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A B S T R A C T

The first step when a customer return occurs in industry is to reproduce the failure mechanism with any original
test and test conditions (voltage, temperature, etc.) used during initial post-fabrication test. Depending on the
test scenario (test sequence, test scheme, test conditions), different types of defects and failure mechanisms are
targeted, thus leading to different diagnosis outcomes. Based on our previous work, this paper presents a compre-
hensible framework for cell-aware diagnosis of customer returns. The first part of the paper summarizes our pre-
vious work in which a generic cell-aware diagnosis flow using a Bayesian classification method was proposed to
precisely identify defect candidates in combinational cells of a defective circuit according to a given test scenario.
The second part of the paper extends the previous work by dealing with defects in sequential cells of defective
circuits. New experiments done on a silicon test chip and a customer return with a given test scenario have
proven the efficacy of our flow in terms of diagnosis accuracy and resolution.

1. Introduction

One technology that has received a lot of attention recently in the
field of digital IC design and quality assessment is Cell-aware (CA) test
and failure diagnosis [1]. With more defects inside cells at leading-edge
technology nodes, CA test, which deterministically targets defect loca-
tions inside standard cells, and CA diagnosis, which can identify the lo-
cation and type of cell-internal defects at the transistor level, are quality
assessment solutions widely adopted today in industry [2].

CA diagnosis is valuable in the context of large, complex cells such
as adders, multipliers, and multi-bit sequential elements. Even when a
defect is known to be within a cell, finding defects in such a complex
cell during Physical Failure Analysis (PFA) can be challenging and time-
consuming, especially if the defect is exhibited for a specific test condi-
tion and undetected for some others. CA diagnosis shortens the lengthy
investigation process by pinpointing a small subsection of the suspected
cell. It improves results for diagnosis scenarios such as customer return
analysis as well as volume diagnosis applications like yield analysis [3].

Customer returns are defective ICs that passed all functional, struc-
tural and parametric tests after manufacturing but failed in the field. In-
dustrial experiences show that they are mostly due to latent defects [4].
This is especially true for critical products (e.g., automotive) where a
comprehensive test flow has been applied to ensure zero test escape af-
ter manufacturing. In this context, the first step when a customer return
occurs is to reproduce the failure mechanism with any original test and

test conditions. Next, a diagnosis program made of several routines is
used to identify, step by step, the failing part and, finally, the suspected
defects. Each routine corresponds to the application of a diagnosis algo-
rithm at a given hierarchy level (system, core and cell levels) [5–10].

The quality of a diagnosis outcome is usually evaluated owing to
two metrics: accuracy and resolution. A diagnosis is accurate if the ac-
tual defect is included in the reported list of candidates. Resolution
refers to the total number of candidates reported for each actual defect.
An accurate diagnosis with perfect resolution (i.e., one) is the ideal
case. Achieving such a perfect resolution with conventional diagnosis
approaches based on cause-effect and/or effect-cause analysis [11–13]
becomes increasingly difficult. The study of a commercial chip in [14]
demonstrates that just over 30 % of the diagnosed defects exhibit ideal
resolution.

With the fast development and vast application of Machine Learning
(ML) in recent years, ML-based techniques have been shown to be quite
valuable for diagnosis, especially in the volume diagnosis scenario
[15–26]. Most of these techniques focuses on supervised root-cause
analysis, because it naturally aligns with the common practice of train-
ing with labeled historical data and usually performs well in industrial
diagnosis tasks [27]. However, though efficient, these techniques ad-
dress volume diagnosis for yield ramp-up, which is a different problem
than fault diagnosis of customer returns. Indeed, during volume diagno-
sis, a lot of data collected during manufacturing test and subsequent di-
agnosis phases are available, such as, e.g., hundreds of similar failed
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chips with candidates correctly labeled (good, bad). It is therefore pos-
sible to use these data for failure diagnosis of a new failed chip. Con-
versely, during fault diagnosis of a customer return, only one failed chip
is investigated, with no information about the defective behavior of
some other similar chips used in the same conditions (application, envi-
ronment, workload). For this reason, learning-guided approaches exist-
ing for volume diagnosis cannot be reused for diagnosis of customer re-
turns.

In [28–33], we proposed several learning-guided solutions for CA
diagnosis of mission mode failures in customer returns. All solutions are
based on a Bayesian classification method for accurately identifying de-
fect candidates in combinational standard cells of a defective IC. The se-
lection of one solution over another depends on the considered test sce-
nario (test sequence, test scheme, test conditions), thus leading to dif-
ferent types of targeted defects and failure mechanisms. Experiments on
benchmark circuits and industrial customer returns as well as compari-
son with a commercial CA diagnosis tool have shown the effectiveness
of all solutions.

In this paper, we first summarize the work presented in [28–33] and
explain how these CA diagnosis solutions are used depending on the
failing test scenario. Next, we extend the previous work by dealing with
sequential cells and diagnosis of related defects in customer returns. To
this end, each cell-pattern for a sequential cell is considered as a tuple
in which the first value represents the input clock signal, the second
value is associated to the main input of the cell, and the third value is
associated to a virtual input pin representing the previous value of the
output pin of the cell. Owing to this cell-pattern representation, sequen-
tial cells can be handled in the same manner than combinational cells
by the learning-based CA diagnosis flow utilized in [28–33] and sum-
marized in Section 3. New experiments done on a silicon test chip and a
customer return have proven the efficacy of our flow in terms of diagno-
sis accuracy and resolution for a given test scenario.

