki, Ishwor, Raban
Iten, Toshinari Itoko, Alexander Ivrii, Ali Javadi, Ali Javadi-Abhari, Wahaj Javed, Qian Jianhua, Madhav Jivrajani,
Kiran Johns, Scott Johnstun, Jonathan-Shoemaker, JosDenmark, JoshDumo, John Judge, Tal Kachmann, Akshay Kale,
Naoki Kanazawa, Jessica Kane, Kang-Bae, Annanay Kapila, Anton Karazeev, Paul Kassebaum, Tobias Kehrer, Josh
Kelso, Scott Kelso, Vismai Khanderao, Spencer King, Yuri Kobayashi, Kovi11Day, Arseny Kovyrshin, Rajiv Krishnaku-
mar, Vivek Krishnan, Kevin Krsulich, Prasad Kumkar, Gawel Kus, Ryan LaRose, Enrique Lacal, Raphaël Lambert,
Haggai Landa, John Lapeyre, Joe Latone, Scott Lawrence, Christina Lee, Gushu Li, Jake Lishman, Dennis Liu, Peng
Liu, Lolcroc, Abhishek K M, Liam Madden, Yunho Maeng, Saurav Maheshkar, Kahan Majmudar, Aleksei Malyshev,
Mohamed El Mandouh, Joshua Manela, Manjula, Jakub Marecek, Manoel Marques, Kunal Marwaha, Dmitri Maslov,
Paweł Maszota, Dolph Mathews, Atsushi Matsuo, Farai Mazhandu, Doug McClure, Maureen McElaney, Cameron
McGarry, David McKay, Dan McPherson, Srujan Meesala, Dekel Meirom, Corey Mendell, Thomas Metcalfe, Martin
Mevissen, AndrewMeyer, AntonioMezzacapo, Rohit Midha, Daniel Miller, ZlatkoMinev, AbbyMitchell, Nikolaj Moll,
Alejandro Montanez, Gabriel Monteiro, Michael Duane Mooring, Renier Morales, Niall Moran, David Morcuende,
Seif Mostafa, Mario Motta, Romain Moyard, Prakash Murali, Daiki Murata, Jan Müggenburg, Tristan NEMOZ, David
Nadlinger, Ken Nakanishi, Giacomo Nannicini, Paul Nation, Edwin Navarro, Yehuda Naveh, Scott Wyman Neagle,
Patrick Neuweiler, Aziz Ngoueya, Thien Nguyen, Johan Nicander, Nick-Singstock, Pradeep Niroula, Hassi Norlen,
NuoWenLei, Lee James O’Riordan, Oluwatobi Ogunbayo, Pauline Ollitrault, Tamiya Onodera, Raul Otaolea, Steven
Oud, Dan Padilha, Hanhee Paik, Soham Pal, Yuchen Pang, Ashish Panigrahi, Vincent R. Pascuzzi, Simone Perriello,

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://gitlab.com/qcomputing/qprof/qprof
https://gitlab.com/qcomputing/qcw
https://doi.org/10.1103/PhysRevA.70.052328

