
HAL Id: lirmm-03767077
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03767077

Submitted on 1 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pref-X: a framework to reveal data prefetching in
commercial in-order cores

Quentin Huppert, Francky Catthoor, Lionel Torres, David Novo

To cite this version:
Quentin Huppert, Francky Catthoor, Lionel Torres, David Novo. Pref-X: a framework to reveal
data prefetching in commercial in-order cores. DAC 2022 - 59th ACM/IEEE Design Automation
Conference, Jul 2022, San Francisco, CA, United States. pp.1051-1056, �10.1145/3489517.3530569�.
�lirmm-03767077�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03767077
https://hal.archives-ouvertes.fr

Pref-X: A Framework to Reveal Data Prefetching
in Commercial In-Order Cores

Quentin Huppert1, Francky Catthoor2, Lionel Torres1, and David Novo1
1LIRMM, University of Montpellier, CNRS, Montpellier, France 2imec, Leuven, Belgium

{quentin.huppert, david.novo}@lirmm.fr

Abstract—Computer system simulators are major tools used
by architecture researchers to develop and evaluate new ideas.
Clearly, such evaluations are more conclusive when compared
against commercial state-of-the-art architectures. However, the
behavior of key components in existing processors is often not
disclosed, complicating the construction of faithful reference
models. The data prefetching engine is one of such obscured
components which can have a significant impact in key met-
rics like performance and energy. In this paper, we propose
Pref-X [1], a framework to analyze functional characteristics of
data prefetching in commercial in-order cores. Our framework
reveals data prefetches by X-raying into the cache memory at per-
cycle granularity, which allows linking memory access patterns
with changes in the cache content. To demonstrate the power
and accuracy of our methodology, we use Pref-X to replicate the
data prefetching mechanisms of two representative processors,
namely the Arm Cortex-A7 and the Arm Cortex-A53, with a
99.8% and 96.9% average accuracy, respectively.

Index Terms—Computer Architecture Simulation, Data
Prefetching, Commercial Processors

I. INTRODUCTION

Computer architectures are in permanent evolution, always
pushing for higher performance and energy efficiency, while
adapting to new technologies and applications. Cycle-accurate
computer architecture simulators are major catalysts of this
process, enabling a quick evaluation of new ideas while avoid-
ing the expensive manufacturing process of integrated circuits.
However, commercial microarchitectures include unspecified
components that compromise the accuracy of their simulation
models. This lack of information complicates the fair compar-
ison of new simulated architectures and commercial ones.

Previous works have evaluated the accuracy of cycle-
accurate simulators modeling commercial architectures [2]–
[5]. They instantiate a parametric simulation model with
values directly copied from the datasheet (e.g., cache sizes) or
extracted from microbenchmarks executed on the architecture
(e.g., cache latencies). However, currently they all either dis-
able or ignore data prefetching due to the lack of information
on the underlying mechanisms. But prefetching has a non-
negligible impact in performance and energy consumption, and
its omission can seriously compromise the accuracy of simu-
lations. For instance, recent works show that data prefetching
increases performance by more than 25% in memory intensive
workloads [6]–[8].

Our main goal is to provide a general methodology and
supporting framework to analyze functional characteristics
of data prefetching in commercial in-order cores. To this
end, we develop Pref-X, a two-phase framework that enables
functional analysis by inspecting the content of the L1 cache

at the request granularity. We use Pref-X to replicate the
data prefetching mechanisms of two representative processors,
namely the Arm Cortex-A7 [9] and the Arm Cortex-A53 [10],
with a 99.8% and 96.9% average accuracy, respectively.

II. BACKGROUND

The memory system of in-order cores in typical mobile
SoCs includes multiple levels of on-chip cache memory and
off-chip DRAM memory [11]. When executing a memory
instruction, the CPU generates a Virtual Address (VA) (1 in
Figure 1) which is translated to a Physical Address (PA) by
the Memory Management Unit (MMU) at a page granularity
(typically 4kB). The request is then sent to the L1 cache
2 , which manages stored data at a cache line granularity
(typically 64B). Thus, a page contains 64 cache lines. When
the requested data is already in L1 cache (i.e., a hit), the data
is immediately sent to the CPU 7 . However, when the data
is not in L1 (i.e., a miss), the request has to travel deeper in
the memory hierarchy (higher levels of cache and ultimately
DRAM) 3 until finding the data location. Then, the data is
sent to the L1 5 and the CPU. Note that the limited size of
the L1 can cause the eviction of unrelated data 6 to make
place for the newly requested data.

