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Abstract—The computational workload involved in Convolu-
tional Neural Networks (CNNs) is typically out of reach for
low-power embedded devices. The scientific literature provides
a large number of approximation techniques to address this
problem. Among them, the Weight-Sharing (WS) technique gives
promising results, but it requires carefully determining the shared
values for each layer of a given CNN. As the number of possible
solutions grows exponentially with the number of layers, the
WS Design Space Exploration (DSE) time can easily explode for
state-of-the-art CNNs. In this paper, we propose a new heuristic
approach to drastically reduce the exploration time without
sacrificing the quality of the output. The results carried out on
recent CNNs (GoogleNet [1], ResNet50V2 [2], MobileNetV2 [3],
InceptionV3 [4], and EfficientNet [5]), trained with the Ima-
geNet [6] dataset, show over 5× memory compression at an
acceptable accuracy loss (complying with the MLPerf [7] quality
target) without any retraining step and in less than 10 hours.
Our code is publicly available on GitHub [8].

Index Terms—Convolutional Neural Network, Deep Learning,
Computer vision, Hardware Accelerator, Design Space Explo-
ration, Approximate Computing, Weight-Sharing

I. INTRODUCTION

Today, Deep Neural Networks (DNNs) are very powerful tools.
They are mostly used in computer vision and natural language
processing, in various daily life applications from smartphone facial
recognition to voice assistants as well as safety-critical applications
like autonomous driving. Recent DNNs are articulated around the
use of multiple chained convolution layers, called Convolutional
Neural Networks (CNNs), using a dot product between the inputs
and the learned filter weights. However, the outstanding perfor-
mance achieved by CNNs comes at the cost of very large computa-
tional requirements, making them out of reach for most of the low-
power embedded devices [9]. As an example, the energy required
to run real-time object classification on a smartphone drains the
battery in one hour [10]. Usually, the CNN computation require-
ments are measured in terms of the memory footprint required to
store the weights/activations values and the number of Multiply-
Accumulate (MAC) operations required to compute neuron outputs
during inference. However, most of the energy cost during CNN
inference comes from memory access as analyzed in [9]. It is thus
important to reduce memory footprint to improve energy efficiency.

Novel computing paradigms and emerging technologies are
under investigation to make CNNs accessible to low-power de-
vices [11], [12]. Among them, the Approximate Computing (AxC)
paradigm [13] leverages the inherent error resilience of CNNs to
improve energy efficiency by relaxing the need for fully accurate
operations. CNNs have a high degree of redundancy in terms of

their structure and parameters [14], and this redundancy is not
always necessary for an accurate prediction.

Pruning, quantization and Weight-Sharing (WS) are among the
most popular approximation techniques for CNN compression and
acceleration. They focus on approximating the values and the
representations of weights and/or activations (i.e., the inputs and
outputs of the layers). Pruning techniques [15] remove the least
important weights of a CNN to reduce memory footprint. In some
cases, pruning is applied to a complete structure (e.g., a channel)
providing more opportunities for acceleration [15]. On the other
hand, quantization [16] and WS [14] techniques, focus on reducing
the number of distinct values for weights and/or activations. Quanti-
zation allows acceleration (i.e., it reduces the computational cost of
MAC operations) by using a more compact data type representation,
such as 8-bit fixed-point numbers, while WS (the focus of this
paper) alleviates the memory footprint by reducing the number
of different weight values yet maintaining their original data type
representation.

Although the standard application of WS [14], [17]–[22], re-
quires the retraining of the network to recover accuracy loss, it has
been proven [23] that it is also possible to optimize the number
of shared values to each layer’s resilience while avoiding the
costly retraining step. However, due to the increasing complexity
of modern CNN topologies, the Design Space Exploration (DSE)
required to find optimal WS approximations is prohibitively costly.
In this paper, we propose a heuristic approach to achieve a scalable
retraining-free WS compression.

The main contributions of this work can be summarized as:

1) The study of the complexity of the design space exploration
of weight-sharing in CNNs.

2) A novel automatic two-step heuristic optimization to
retraining-free weight-sharing.

3) A comparison with the state-of-the-art WS techniques and a
post-training pruning technique [24] in terms of compression
vs. accuracy results.

The remainder of this paper is structured as follows: after giving
background information and discussing the state of the art in Sec-
tion II, the proposed method is detailed in Section III. Section IV
presents the experiments that have been conducted and the obtained
results. Finally, Section V concludes the paper.