The rest of this paper is organized as follows. Section 2 summarizes
our previous work. Section 3 presents the generic CA diagnosis flow
used in [28–33] and summarizes the various contributions. Section 4
shows how defects in sequential cells can be dealt with the CA diagnosis
flow. Section 5 presents some results obtained on benchmark circuits as
well as on a silicon test chip. Section 6 proposes a discussion on how di-
agnosis efficiency can be improved depending on the test scenario en-
visaged during customer return diagnosis. Section 7 concludes the pa-
per and draws some perspectives.

2. Summary of previous work

When conducting the diagnosis of a customer return in industry, dif-
ferent test scenarios may be considered, most of the time (or in a first
attempt) reproducing the test scenarios used initially during manufac-
turing test. Fig. 1 gives an example of a multi-run ATPG flow used in in-
dustry for screening defects in logic parts of a System-on-Chip (SoC). As

Fig. 1. Example of a multi-run industrial ATPG flow.

can be seen, several ATPG runs are executed at various speeds (low or
at-speed) in order to get different test sequences targeting different de-
fect types (static or dynamic cell-internal defects) and fault models (SA
– stuck-at, or TF – transition). Static defects are defects that require one-
vector test patterns to be detected. Dynamic defects are defects that re-
quire two-vector test patterns to be detected. With the advent of nano-
metric technologies, the occurrence of dynamic defects is constantly in-
creasing, not only during the manufacturing process of ICs, but also
during the lifetime of the circuit where latent or wear-out defects may
appear due to various stress conditions (operational, environmental,
etc.).

From the ATPG flow illustrated in Fig. 1, three test sequences are ob-
tained and can be applied sequentially to a CUT to achieve a targeted
test coverage. During diagnosis of a customer return, the same test se-
quences can be reused to exhibit the failure observed during mission
mode.

In [28–33], we considered various test scenarios for CA diagnosis
and described the corresponding diagnosis algorithm implementations.
The test scenarios are sketched in Fig. 2. In [28,29], two distinct
processes were developed to diagnose static and dynamic defects sepa-
rately. In [28], we assumed a basic scan testing scheme for static CA
test sequences application, thus targeting stuck-at faults plus static in-
tra-cell defects during diagnosis. In [29], we assumed a fast sequential
testing scheme for dynamic CA test sequences application, thus target-
ing transition faults plus dynamic intra-cell defects during diagnosis.
Note that [30] presents a combination of [28,29] from a test scenario point
of view. The main limitation of the solutions in [28–30] is the required a
priori knowledge of the targeted defects type in the Circuit-Under-
Diagnosis (CUD). In other words, a test engineer needs to know what
type of defect is screening before choosing between [28] or [29].

In an attempt to deal concurrently with all types of defect that may
occur in customer returns, without any a priori knowledge of the tar-
geted defect type, we proposed a new implementation of the CA diagno-
sis flow in [31,32]. Note that [32] is a fully extended version of [31]. We
assumed a test scenario in which two test sequences (static and dy-
namic) are used successively, each one assuming a dedicated testing
scheme, i.e., basic scan and fast sequential. First, a static CA test se-
quence generated by a commercial cell-aware ATPG tool is applied to
the CUD. This sequence targets all cell-level stuck-at faults plus cell-
internal static defects, considering that these defects are not covered by
a standard stuck-at fault ATPG. A standard (low speed) scan-based test-
ing scheme is used to this purpose. Next, another option of the cell-
aware ATPG is used to generate a dynamic CA test sequence that targets
cell-level transition faults plus intra-cell dynamic defects not covered
by a standard transition fault ATPG. In this case, an at-speed Launch-
On-Capture (LOC) scheme (also called fast sequential) is used during
test application.

Constructing such a comprehensive flow imposed setting up a new
framework with specific rules to achieve a high level of effectiveness in
terms of diagnosis accuracy and resolution. The proposed method was
based on a Gaussian Naive Bayes trained model to predict good defect
candidates. The flow was experimented and validated owing to an in-
dustrial test chip and a STMicroelectronics customer return.

In [33], we proposed a new version of the CA diagnosis flow assum-
ing a test scenario in which both static and dynamic defects can be di-
agnosed owing to a single dynamic CA test sequence applied at-speed.
According to the flow depicted in Fig. 1, this scenario may happen

Fig. 2. Test scenarios considered in [28–33].
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when such a test sequence has been generated to target transition faults
plus cell-internal dynamic defects, and appears to also cover the re-
quired percentage of stuck-at faults plus cell-internal static defects (or,
more generally, satisfies the test coverage specifications) after the first
run of ATPG in Fig. 1. In this case, note that only one (dynamic) datalog
is generated after test application and can further be used for diagnosis
purpose. Nevertheless, both static and dynamic defects are taken into
account in this scenario. As only dynamic instance tables are manipu-
lated, the representation of training and new data is simplified, i.e., a
single type of feature vector is used, without loosing information and
hence without decreasing the quality of the training and inference
phases. Experimental results gathered on a silicon test chip have shown
the benefit of using such a new version of the CA diagnosis flow.