Modern CPUs use hardware data prefetching to hide the
cache miss latency, which is several hundred cycles for off-
chip DRAM accesses [5]. Prefetching is a well-studied specu-
lation mechanism that predicts the addresses of future memory
requests and fetches the corresponding data before the CPU
requests them 4 . Among the different types of prefetching
techniques, stride prefetching is very popular in mobile CPUs
because of its combination of good performance and moderate
hardware complexity [12]–[14]. The stride prefetcher detects
streams from requests sequences with a constant stride in the
access pattern and prefetches cache lines following that stride.
For instance, the figure shows a stream with a stride of two
triggering a 2-line prefetch: 0, 2, 4 → 6, 8. Hence, we will
focus on this type of prefetcher in this paper.

Fig. 1. Memory system organization of a typical mobile CPU.

Req# Addr. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 …
0 -
1 16
2 15
3 18
4 14
5 20

Cache line addresses in the page

Accessed in the past Prefetched EmptyJust requested

63

Fig. 2. Example of using our L1 cache inspection methodology on the address
pattern {16, 15, 18, 14, 20}. Black and dark blue lines indicate that the data
is present in the L1 cache after having been accessed. Instead, light blue
lines indicate that the data is present despite not having been accessed (i.e.,
prefetched data). We can identify two 3-line prefetches: at request 4 (i.e.,
{11, 12, 13}) and at request 5 (i.e., {22, 24, 26}).

III. MAIN CHALLENGES AND CONTRIBUTIONS

Studying the prefetcher functionality in commercial cores
is a challenging task. Ideally, we would generate a sequence
of memory requests (1 in Figure 1) and just observe the
extra requests generated by the prefetcher 4 . However, a first
challenge comes from the fact that the output of the prefetcher
is not visible in commercial architectures. Accordingly, we
propose a method to deduce the prefetcher activity from the
changes in the content of the L1 cache. For instance, Figure 2
shows how the content of the cache changes with every new
request. Based on this information, we can infer that the fourth
request has triggered a prefetch burst of three cache lines: 16,
15, 18, 14 → 13, 12, 11, and the fifth request has triggered a
second prefetch burst: 16, 15, 18, 14, 20 → 22, 24, 26.

A second challenge is controlling the prefetcher behaviour
exclusively from the input request sequence while isolating
it from other concurrent events in the microarchitecture. For
example, the response of the prefetcher can be affected by
the state of previous pendent memory requests. Thus, it is
important to infer a controlled microarchitectural state before
and after receiving each memory request. Accordingly, we
propose a method to construct the input sequence of memory
requests that enables the request-by-request analysis shown in
Figure 2.

Finally, a third challenge is how to build a functional model
of the prefetcher from the control and observation capabilities
gained after solving the previous challenges. We propose
a method to construct that model with a limited number
of experiments for stride prefetchers. In this paper, this is
demonstrated for the L1 data prefetcher of in-order cores.

IV. THE PREF-X MECHANISM

Figure 3 illustrates the basic Pref-X mechanism, which
includes two distinct phases: (1) the reconstruction of the
prefetching algorithm from synthetic access patterns, and (2)
the verification of the reconstructed algorithm with access
patterns from real applications.
Prefetcher reconstruction. To reconstruct the prefetching
algorithm, we first define a meta model (1 in Figure 3)
that captures the common features of stride prefetchers. We
circumscribe the model as a block that reacts to CPU memory
requests by emitting prefetching requests. Any prefetching re-
quest is triggered by a single memory request and exclusively
depends on three variables: (1) the address of the memory
request, (2) whether that requests hits or misses L1, and (3) the

Program
generator

Sequence
generator

Design synthetic
sequences

Checker

Prefetcher reconstruction (Section VI)

Prefetcher verification (Section VII)

Commercial board

Functional model

Prefetch analysis
2 4

6

3

5

7

A1 A0AN …

P1 P0PM …

P1 P0PM …

Prefetches from model

Prefetches from the boardSequence of requests

Stride prefetcher
meta model

Application

Prefetch inspector
(Section V)

1

Fig. 3. Pref-X framework.

internal state of the prefetcher. It is relatively straightforward
to realize that only those variables make sense to exploit.
Note that a prefetcher needs to store metadata for internal
bookkeeping (e.g., managing active streams), which becomes
a variable we need to control in our experiments to produce
a repeatable prefetching behaviour. The prefetcher constantly
monitors CPU memory requests to detect the beginning and
the end of streams. An active stream is bounded by these
two detection processes. A prefetcher can simultaneously host
a limited number of streams. Finally, the output of a stride
prefetcher can be characterized by a base address, a stride,
and a burst length [12]–[14].