II. WEIGHT-SHARING AND RELATED WORKS

In this section, we provide a short background on WS, discuss
the related work, and position our approach.
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Fig. 1. Weight-Sharing example for a 5x5 matrix with weight values grouped
in 5 different clusters.

WS background. WS aims to group weights into buckets or
clusters sharing the same value. It allows a significant reduction of
the CNN memory footprint by storing shared values in a dedicated
codebook, where original weight values in the weight matrix are
replaced by their corresponding indexes. The memory footprint
reduction, defined as compression, is due to the indexes being
encoded with fewer bits. For example, considering a FP32 baseline,
if one can reduce the number of different shared values (k) to 256,
the indexes can be encoded with only log2(k) = 8 bits, allowing
a 4× compression compared to the original 32-bit counterpart.
Shared weight values can be determined by using a clustering
algorithm like K-means. Fig. 1 shows an example of applying the
K-means clustering algorithm. From the initial set of 25 values,
which are reduced to 5 shared values after applying clustering,
there is a reduction from 800 to 235 bits due to the use of 3-bit
indexes and only 5 32-bit weights, resulting in a 3.4× compression.
This naive example involves a very small weight matrix, and thus,
the codebook size is twice the weight matrix with the indexes.
However, in real-life CNNs, the codebook size is usually negligible
compared to the size required to store all the indexes (in the order
of millions) of a CNN layer.

Related works. In the literature, there are many practical appli-
cations of WS. Existing solutions differ by (1) the use of a meta-
heuristic technique for clustering, (2) the implementation of the WS
codebook used to store the shared values, and (3) the algorithm used
to choose the number of shared values (clustering).

Studying the clustering algorithms used in previous work, it ap-
pears that most [14], [20], [25] rely on the K-means [26] approach
and apply clustering after the training phase. Alternatively, another
group of solutions [17]–[19], [21] act during the CNN training
to force weights values to be concentrated and thus facilitate the
clustering. There are also examples of non-K-means based cluster-
ing [14], [22]. In this paper, we target WS after training, and we
use the K-means algorithm. However, since our main target is the
automatic exploration of the optimal number of shared values, any
clustering algorithm could be used.

Regarding the implementation, most methods [14], [25] focus
on the compression of the weight matrix. Others also look for ac-
celeration and thus propose to reduce the computational complexity
by implementing look-up table-based multiplication or computation
reuse, benefiting from the reduced number of different values [20],
[22], [27], [28]. As the main focus of this work is the tuning of the
number of shared values, only compression is taken into account.

Regarding the selection of the number of shared values, some
existing methods [17], [22] manually tune the number of shared
values to achieve the desired Compression Rate (CR). The main
problem with manual tuning is that it is costly and requires expert

knowledge. Other methods [14], [18], [19] use a fixed number of
shared values. However, the most widely adopted solution is to
homogeneously vary the number of shared values (i.e., use the
same number for each layer) to explore the trade-off between
compression and precision [20], [27]–[29]. However, this approach
is clearly suboptimal, as the weight sharing factor is not adapted to
the differences in tolerance-to-approximation of each layer.

Our work. In practice, the number of shared values needs to be
tuned for each layer, requiring a complex design space exploration.
The main goal of this paper is to automatically select the optimal
number of shared values per layer. Our prior works [23], [30]
address this problem incrementally by studying the resilience of
each layer to WS, keeping previous layers approximated at their
lowest Accuracy Loss (AL) (i.e., the absolute difference in top-1
accuracy between a baseline and an approximated CNN). However,
the main issues with such local optimization approaches are the
avoidance of local optima and the lack of network-wide metrics
for CR and AL. Instead, in this work, we propose a completely
new two-step heuristic approach able to significant speedup the
exploration time of the global solution space.

An important particularity of our approach is its training-free
nature. Almost all existing methods require retraining or fine-tuning
after the WS step. Such post-processing has the disadvantage of
being computationally intensive and thus costly, hard to set up, and
sometimes not possible due to the lack of access to the training
dataset. Indeed, the growing concerns on privacy and security will
certainly restrain the access to training datasets in important appli-
cation domains. Conversely, the proposed heuristic only requires a
small validation dataset and significantly lower computation time.
Another advantage of retraining-free methods is that due to their
faster execution time, it is possible to explore multiple trade-offs
between AL and CR. For comparison, DP-NET [18] requires 30
epochs to compress GoogleNet [1] on the ImageNet [6] dataset.
Considering that each training epoch takes almost 1 hour on our
Tesla V100 GPU using TensorFlow [31], the compression of a
single approximated CNN version amounts to almost 30 hours.
Instead, our proposed method takes only 10 hours to compress
GoogleNet on the same GPU and outputs a full set of Pareto-
optimal approximated versions.