1:28 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

Eric Peterson, Anna Phan, Kuba Pilch, Francesco Piro, Marco Pistoia, Christophe Piveteau, Julia Plewa, Pierre Pocreau,
Alejandro Pozas-Kerstjens, Rafał Pracht, Milos Prokop, Viktor Prutyanov, Sumit Puri, Daniel Puzzuoli, Jesús Pérez,
Quant02, Quintiii, Rafey Iqbal Rahman, Arun Raja, Roshan Rajeev, Isha Rajput, Nipun Ramagiri, Anirudh Rao, Rudy
Raymond, Oliver Reardon-Smith, Rafael Martín-Cuevas Redondo, Max Reuter, Julia Rice, Matt Riedemann, Rietesh,
Drew Risinger, Marcello La Rocca, DiegoM. Rodríguez, RohithKarur, Ben Rosand, Max Rossmannek, Mingi Ryu,Thar-
rmashastha SAPV, Nahum Rosa Cruz Sa, Arijit Saha, Abdullah Ash-Saki, Sankalp Sanand, Martin Sandberg, Hirmay
Sandesara, Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar, Ninad Sathaye, Bruno Schmitt, Chris Schnabel, Zachary
Schoenfeld, Travis L. Scholten, Eddie Schoute, Mark Schulterbrandt, Joachim Schwarm, James Seaward, Sergi, Is-
mael Faro Sertage, Kanav Setia, Freya Shah, Nathan Shammah, Rohan Sharma, Yunong Shi, Jonathan Shoemaker,
Adenilton Silva, Andrea Simonetto, Deeksha Singh, Divyanshu Singh, Parmeet Singh, Phattharaporn Singkanipa,
Yukio Siraichi, Siri, Jesús Sistos, Iskandar Sitdikov, Seyon Sivarajah, Slavikmew, Magnus Berg Sletfjerding, John A.
Smolin, Mathias Soeken, Igor Olegovich Sokolov, Igor Sokolov, Vicente P. Soloviev, SooluThomas, Starfish, Dominik
Steenken, Matt Stypulkoski, Adrien Suau, Shaojun Sun, Kevin J. Sung, Makoto Suwama, Oskar Słowik, Hitomi Taka-
hashi, Tanvesh Takawale, Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Kevin Tian, Mathieu Tillet,
Maddy Tod, Miroslav Tomasik, Caroline Tornow, Enrique de la Torre, Juan Luis Sánchez Toural, Kenso Trabing,
Matthew Treinish, Dimitar Trenev, TrishaPe, Felix Truger, Georgios Tsilimigkounakis, Davindra Tulsi, Wes Turner,
Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon, Adish Vartak, Almudena Carrera Vazquez, Prajjwal Vi-
jaywargiya, Victor Villar, Bhargav Vishnu, Desiree Vogt-Lee, Christophe Vuillot, James Weaver, Johannes Weiden-
feller, Rafal Wieczorek, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, WinterSoldier, Jack J. Woehr, Stefan
Woerner, Ryan Woo, Christopher J. Wood, Ryan Wood, Steve Wood, James Wootton, Matt Wright, Lucy Xing, Jin-
tao YU, Bo Yang, Unchun Yang, Jimmy Yao, Daniyar Yeralin, Ryota Yonekura, David Yonge-Mallo, Ryuhei Yoshida,
Richard Young, Jessie Yu, Lebin Yu, Christopher Zachow, Laura Zdanski, Helena Zhang, Iulia Zidaru, Bastian Zim-
mermann, Christa Zoufal, aeddins ibm, alexzhang13, b63, bartek bartlomiej, bcamorrison, brandhsn, charmerDark,
deeplokhande, dekel.meirom, dime10, dlasecki, ehchen, fanizzamarco, fs1132429, gadial, galeinston, georgezhou20,
georgios ts, gruu, hhorii, hykavitha, itoko, jeppevinkel, jessica angel7, jezerjojo14, jliu45, jscott2, klinvill, krutik2966,
ma5x, michelle4654, msuwama, nico lgrs, nrhawkins, ntgiwsvp, ordmoj, sagar pahwa, pritamsinha2304, ryancocuzzo,
saktar unr, saswati qiskit, septembrr, sethmerkel, sg495, shaashwat, smturro2, sternparky, strickroman, tigerjack,
tsura crisaldo, upsideon, vadebayo49, welien, willhbang, wmurphy collabstar, yang.luh, and Mantas Čepulkovskis.
2021. Qiskit: An Open-source Framework for Quantum Computing. (2021). https://doi.org/10.5281/zenodo.2573505
Last visited 2022/06/13.

[3] J.-H. Bae, Paul M. Alsing, Doyeol Ahn, and Warner A. Miller. 2020. Quantum circuit optimization using quantum
Karnaugh map. Scientific Reports 10, 1 (24 Sep 2020), 15651. https://doi.org/10.1038/s41598-020-72469-7

[4] Philip Ball. 2021. First quantum computer to pack 100 qubits enters crowded race. (2021). https://doi.org/10.1038/
d41586-021-03476-5 Nature 599, 542 (2021), last accessed 2022/06/13.