Based on the described meta-model, we craft synthetic
sequences of addresses 2 to expose the main parameters
regulating the key prefetching mechanisms. For instance, the
minimum number of accesses in a stream needed to trigger
a prefetch, the maximum stride length, etc. Each sequence
is embedded in a program 3 designed to iteratively execute
the sequence of memory requests in a way that allows the
detection of prefetches 4 . We call prefetch inspector to the
combo of program generation from a sequence of addresses,
execution of the program in the board, and postexecution
analysis for prefetch detection (refer to Section V for details).

We iterate the described flow to build a functional model
of the prefetcher 5 , whose objective is to generate the
same prefetches as the real board for any input sequence of
addresses. Section VI provides further details on this phase.
Prefetcher verification. The second phase of Pref-X targets
the functional verification of the model built in the previous
phase. This time, we extract sequences of addresses from real
applications 6 that we feed to both the real board using
the prefetch inspector and to our functional model. Then, we
compare the prefetches from the board and the model 7 . If we
detect relevant differences, we use the new insights to polish
the functional model. The more complete the meta-model of
the prefetcher, the less number of iterations will be needed
between the two phases. Section VII provides further details
on this phase.

V. PREFETCH INSPECTOR

The prefetch inspector takes an input sequence of addresses
and reconstructs a request-by-request representation of the
content of the L1 cache (see Figure 2). From that representa-

tion, we can directly identify each prefetched cache line and
the input request triggering the prefetch. Figure 4 illustrates the
different steps involved in the process. The incremental build-
up step is essential to achieve the request-by-request analysis.
It takes the input sequence of X addresses and generates
X+1 subsequences starting from the empty subsequence and
incorporates one address at a time. Each subsequence goes
separately through the succeeding steps.

For each subsequence, we build a program that executes
in the target core. An input parameter indicates the number
of pages to inspect during execution (e.g., one page, which
corresponds to 64 cache lines, in Figure 4). The objective is to
measure which cache lines reside in the L1 after the execution
of the subsequence. For each k line in the inspected pages,
the program (1) initializes a set of Hardware Performance
Counters (HPC) to count L1 hits, (2) iterates N times over
a four-stage process, and (3) stores the HPC value in a file
for later inspection. We conclude that the k cache line has
been prefetched if it resides in L1 despite not belonging to the
executed subsequence. We use N = 1000 in our experiments
as it shows a good signal-to-noise ratio in measurements.
Note that we run the program in commercial architectures
including an operating system, which produces residual system
activity that we attenuate by increasing the value of N. That is
crucial to expose the actual prefetching impact on the relevant
application code.

The four-stage process includes a first stage where we
execute the subsequence of memory requests 1 . Typically,
we insert a large number of NOPs in between each memory
request to give enough time for the memory system to serve all
previous memory request before executing the new one. Note
that serving a memory request from DRAM can take several
hundred cycles. Thus, having the possibility to avoid transient
states is very important to isolate the prefetching functionality
from the rest of the microarchitecture and to facilitate its
analysis. After executing the subsequence, we wait for the L1
to receive all pending requests 2 . While for some analysis
one could play with the number of NOPs in the first stage
(e.g., detect time out mechanisms), here we always have to
wait until the L1 stabilizes before reading its content: an L1
hit of the request to the k cache line 3 will reveal a prefetch
when k does not belong to the subsequence. Finally, the reset
stage 4 avoids that the L1 cache and prefetch state are carried
out across iterations. We achieve that by keeping the relative
subsequence but changing the working page at every iteration.
Thereby, the prefetcher cannot accumulate state information
across iterations and every iteration starts with a cold L1 cache.

After the execution of all the subsequences, the prefetch
analysis step processes the file containing a number of L1 hits
for each cache line in each subsequence and it produces the
graphical representation shown in Figure 2.