III. WEIGHT-SHARING OPTIMIZATION

In this section, we formulate the WS optimization problem and
explain the proposed two-step heuristic approach in detail.

For a given CNN with N layers, let ki be the number of shared
values of the layer i. ki is bounded to a set of values krange.
Accordingly, a CNN approximated with WS can be characterized
by its ktuple = {ki}∀i ∈ [1, N ] representing the number of shared
values for each layer. From the ktuple it is possible to measure both
(1) the AL, by scoring the CNN (i.e., running the inference of the
approximated CNN and compute the difference between the top-1
accuracy of the approximated CNN w.r.t. the reference) on a large
and representative test dataset, and (2) the CR, using Eq. 1:

CR =
W × bvalues

W × bindex + |ktuple| × bvalues
, (1)

where W is the number of weights of the network, bvalues the
number of bits used to represent weight values, and bindex =

log2(ktuple) the number of bits used to represent a WS codebook
index.
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Fig. 2. Conceptual view of our weight-sharing optimization heuristic.

Exhaustively exploring every possible ktuple results in
O(|krange|N ) complexity. As an example, a toy CNN like
LeNet-5 [32], with N = 5 layers and a krange = [1, 256], results in
a number of scoring steps equal to 2565 = 1.1 × 1012. Thus, the
exploration of the complete solution space would require more than
three decades when considering an optimistic 1ms evaluation step.
To make things worse, the complexity raises exponentially with N ,
which is more than a factor of ten higher in recent CNNs.

To make the optimization problem tractable, we propose to adopt
a divide and conquer strategy, splitting the exponential complexity
problem of optimizing the number of shared values for each layer
in two sub-problems: (1) finding φi, the set of optimal ki for
each layer of the network and (2) finding the optimal ktuple as
combinations of φi w.r.t. AL and CR. Although the second sub-
problem still exhibits an exponential complexity, its solution space
is significantly reduced after solving the first sub-problem. We
propose using a known meta-heuristic to solve the second sub-
problem. Fig. 2 shows a conceptual view of the proposed heuristic.
The input is a trained CNN and a range of possible numbers of
shared values. The output is a set of Pareto efficient approximated
CNNs representing optimal trade-offs between AL and CR. The
figure also shows how each sub-problem is solved in multiple sub-
steps. In the Layer-Wise Optimization step, each layer is locally
optimized. Then, the best approximate candidates of each layer (φi)
are combined to find Pareto optimal approximated CNNs in the
Approximated Layer Combination step.

Complementary to the DSE complexity reduction, it is also
possible to use heuristic-based estimation methods to avoid the
costly scoring step. Some proxies for the scoring step of individual
layers have been evaluated in [23]. For instance, the inertia, defined
as the sum of the distances between shared values and original
values, shows good accuracy at quickly evaluating the quality of
the shared weight values. Finally, to reduce the scoring time of
the complete CNN, it is possible to use a subset of the evaluation
dataset.

A. Layer-wise optimization

The first sub-problem (Layer-Wise Optimization in Fig. 2) tar-
gets the local optimization of each layer. The goal is to find φi,
the set of optimal ki values, for each layer of the CNN. φi is
characterized by (1) the AL obtained when layer i is approximated
with ki shared values while the other layers are not approxi-
mated, and (2) the number of bits required to store each index,
i.e., bindex = ceil(log2(ki)). We use bindex as an optimization
objective as it is indirectly proportional to the CR, see Eq. 1. The
AL is obtained using a small subset1 of the validation dataset. Our
algorithm explores one by one the ki in the user-defined krange

1Less than 10% works well for the tested CNNs.
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Fig. 3. Results of the Layer-Wise exploration on the first layer of the
ResNet50V2 [2], AL is obtained on a small subset of the validation set (10%).

and for each, it evaluates both AL and bindex to then compose
φi by selecting the candidate with the best AL per bindex. The
complexity of this search is linear w.r.t. the number of layers, being
O(N ∗ |krange|) and the size of the output set of optimal ki is
bounded as follows: |φi| ≤ ceil(log2(max(krange)).