[5] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C.Mckay, and JayM. Gambetta. 2021. Mitigatingmeasurement
errors in multiqubit experiments. Phys. Rev. A 103, Article 042605 (Apr 2021), 12 pages. Issue 4. https://doi.org/10.
1103/PhysRevA.103.042605

[6] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. 2018. Toward the first quantum
simulation with quantum speedup. Proceedings of the National Academy of Sciences 115, 38 (Sep 2018), 9456–9461.
https://doi.org/10.1073/pnas.1801723115

[7] Cirq Developers. 2021. Cirq. (2021). https://doi.org/10.5281/ZENODO.4062499 Last visited 2022/06/13.
[8] Rigetti Computing. 2021. PyQuil documentation. (2021). https://pyquil-docs.rigetti.com/en/stable/ Last visited

2022/06/13.
[9] Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2016. Scalable randomised

benchmarking of non-Clifford gates. npj Quantum Information 2, 1 (26 Apr 2016), 16012. https://doi.org/10.1038/
npjqi.2016.12

[10] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Allouche. 2020. Quantum
CNOT Circuits Synthesis for NISQ Architectures Using the Syndrome Decoding Problem. In Reversible Computation:
12th International Conference, RC 2020, Oslo, Norway, July 9-10, 2020, Proceedings. Springer-Verlag, Berlin, Heidelberg,
189–205. https://doi.org/10.1007/978-3-030-52482-1_11

[11] Arianne Meijer-van de Griend and Ross Duncan. 2020. Architecture-aware synthesis of phase polynomials for NISQ
devices. (2020). https://doi.org/10.48550/arxiv.2004.06052

[12] Nathan Earnest, Caroline Tornow, and Daniel J. Egger. 2021. Pulse-efficient circuit transpilation for quantum appli-
cations on cross-resonance-based hardware. (2021). https://doi.org/10.1103/PhysRevResearch.3.043088 arXiv:quant-
ph/2105.01063

[13] Joseph Emerson, Robert Alicki, and Karol Życzkowski. 2005. Scalable noise estimation with random unitary operators.
Journal of Optics B: Quantum and Semiclassical Optics 7, 10 (Sep 2005), S347–S352. https://doi.org/10.1088/1464-

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1038/s41598-020-72469-7
https://doi.org/10.1038/d41586-021-03476-5
https://doi.org/10.1038/d41586-021-03476-5
https://doi.org/10.1103/PhysRevA.103.042605
https://doi.org/10.1103/PhysRevA.103.042605
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.5281/ZENODO.4062499
https://pyquil-docs.rigetti.com/en/stable/
https://doi.org/10.1038/npjqi.2016.12
https://doi.org/10.1038/npjqi.2016.12
https://doi.org/10.1007/978-3-030-52482-1_11
https://doi.org/10.48550/arxiv.2004.06052
https://doi.org/10.1103/PhysRevResearch.3.043088
https://arxiv.org/abs/quant-ph/2105.01063
https://arxiv.org/abs/quant-ph/2105.01063
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021

qprof: a gprof-inspired quantum profiler 1:29

4266/7/10/021
[14] Free Software Foundation. 2020. GNU gprof. (2020). https://sourceware.org/binutils/docs/gprof/index.html Last

visited 2022/06/13.
[15] The Linux Foundation. 2020. perf_event tutorial. (2020). https://perf.wiki.kernel.org Last visited 2022/06/13.
[16] Thomas Fösel, Murphy Yuezhen Niu, Florian Marquardt, and Li Li. 2021. Quantum circuit optimization with deep

reinforcement learning. (2021). https://doi.org/10.48550/arxiv.2103.07585
[17] Jay M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson, John A. Smolin, Jerry M. Chow, Colm A. Ryan, Chad