VI. PREFETCHER RECONSTRUCTION

In this section, we want the illustrate the general method-
ology on a specific representative use case. For this purpose,
we use the Arm Cortex-A53 core to showcase how to build
a functional model of a data prefetch engine. We suggest dif-

16

1615

161518

16151814

1615181420

16NOPs15NOPs18

NOPs

k

Reset

xN

1

2

3

4

Incremental build-up Execution phases Prefetch analysis

for k in range (0,64)

read_HPC()

start_HPC()

Req# Addr. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 …
0 -
1 16
2 15
3 18
4 14
5 20

Page addresses

Fig. 4. Prefetch inspector process on one page.

ferent synthetic sequences that help reveal the key underlying
prefetching mechanisms.

Triggering prefetches. We use a sequential sequence as an
example of an ideal stream that should be detected by the
simplest stride prefetcher. As expected, sequence #1 in Fig-
ure 5 shows a high prefetching activity. From this experiment,
we conclude the following:

• Three accesses of a stream trigger a prefetch burst.
• A prefetch burst includes three cache lines.
• A hit on a prefetched line triggers a new prefetch burst.

Missing after a prefetched burst. With the previous sequence
we have discovered that hitting a prefetched line triggers
further prefetching. Now, we want to understand the effect of
missing the line that follows the stream after the prefetched
burst. To do that, we repeat the previous sequence until the
prefetch is triggered and then we provoke a miss instead of
the hit on the prefetched burst. Sequence #2 in Figure 5 shows
that the miss in the fourth request triggers a 1-line prefetch.
We confirm this behaviour by continuing the sequence with
a fifth request that misses after the newly prefetched line and
generates another 1-line prefetch.

Maximum distance between requests in a stream. Practical
prefetching engines have a limited detection scope. In this
experiment, we want to discover the number of unrelated
requests that can be accommodated between stream requests
while still triggering a prefetch. Sequence #3 in Figure 5 shows
that at least six unrelated misses can be included between the
first and eight request and between the eight and the fifteenth
request while still triggering a prefetch. However, no prefetch
is triggered when repeating the same experiment with seven
unrelated misses between requests. Therefore, the maximum
distance between request in a stream is seven.

Burst hitting in L1. So far, we have seen that the prefetched
burst corresponds to the three next lines following the stream
sequence. However, what would happen if any of these lines
were already present in L1? Sequence #4 in Figure 5 starts
with a request to cache line 10 and continues with sequence
#1. As usual, the sixth request triggers a three-line prefetch
burst after hitting in a prefetched line 4. However, the burst
skips line 10, which is already in L1, and continues with the
stream sequence. Thus, the prefetch burst includes the three
next lines following the stream sequence that are not in L1.

Prefetching across the page boundary. Often, stride
prefetchers are bounded to act within the page boundary

Req# 0 1 2 3 4 5 6 7 8 9 … 32 33 34 35 36 37 38 39 40 41 42 … 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Page 0 Page 1

Sequence #6

Req# 0 1 2 3 4 5 6 7 8 9 10 11 …
0
1
2
3
4
5

Page 0
Req# 0 1 2 3 4 5 6 7 8 9 …

0
1
2
3
4
5

Page 0
Req# 0 1 2 3 4 5 …

0
1
…
8
…
15

Page 0

Req# … 59 60 61 62 63 0 1 2 3 4 5 6 …
0
1
2
3
4
5
6
7

Page 0 Page 1

Sequence #1 Sequence #2

Sequence #4 Sequence #5

Req# 0 1 2 3 4 5 6 7 8 9 10 11 12 …
0
1
2
3
4
5
6

Page 0

Sequence #3

Fig. 5. Synthetic sequences used to reconstruct the Cortex-A53 prefetching
algorithm.

as streams in the virtual address space are not necessarily
maintained after physical address translation. Accordingly,
sequence #5 in Figure 5 includes a stream of requests that ex-
pands over two pages crossing the page boundary. We can see
that the hits in the prefetched lines do not generate prefetches
beyond the page boundary. However, the first request on the
second page that follows the stream immediately results in
a prefetch. This indicates that the prefetcher maintains the
stream metadata across pages but does not resume prefetching
until a request that follows the stream misses in L1 and
validates the new page.