Fig. 3 shows the output of the layer-wise approximation step
for the first layer of the ResNet50V2 [2] as an example. We
use MLPerf [7] to set a quality target (maximal allowed AL) at
99% of the baseline top-1 accuracy (98% for light models like
MobileNetV2 [3]). In the figure, illegal candidates (red circles) are
the solutions leading to an AL greater than the quality target, while
the legal candidates (empty blue circles) are the solutions within the
AL constraint. Among the legal candidates, the selected candidates
(full blue circles) are those leading to the best AL within each
bindex. As shown in the figure, the number of φi is significantly
lower than the whole set of legal candidates.

B. Approximated layer combination
The second sub-problem targets the optimal ktuple combinations

of φi. Although in the previous step we have greatly reduced
the number of candidates to be combined, the complexity of the
exhaustive exploration is still O(

∏N+1
i=1 |φi|) and thus exponential

to the number of layers N . To address this problem, we propose the
use of a meta-heuristic algorithm, like the genetic algorithm NSGA-
II [33], to find a set of Pareto optimal ktuple w.r.t. AL and CR.

The bottleneck of the genetic algorithm is the AL evaluation
cost since it requires the scoring of the CNN. Thus, we propose
to reduce this cost by using a proxy-based estimation. We use an
analytical model to approximate AL estimation from ktuple without
requiring the CNN scoring. Although it is possible to use the inertia
as a proxy metric for a single layer [23], we still need to combine
the inertia values of each layer to provide an AL estimation that
aggregates the contribution of each layer. Accordingly, we build a
linear regression model that takes as input the inertia values of each
approximated layer and gives as output an AL prediction. First,
we train the regression model on a representative population of
candidates (annotated with the AL and inertia of each layer) sam-
pled from all the possible ktuple. Then, we integrate our regression
model in the NSGA-II algorithm. In order to evaluate the quality
of the proposed method we compare the results of two versions of
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the NSGA-II algorithm considering different limits in the execution
time. One version uses our linear regression model and runs for 1
hour, while the other version uses the regular AL scoring method to
select the best design candidates and includes three runs timed out
at 1, 2, 4 hours, respectively. Fig. 4 shows the Pareto optimal CNN
approximations found after running the two versions of the NSGA-
II algorithm. Clearly, the version using the linear regression model
is able to converge significantly faster towards a Pareto efficient
front.

The linear regression model is described by the formula:
ALktuple

=
∑N+1

i=1 αi ∗ inertiaki
, with inertiaki

being the
reported inertia during the local optimization for the layer i, and
αi the prediction model coefficients. The linear regression model
modulates the approximation error introduced at each layer by
limiting the number of shared values. We have evaluated the use of
the local AL from the layer-wise optimization step, the inertia, and
the number of shared values ki, as inputs to the model. Interestingly,
there is little to no difference between the linear regression model
using inertia or local AL as input, achieving both an r2 score of 76%
when testing using a validation split of 20% of the training samples.
This demonstrates that a simple linear regression model using
either inertia or local AL values as inputs can achieve a reasonably
high modeling accuracy. Instead, when using the number of shared
values ki as input to the regression model, the r2 score drops to
10.3%, indicating that this metric is poorly correlated with the CNN
AL. Based on these results and considering its lowest computational
cost, we select inertia as the proxy metric for the results shown in
the rest of the paper.

Training a regression model requires a certain number of rep-
resentative inputs. The simplest way to obtain these inputs is to
randomly sample the solution space, apply WS to each sample,
and score the resulting approximated CNNs. The results of such
a random sub-sampling are presented in blue in Fig. 5. Each sample
has been obtained by randomly selecting a ktuple combination of
ki ∈ φi space. For each sample, the AL is evaluated by scoring on
10% of the validation dataset samples, while the CR is evaluated
by using Eq. 1. The random samples are then ordered based on
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Fig. 5. Comparing WS ResNet50V2 [2] solutions obtained from random sub-
sampling and from a NSGA-II optimization (population size = 100, number
of generations = 500) with a linear regression model trained with the random
solutions. The AL of each solution is obtained from conventional scoring.

their AL and we select the most accurate samples2 to train the
regression model that is then used to quickly estimate the AL of
candidates during the NSGA-II optimization. Using NSGA-II al-
lows fast improvement of the optimal Pareto set of solutions as can
be seen in Fig. 5. The figure presents the candidates obtained using
both random sampling and the NSGA-II algorithm, illustrating that
the proposed approach, based on the meta-heuristic optimization
algorithm NSGA-II and using a linear regression model to avoid
the costly scoring, can significantly improve the Pareto front.