Rigetti, S. Poletto, Thomas A. Ohki, Mark B. Ketchen, and M. Steffen. 2012. Characterization of Addressability by
Simultaneous Randomized Benchmarking. Phys. Rev. Lett. 109, Article 240504 (Dec 2012), 5 pages. Issue 24. https:
//doi.org/10.1103/PhysRevLett.109.240504

[18] Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (July 2021), 497. https://doi.org/10.22331/q-
2021-07-06-497

[19] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T. Chong. 2020. Optimized Quantum
Compilation for Near-Term Algorithms with OpenPulse. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). Institute of Electrical and Electronics Engineers (IEEE), 186–200. https://doi.org/10.1109/
MICRO50266.2020.00027

[20] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof: A Call Graph Execution Profiler. SIGPLAN
Not. 17, 6 (jun 1982), 120–126. https://doi.org/10.1145/872726.806987

[21] Brendan Gregg. 2016. The Flame Graph. Commun. ACM 59, 6 (May 2016), 48–57. https://doi.org/10.1145/2909476
[22] Raban Iten, Romain Moyard, TonyMetger, David Sutter, and StefanWoerner. 2022. Exact and Practical Pattern Match-

ing forQuantum Circuit Optimization. ACM Transactions onQuantum Computing 3, 1, Article 4 (jan 2022), 41 pages.
https://doi.org/10.1145/3498325

[23] Ali Javadi-Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi.
2014. ScaffCC: A Framework for Compilation and Analysis of Quantum Computing Programs. In Proceedings of the
11th ACM Conference on Computing Frontiers (CF ’14). Association for Computing Machinery, New York, NY, USA,
Article 1, 10 pages. https://doi.org/10.1145/2597917.2597939

[24] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland.
2008. Randomized benchmarking of quantum gates. Physical Review A 77, 1 (Jan 2008). https://doi.org/10.1103/
physreva.77.012307

[25] Ryan LaRose, Andrea Mari, Sarah Kaiser, Peter J. Karalekas, Andre A. Alves, Piotr Czarnik, Mohamed El Mandouh,
Max H. Gordon, Yousef Hindy, Aaron Robertson, PurvaThakre, Nathan Shammah, andWilliam J. Zeng. 2020. Mitiq: A
software package for error mitigation on noisy quantum computers. (2020). https://doi.org/10.48550/arxiv.2009.04417

[26] OProfile maintainers. 2020. OProfile website. (2020). https://oprofile.sourceforge.io/news/ Last visited 2022/06/13.
[27] D. Maslov, G.W. Dueck, D.M. Miller, and C. Negrevergne. 2008. Quantum Circuit Simplification and Level Compaction.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 3 (Mar 2008), 436–444. https:
//doi.org/10.1109/tcad.2007.911334

[28] Alexander Mccaskey, Thien Nguyen, Anthony Santana, Daniel Claudino, Tyler Kharazi, and Hal Finkel. 2021. Extend-
ing C++ for HeterogeneousQuantum-Classical Computing. ACM Transactions onQuantum Computing 2, 2, Article 6
(jul 2021), 36 pages. https://doi.org/10.1145/3462670

[29] David C. McKay, Sarah Sheldon, John A. Smolin, Jerry M. Chow, and Jay M. Gambetta. 2019. Three-Qubit Randomized
Benchmarking. Phys. Rev. Lett. 122 (May 2019), 200502. Issue 20. https://doi.org/10.1103/PhysRevLett.122.200502

[30] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. 2018. Automated optimization of large
quantum circuits with continuous parameters. npj Quantum Information 4, 1 (May 2018). https://doi.org/10.1038/
s41534-018-0072-4

[31] Ketan N. Patel, Igor L. Markov, and John P. Hayes. 2008. Optimal Synthesis of Linear Reversible Circuits. Quantum
Info. Comput. 8, 3 (mar 2008), 282–294.

[32] Dennis Ritchie. 1973. Unix Programmer’s Manual, 4th Edition. (1973). http://www.tuhs.org/Archive/Distributions/
Research/Dennis_v4/v4man.tar.gz prof manual can be found in the file manx/prof.1. The author reported here is
the ”data collector” rather than the person that produced the linked files.