Multi-stream prefetching. So far, we have seen sequences
that include a single stream. Sequence #6 in Figure 5 chal-
lenges the prefetcher with three perfectly interleaved streams.
We observe that requests 7 and 8 trigger two consecutive
prefetches of different streams, which indicates that the trig-
gering process has run in parallel. Then, new hits on the
prefetched lines generate new prefetches for the two streams
until request 13. Request 13 (14) does not generate prefetches
because the prefetcher has forgotten that line 4 (36) was once
prefetched (signaling the limit of the internal request buffer).
In the meanwhile, stream 3 (in page 1) has accumulated the
last three L1 misses, which triggers a prefetch at request 15.
The following requests keep on generating stream 3 prefetches
until request 27, indicating that the prefetcher has forgotten
that line 8 of page 1 was once prefetched. After that, request 28

TABLE I
COMPARISON OF THE A7 AND THE A53 STRIDE PREFETCHER VARIANTS.

Parameter A7 A53

Initial trigger cond. 3 misses 3 misses
Trigger input L1 misses L1 misses + hit on prefetch
Burst length 3 3 / 1
Max. stride length 4 4
Max. dist. in requests 1 7

Cond. to continue Miss after Hit on prefetch: burst of 3 /
prefetched miss after prefetch: burst of 1

Burst hitting in L1 Stop burst Keep burst skipping lines in L1
Tracking across pages No Yes (see seq. #4 in Fig. 5)
Max. num. of streams 1 2
Max. inter stream dist. - 8: from 3rd miss to any prefetch

in stream 1 misses L1, which should generate a 1-line prefetch.
However, the lack of the prefetching action indicates that
stream 1 has been forgotten. Instead, request 29 in stream 2
generates the expected 1-line prefetch. Thus, we can conclude
that the prefetcher can only track up to 2 streams.

Due to the lack of space, we cannot describe all the
synthetic sequences used during reconstruction1. However,
Table I summarizes the main characteristics of the two stride
prefetches evaluated in the experimental section.

VII. PREFETCHER VERIFICATION

After building a functional model of the target prefetcher
from the information extracted from the synthetic sequences,
we propose to challenge the model with realistic sequences
derived from real applications. However, the prefetch inspector
process, described in Section V, suffers from key limitations
that need to be considered in the generation of sequences from
real applications.

The prefetch inspector mechanism relies on the assumption
that the prefetched data remains in L1 cache after the sequence
execution. Thus, the sequence should be executed while avoid-
ing L1 evictions. This requires a careful examination of the
cache architecture and replacement policy. For instance, both
architectures considered in the experimental evaluation include
a 32kB 4-way set-associative L1 data cache which uses a
pseudo-random cache replacement policy. From this informa-
tion, we can deduce that the 32kB are divided in 4 ways of
8kB and each way is divided in 128 sets (8kB divided by 64B
cache line). Due to the random replacement policy, the only
way to avoid evictions is to distribute the sequence memory
requests across the 128 sets without repetitions. Figure 6 shows
how the address bits are segmented to address the L1 cache:
the 6 Least-Significant Bits (LSBs) to address the byte within
the 64B cache line, the next 7 bits to index the cache set and
the remaining bits compose the tag. At the same time, we need
to consider the physical address translation process, which
maintains the 12 LSBs (i.e., page offset) while modifying the
remaining bits (i.e., page number). To control this process,
we configure the memory allocator of the operating system to
maintain page adjacency after address translation. Thereby, we
can guarantee that two consecutive pages will have a different

1All synthetic sequences and prefetcher models will be made public upon
paper acceptance.

012345678910111213

Page offsetPage number

Cache line offsetCache indexCache tag

…Addr:

L1:

MMU:

Fig. 6. Bit segmentation of an address in a 32kB 4-way set-associative cache.

LSB in the physical page number field. Figure 6 shows that
only the Most Significant Bit (MSB) of the cache index is
included in the page number address field, however, the two
MSBs would be included in a 64kB L1 cache. This implies
that the prefetch inspector can only analyze up to two pages
at the time to avoid L1 evictions in architectures targeted in
the experimental section.

Furthermore, the prefetch inspector processing time grows
O(S2P), where S is the sequence length and P the number
of pages to inspect. Thus, even if the sequence does not
produce L1 evictions, we would still need to enforce an
Smax to keep processing time within limits2. Accordingly,
the sequence generator preprocesses the memory sequences
extracted from the applications to be within the discussed
limitations. Specifically, the original sequences are segmented
in chunks of Smax elements. Then for each chunk, we enable a
configurable selection of the two pages to inspect. In practice,
we rank the pages accessed in the chunk based on the number
of accesses and we observe that the top-4 pages already
account for most of the prefetches in the chunk.