IV. EVALUATION

Our experiments were conducted on a single GPU server
equipped with two Intel Xeon Silver 4210 and one NVIDIA Tesla
V100. Most of the critical computations are accelerated by the
GPU. Besides the ML functionality, the K-means algorithm is also
executed on the GPU using the open-source code provided by Ding
& al. [34] while the NSGA-II algorithm is executed on the host
CPU.

A. Compression results of our weight-sharing technique

The same compression flow is applied to all CNNs with the
following parameters: the dataset used for scoring during the explo-
ration is a subset of the ImageNet [6] validation dataset containing
10% of the 50,000 samples. The krange used during the layer-
wise optimization is a logarithmic range with 100 values between
2 and 1024. The number of random samples used to train the
linear regression model is 5,000 and the linear regression model
is trained on the 30% best samples in terms of AL. The NSGA-
II algorithm is set to run with a population of 100 candidates for
500 generations with default mutation values. All the reported AL
values are measured on the entire validation dataset.

Table I presents the results on a representative set of image
classification CNNs. They can be separated into two categories:
(1) light CNNs are optimized to run on resource-constrained de-
vices, while (2) heavy CNNs exclusively focus on top-1 accuracy.
GoogleNet [1], ResNet50V2 [2] and InceptionV3 [4] belong to

2The top 30% works well for the tested CNNs.



TABLE I
COMPRESSION RESULTS ON DIFFERENT CNNS ON THE IMAGENET [6]

DATASET UNDER MLPERF [7] QUALITY TARGET CONSTRAINTS

Network MLPerf
category #Layer Mem.

[MB]
Top-1

Acc. [%]
CR

min, max

GoogleNet heavy 58 50 69.7 5.4
ResNet50V2 heavy 54 97 76.0 5.3, 5.6
InceptionV3 heavy 2.8 104 77.2 4.7, 5.3

MobileNetV2 light 53 13 71.9 4.4, 5.7
EfficientNetB0 light 82 20 76.4 4.5, 5.6
EfficientNetB1 light 116 30 78.4 4.3, 5.3
EfficientNetB2 light 116 35 79.8 3.5, 5.3
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Fig. 6. Comparison of different approximated CNNs characterized by their
top-1 accuracy and memory requirements on the ImageNet [6] dataset.

the heavy category, while MobileNetV2 [3] and the various Ef-
ficientNets [5] belong the light category. Following MLPerf [7]
recommendations, each category has different quality targets (i.e.,
99% and 98% of FP32 precision for heavy and light, respectively).
The number of layers represents the number of fully connected and
convolutional layers that are targeted by the proposed WS method,
and indicates the complexity of the WS solution space, which grows
exponentially with the number of layers. The reported memory is
the size required to store the 32-bit weights of the baseline CNNs
in memory. The top-1 accuracy indicates the baseline classification
accuracy. Finally, the min. and max. CR values represent the
minimum and maximum compression rates of the approximated
CNNs found by our WS method within the corresponding quality
target. On each of the tested CNNs, the proposed WS method is
always capable of significantly compressing the baseline reference,
by consistently achieving over 5× higher CR. Importantly, the
compression is achieved without requiring the intervention of an
expert for manually tuning the kis and without involving any
retraining, fine-tuning or calibration steps.

A graphical view of the results is shown in Fig. 6, with the
light CNNs on the left and the heavy ones on the right. The
figure depicts the association between the minimum memory size
required to store all the weights and the top-1 accuracy of each
CNN instance. Achieving the best trade-offs between the AL and
the CR, often requires exploring multiple CNN topologies with

TABLE II
COMPARISON WITH OTHER WS TECHNIQUES ON GOOGLENET.

Method Retraining-Free CR Top-1 AL (%)

Deep K-means (2018) [17]

Yes 1.5 1.22
Yes 2.0 3.70
Yes 3.0 13.72
Yes 4.0 48.95
No 1.5 0.26
No 2.0 0.17
No 3.0 0.36
No 4.0 1.95

DP-Net (2020) [18] No 7.0 -0.30
No 10.0 1.56

FastWS [23] Yes 4.6 0.83

This Work Yes 5.4 0.35

multiple levels of approximation. Accordingly, our method finds
Pareto optimal trade-offs between accuracy and memory footprint
to facilitate the selection of the most suitable CNN instance for any
given application.