[33] Ulrich Schollwöck. 2011. The density-matrix renormalization group in the age of matrix product states. Annals of
Physics 326, 1 (Jan 2011), 96–192. https://doi.org/10.1016/j.aop.2010.09.012

[34] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I. Schuster, Henry Hoffmann, and Frederic T. Chong.
2019. Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 1031–1044. https://doi.org/10.1145/
3297858.3304018

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://sourceware.org/binutils/docs/gprof/index.html
https://perf.wiki.kernel.org
https://doi.org/10.48550/arxiv.2103.07585
https://doi.org/10.1103/PhysRevLett.109.240504
https://doi.org/10.1103/PhysRevLett.109.240504
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.1109/MICRO50266.2020.00027
https://doi.org/10.1109/MICRO50266.2020.00027
https://doi.org/10.1145/872726.806987
https://doi.org/10.1145/2909476
https://doi.org/10.1145/3498325
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1103/physreva.77.012307
https://doi.org/10.1103/physreva.77.012307
https://doi.org/10.48550/arxiv.2009.04417
https://oprofile.sourceforge.io/news/
https://doi.org/10.1109/tcad.2007.911334
https://doi.org/10.1109/tcad.2007.911334
https://doi.org/10.1145/3462670
https://doi.org/10.1103/PhysRevLett.122.200502
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
http://www.tuhs.org/Archive/Distributions/Research/Dennis_v4/v4man.tar.gz
http://www.tuhs.org/Archive/Distributions/Research/Dennis_v4/v4man.tar.gz
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1145/3297858.3304018
https://doi.org/10.1145/3297858.3304018

1:30 Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

[35] Jonathan M. Smith, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2014. Quipper: Concrete Resource Estimation in
Quantum Algorithms. (2014). https://doi.org/10.48550/arxiv.1412.0625

[36] Adrien Suau, Gabriel Staffelbach, and Henri Calandra. 2021. Practical Quantum Computing: Solving the Wave Equa-
tion Using a Quantum Approach. ACM Transactions on Quantum Computing 2, 1, Article 2 (2 2021), 35 pages.
https://doi.org/10.1145/3430030 arXiv:quant-ph/2003.12458

[37] Atos Quantum Computing team. 2021. myQLM documentation. (2021). https://myqlm.github.io/ Last visited
2022/06/13.

[38] Microsoft Quantum team. 2021. The Q# User Guide. (2021). https://docs.microsoft.com/en-us/azure/quantum/user-
guide/ Last visited 2022/06/13.

[39] Guifré Vidal. 2003. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Physical Review
Letters 91, 14 (Oct 2003). https://doi.org/10.1103/physrevlett.91.147902

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.48550/arxiv.1412.0625
https://doi.org/10.1145/3430030
https://arxiv.org/abs/quant-ph/2003.12458
https://myqlm.github.io/
https://docs.microsoft.com/en-us/azure/quantum/user-guide/
https://docs.microsoft.com/en-us/azure/quantum/user-guide/
https://doi.org/10.1103/physrevlett.91.147902

	Abstract
	1 Introduction
	2 Related work
	2.1 Classical profilers
	2.2 Quantum profilers

	3 How does qprof works?
	3.1 General structure
	3.2 The qcw package
	3.3 Core data structures and logic
	3.4 Exporters

	4 Complexity and runtime analysis
	4.1 Asymptotic complexity of qprof
	4.2 Real-world execution time

	5 Code examples and practical applications
	5.1 Benchmarking a simple program
	5.2 Grover's algorithm
	5.3 Quantum wave equation solver

	6 Discussion
	6.1 Comparison with the state-of-the-art
	6.2 qprof and quantum circuit compilation
	6.3 qprof and hardware-aware timings
	6.4 Limitations of the gprof exporter
	6.5 qprof and NISQ circuits
	6.6 qprof and dynamical circuits

	7 Conclusion
	Acknowledgments
	References