VIII. EXPERIMENTAL RESULTS

In this section, we present results on two representative Arm
in-order CPUs: the 32-bit Cortex-A7 [9] and its successor the
popular 64-bit Cortex-A53 [10].

A. Experimental methodology
To evaluate the accuracy of the functional models built using

Pref-X, we compare the number of prefetches generated by the
same sequences of memory requests on the commercial board
and on the functional model. We use 24 benchmarks from the
SPEC CPU 2006 suite as realistic applications and the gem5
simulator [15] to instrument the execution and extract the
memory request sequences. To reduce the simulation time, we
follow a standard SimPoint methodology [16] with one million
instructions per slice and max K set to 30. Each simpoint is
simulated to generate a memory trace of L1 d-cache requests
that we further split in sequences of 1000 requests. In each
sequence, we remove repeated requests to the same cache line
as only the L1 misses are important for prefetching. To reduce
the memory footprint, we compact the page mapping to avoid
unused intermediate pages. We also discard the sequences
with more than 100 pages as such a disperse access pattern
will generate very low prefetching activity in the considered
architectures. Overall, we evaluate 149 thousand sequences
that include over 16 million requests.

As we are only evaluating the number of prefetches, we exe-
cute a simpler program than the prefetcher inspector described
in Section V, which is designed to identify all prefetched

2We use Smax = 100 in our experiments.

Av
era
ge

Pr
ef

et
ch

in
g

in
te

ns
ity

M
od

el
in

g
er

ro
r

Fig. 7. Prefetching error in 24 programs of the SPEC CPU 2006 suite.

lines. Instead, we directly use the HPC to count the number of
prefetches generated by 1000 executions of the full sequence.
Then, we feed the same sequences to our prefetch functional
models, which are implemented in Python as a state machine
that reacts to incoming memory requests.

B. Results

Figure 7 shows the prefetching intensity and the modeling
error of each evaluated program. The prefetching intensity
corresponds to the ratio between prefetches and requests
in the input sequence. The modeling error is the absolute
difference in prefetches between the real execution and the
model, normalized to the real execution. We make three
observations. First, the A53 achieves a close to 40% average
prefetching intensity, which is 3× higher than in the prior
generation A7. This indicates that the requests generated
by the prefetcher can represent a sizable share of the data
movement in the memory system, which motivates the need for
accurate prefetcher models. Second, the average (maximum)
error of the A7 and the A53 prefetcher models are 0.2%
(0.8%) and 3.1% (5.9%), respectively. Although the higher
complexity of the A53 prefetching mechanisms results in a
higher modeling error, this is well below the error tolerance
of the architecture simulations motivating this work [5]. Third,
there is no apparent correlation between the modelling error
and the prefetching intensity.

To gain further insights in our last observation, Figure 8
shows the average error and the distribution of the analyzed se-
quences grouped by the number of prefetches. Each sequence
is assigned to a bin, which is defined by a minimum and a max-
imum number of prefetches. We make two new observations.
First, most sequences trigger less than 20 (10) prefetches in
the A53 (A7) prefetcher and accumulate a slightly larger error
than the other bins. This is due to the higher influence of single
mispredictions in corner cases (e.g., end of the sequence).
Second, the modeling error remains largely constant across
all bins, which shows that our functional models maintain the
accuracy in sequences with low, medium, and extremely high
prefetching activity.

In summary, our results show that Pref-X takes an important
step forward in enabling accurate models of data prefetching
for the simulation of commercial in-order architectures.

0%

5%

10%

15%

20%

[1 10] [11 20] [21 30] [31 40] [41 50] [51 60] [61 70] [71 80] [81 90] > 90

A7 population A7 avg. modeling error

0%

5%

10%

15%

20%

[1 20] [21 40] [41 60] [61 80] [81 100] [101
120]

[121
140]

[141
160]

[161
180]

> 180

A53 population A53 avg. modeling error

52%

64%

Fig. 8. Prefetching error and distribution of memory sequences grouped by
number of prefetches.

IX. RELATED WORK

To our knowledge, this is the first work to propose a general
methodology and framework to analyze functional charac-
teristics of data prefetching in existing in-order processor
architectures. In this section, we identify two areas of related
work that are particularly relevant to this work.