B. Comparison with prior weight-sharing works
To assess the quality of the proposed method with respect to

existing works, we have identified three recent WS methods using
GoogleNet on the ImageNet [6] dataset. The first method, named
Deep K-means [17], proposes the use of a regularization term
to force weights to concentrate during the training, using a fixed
cluster rate to obtain the number of shared values for each layer
based on the layer weight counts. They report both the AL and the
CR for GoogleNet using their method with and without retraining.
The second method, named DP-Net [18], proposes the use of
Dynamic-Programming instead of the K-means algorithm for the
clustering as well as a regularization term. They use a fixed and
homogeneous number of shared values for each layer and have only
reported results using retraining. The third and most related method,
named FastWS [23], optimizes the number of shared values layer by
layer without retraining.

Table II summarizes the comparison. It shows that the result
obtained with the proposed method Pareto-dominates the results
obtained with retraining-free methods: our result simultaneously
achieves the highest CR and the lowest AL. When compared with
the results of Deep-K-Means [17] using retraining, our method is
still Pareto-optimal and dominates all results with the exception
of that achieving an AL of 0.17% and a CR of 2×. Arguably,
our result still seems more attractive as it achieves 2.7× higher
compression for just 0.18% higher accuracy degradation. Finally,
our result is Pareto-dominated by the results of the DP-Net [18]
method. However, these results require extensive retraining, a very
computationally costly task which is not always possible due to
privacy and security constraints on training the datasets. Thus, our
method remains the best option whenever retraining is not feasible.

C. Comparison with post-training pruning
In this section, we compare the proposed method with Post-

Training Pruning (PTP) [24], a state-of-the-art technique that
achieves compression via pruning. Among our selected CNNs,
PTP includes compression results on ResNet50 [35] and Mo-
bileNetV2 [3]. In detail, PTP proposes a data-free weight pruning
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Fig. 7. Comparison of obtained approximated CNNs with the proposed
method and PTP [24]. CNNs are characterized by the absolute AL measured
on the ImageNet [6] and CR compared to the baseline full precision version.

approach based on automatically-generated synthetic fractal images
for retraining. This pruning step is then followed by post training
quantization, resulting in an 8-bit sparse matrix representation. The-
oretically, this would lead to a 11.4× and 6.7× CR for ResNet50
and MobileNetV2, respectively. However, in practice, it is also
necessary to store indexes next to the sparse weight. Without those
indexes, it would be impossible to recover the position of the
weights. Accordingly, in our comparison we consider the ideal case
of just adding one 8-bit index per weight. Fig. 7 shows how PTP
compares with respect to our method. The figure shows that the
PTP solution is Pareto-dominated in MobileNetV2 and marginally
Pareto-optimal in ResNet50. Considering that the PTP compression
estimates are based on very optimistic assumptions, we conclude
that our method provides better accuracy-compression trade-offs.

V. CONCLUSION

This paper presents a novel method to weight-sharing optimiza-
tion for CNN compression. We show that our method can efficiently
explore the large weight-sharing design space to produce a set of
solutions that offer very interesting trade-offs between accuracy
and model compression. These solutions achieve more than a 5×
compression over the baseline memory footprint in multiple state-
of-the-art computer vision CNNs on the challenging ImageNet
dataset while also complying with the MLPerf [7] quality target
constraints. Importantly, these compression results are achieved
while avoiding the prohibitively costly retraining step, which is
commonly used in prior works. To facilitate the reproduction of our
results, our code is publicly available on Github [8].

In future work, we plan to study how our method combines with
structured pruning and quantization-aware training. We also plan to
investigate the use of calibration for shared weights tuning and per-
channel clustering to allow comparison with recent post-training
quantization techniques.

VI. ACKNOWLEDGEMENT

This work has been funded by the AdequatedDL project (ANR-
18-CE23-0012) of the French National Research Agency (ANR).

REFERENCES

[1] C. Szegedy et al., “Going deeper with convolutions,” CoRR, vol.
abs/1409.4842, 2014.

[2] K. He et al., “Identity mappings in deep residual networks,” ArXiv, vol.
abs/1603.05027, 2016.

[3] M. Sandler et al., “MobileNetV2: Inverted residuals and linear bottle-
necks,” Proceedings of CVPR, 2018.