On the one hand, previous works have evaluated the
accuracy of cycle-accurate simulators modeling commercial
architectures. However, they either disable the prefetcher on
the reference board and on the simulator during calibration [2],
avoid prefetches by generating random accesses [5], or simply
ignore the effect of prefetching [3], [4]. Our work is comple-
mentary to these works as it provides a systematic way to
include data prefetching in the calibration of simulators.

On the other hand, several prior works study prefetching to
find security vulnerabilities, such as covert channels [17] or
side-channels timing attacks [18], [19]. For instance, Rohan
et al. [17] examine the streamer prefetcher, which is an L2
hardware prefetcher present in commercially available Intel
machines, to construct a cross-thread covert channel. They all
use basic microbenchmarks to discover some hidden proper-
ties (e.g., if the prefetcher is shared between SMT threads)
necessary to expose and exploit the targeted vulnerability.
However, their ad hoc approach cannot be leveraged to reveal
the complete set of properties needed to faithfully simulate
the functionality of the stride prefetchers targeted in this work.
Instead, we propose a more complete and systematic approach.

X. CONCLUSION

We introduce Pref-X, a new framework to analyze func-
tional characteristics of data prefetching in commercial in-
order cores by inspecting the content of the L1 cache at
the request granularity. We demonstrate how to use synthetic
sequences of memory requests to reconstruct data prefetching
algorithms. We use Pref-X to replicate the data prefetching
mechanisms of two representative processors, namely the Arm
Cortex-A7 and the Arm Cortex-A53 cores with a 99.8% and
96.8% average accuracy, respectively. We believe that Pref-X
takes an important step forward to enable accurate simulation
models of commercial architectures.

REFERENCES

[1] “Pref-X GitLab repository,” https://gite.lirmm.fr/adac/pref-x.
[2] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.

Emmons, M. Hayenga, and N. Paver, “Sources of error in full-system
simulation,” in Proceedings of ISPASS, 2014.

[3] A. Butko, R. Garibotti, L. Ost, and S. Gilles, “Accuracy evaluation of
gem5 simulator system,” in Proceedings of ReCoSoC, 2012.

[4] A. Akram and L. Sawalha, “Validation of the gem5 simulator for x86
architectures,” in Proceedings of PMBS, 2019.

[5] Q. Huppert, T. Evenblij, M. Perumkunnil, F. Catthoor, L. Torres, and
D. Novo, “Memory hierarchy calibration based on real hardware in-order
cores for accurate simulation,” in Proceedings of DATE, 2021.

[6] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-based prefetch filtering,” in Proceedings of ISCA,
2019.

[7] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and
O. Mutlu, “Pythia: A customizable hardware prefetching framework
using online reinforcement learning,” in Proceedings of MICRO, 2021.

[8] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying
memory access patterns for prefetching,” in Proceedings of ASPLOS,
2020.

[9] “Arm Cortex-A7 MPCore processor techn ref. manual,”
https://developer.arm.com/documentation/ddi0464/latest, [Apr-22].

[10] “Arm Cortex-A53 MPCore processor techn ref. manual,”
https://developer.arm.com/documentation/ddi0500/j/, [Apr-22].

[11] “MT6797 LTE-A smartphone application processor functional
specification for development board,” https://www.96boards.org/
documentation/consumer/mediatekx20/additional-docs/docs/
MT6797 Functional Specification V1 0.pdf, [Apr-22].

[12] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” in Proceedings of ICS, 1991.

[13] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham,
“Effective stream-based and execution-based data prefetching,” in Pro-
ceedings of ICS, 2004.

[14] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” ACM
SIGARCH Computer Architecture News, vol. 18, 1990.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, 2011.

[16] T. Sherwood, E. Perelman, H. Greg, and B. Calder, “Automatically
characterizing large scale program behavior,” Proceedings of ASPLOS,
2002.

[17] A. Rohan, B. Panda, and P. Agarwal, “Reverse engineering the stream
prefetcher for profit,” in Proceedings of EuroS&P, 2020.

[18] S. Bhattacharya, C. Rebeiro, and D. Mukhopadhyay, “A formal security
analysis of even-odd sequential prefetching in profiled cache-timing
attacks,” in Proceedings of HASP, 2016.

[19] Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur, “Unveiling
hardware-based data prefetcher, a hidden source of information leakage,”
in Proceedings of CCS, 2018.