[4] C. Szegedy et al., “Rethinking the Inception architecture for computer
vision,” Proceedings of CVPR, 2016.

[5] M. Tan et al., “EfficientNet: Rethinking model scaling for convolutional
neural networks,” ArXiv, vol. abs/1905.11946, 2019.

[6] J. Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database,”
in Proceedings of CVPR09, 2009.

[7] P. Mattson et al., “MLPerf training benchmark,” 2020.
[8] E. Dupuis et al., “A Heuristic Exploration to Retraining-free

Weight-Sharing for CNN Compression,” 11 2021. [Online]. Available:
https://github.com/e-dupuis/retraining-free-weight-sharing

[9] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proceedings of the IEEE, 2017.

[10] T.-J. Yang et al., “Designing energy-efficient convolutional neural net-
works using energy-aware pruning,” Proceedings of CVPR, 2017.

[11] Y. Ma et al., “In-memory computing: The next-generation ai computing
paradigm,” in Proceedings of GLSVLSI, 2020.

[12] B. Shastri et al., “Photonics for artificial intelligence and neuromorphic
computing,” Nature Photonics, vol. 15, pp. 102–114, 2020.

[13] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, vol. 48, no. 4, May 2016.

[14] W. J. D. Song Han, Huizi Mao, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv, 2016.

[15] S. Anwar et al., “Structured pruning of deep convolutional neural
networks,” ACM JETC, vol. 13, 2017.

[16] C. Baskin et al., “UNIQ: Uniform Noise Injection for Non-Uniform
Quantization of Neural Networks,” arXiv, Apr. 2018.

[17] J. Wu et al., “Deep k-means: Re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions,” ArXiv,
vol. abs/1806.09228, 2018.

[18] D. Yang et al., “DP-Net: Dynamic programming guided deep neural
network compression,” ArXiv, vol. abs/2003.09615, 2020.

[19] Y. Hu et al., “Cluster regularized quantization for deep networks
compression,” in Proceedings of ICIP, 2019.

[20] S. Son et al., “Clustering convolutional kernels to compress deep neural
networks,” in ECCV, 2018.

[21] K. Ullrich et al., “Soft weight-sharing for neural network compression,”
ArXiv, vol. abs/1702.04008, 2017.

[22] E.-V. Pikoulis et al., “A new clustering-based technique for the acceler-
ation of deep convolutional networks,” 12 2020, pp. 1432–1439.

[23] E. Dupuis et al., “CNN weight sharing based on a fast accuracy
estimation metric,” Microelectronics Reliability, vol. 122, 2021.

[24] I. Lazarevich et al., “Post-training deep neural network pruning via
layer-wise calibration,” ArXiv, vol. abs/2104.15023, 2021.

[25] Y. Gong et al., “Compressing deep convolutional networks using vector
quantization,” ArXiv, vol. abs/1412.6115, 2014.

[26] J. A. Hartigan et al., “A k-means clustering algorithm,” JSTOR: Applied
Statistics, vol. 28, no. 1, pp. 100–108, 1979.

[27] J. Wu et al., “Quantized convolutional neural networks for mobile
devices,” Proceedings of CVPR, 2016.

[28] M. S. Razlighi et al., “LookNN: Neural Network with No Multiplica-
tion,” in Proceedings of DATE, 2017.

[29] Y. Gong et al., “Compressing Deep Convolutional Networks using
Vector Quantization,” arXiv, Dec. 2014.

[30] E. Dupuis et al., “On the automatic exploration of weight sharing for
deep neural network compression,” Proceedings of DATE, 2020.

[31] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in Proceedings of OSDI, 2016.

[32] Y. Lecun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, 1998.

[33] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: NSGA-
II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, 2002.

[34] V. Markovtsev et al., “src-d/kmcuda: 6.0.0-1,” Feb. 2017. [Online].
Available: https://doi.org/10.5281/zenodo.286944

[35] K. He et al., “Deep residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015.

https://github.com/e-dupuis/retraining-free-weight-sharing
https://doi.org/10.5281/zenodo.286944

	Introduction
	Weight-sharing and related works
	Weight-sharing optimization
	Layer-wise optimization
	Approximated layer combination

	Evaluation
	Compression results of our weight-sharing technique
	Comparison with prior weight-sharing works
	Comparison with post-training pruning

	Conclusion
	Acknowledgement
	References