3. Learning-based cell-aware diagnosis flow

Fig. 3 is a generic view of the learning-based CA diagnosis flow uti-
lized in [28–33]. It is based on supervised learning that takes a known
set of input data and known responses (labeled data) used as training
data, trains a model, and then implement a classifier based on this
model to make predictions (inferences) for the response to new data.

After investigating several machine learning algorithms and observ-
ing their inference accuracies in [28], a Bayesian classification method
has been chosen for the learning and inference phases. So, the first main
step of our CA diagnosis flow consists in generating a Naive Bayes (NB)
model and to train it by using a training dataset. In this step, training
data are used to incrementally improve the model's ability to make in-
ference. Following the k-fold cross-validation methodology, the train-
ing dataset is divided into mutually exclusive and equal subsets. For
each subset, the model is trained on the union of all other subsets. Some
manipulations, such as grouping data by considering equivalent defects
or removing data instances of undetectable defects, are also done dur-
ing this phase. Once training is complete, the performance (accuracy) of
the model is evaluated by using a part of the dataset initially set aside
(validation dataset) [34]. More details about performance evaluation as
done in our framework can be found in [30]. The second main step con-
sists in implementing the NB classifier by using a Gaussian distribution
to model the likelihood probability functions, and use this classifier to
make prediction when a new data instance has to be evaluated. In the
next subsections, we detail the various steps of the CA diagnosis flow
able to deal with any type of cell-internal defect (i.e., static and dy-
namic) that may occur in customer returns.

3.1. Generation of training data

Training data are generated for each type of standard cell existing in
the CUD during an off-line characterization process done only once for
a given cell library. These data are extracted from CA views provided by
a commercial CAD tool that contain all characterization results for a
given cell type. These results are provided in the form of a fault dictio-
nary containing, for each defect within a cell, the cell input patterns de-
tecting (or not) this defect. An example of training dataset, as used in
[28–32] and containing six instances for an arbitrary two-input cell, is

Fig. 3. Generic view of the cell-aware diagnosis flow used in [28–33].

shown in Fig. 4. Each instance is associated to a static defect (D1, D2, D3)
or a dynamic defect (D11, D12, D13). A 1 (0) indicates that defect Di is de-
tectable (not detectable) at the output of the cell when the cell-level test
pattern Pj is applied at the inputs of the cell. Cell-level test patterns
(called cell-patterns in the sequel) are static (one input vector - P1 to P4
in Fig. 4) or dynamic (two input vectors - P5 to P16 in Fig. 4 in which R
(F) indicates a rising (falling) transition at the cell input). For an n-input
cell, there exists 2n static cell-patterns and 2n.(2n−1) dynamic cell-
patterns.

Dynamic defects can be detected not only by dynamic patterns, but
also by static patterns applied using a basic scan testing scheme, pro-
vided that i) at least one transition has been generated at the cell inputs
between the next-to-last scan shift cycle and the launch cycle, and ii)
the delay induced by the defect is large enough to be detected (these are
the detection conditions of a dynamic defect modeled by a stuck-open or a
gross delay fault). For this reason, the value ‘0.5’ is assigned to each dy-
namic defect (D11, D12, D13) for all related static cell-patterns, meaning
that such a defect is detectable or not depending on whether or not the
above conditions are satisfied.

As only dynamic test sequences are considered in [33], the represen-
tation of training data as used in [28–32] could be simplified without
losing information and decreasing the quality of the training phase.
This comes from the observation that a static defect is a particular case
of dynamic defect (e.g., a full open is a resistive open with an infinite
value of the resistance), and that all static cell-patterns for a given de-
fect are embedded in its whole set of dynamic cell-patterns. Indeed, a
dynamic defect requires a two-vector test pattern (V1V2) in which the
values of V1 and V2 have to be properly defined for the defect to be de-
tected. Conversely, only the value of V2 is significant for a static defect
to be detected by such pattern, irrespective of the value taken by V1.
When looking at Fig. 4, one can see that P1 = {00} is embedded in
P6 = {0F}, P11 = {F0} and P12 = {FF}, and the same for P2, P3 and P4.
Similarly, we can see that static defect D2 is detectable by P1 and P4, and
hence by P6, P8, P10, P11, P12, and P15. So, by “compacting” a training
dataset as shown in Fig. 5, in which only dynamic cell-patterns are con-
sidered, one can see that all meaningful information is still contained in
this set, while redundant (‘0’ and ‘1’ values in the first four columns of
Fig. 4) or insignificant (‘0.5’ values in the same columns for dynamic
defects) information is removed. More generally, such compact format
for training data makes so that only one type of feature vector (dy-
namic) is used for both types of defect.

Fig. 4. Example of training dataset for all defect types (static and dynamic) in a
two-input cell as used in [28–32].

Fig. 5. Example of training dataset for all defect types (static and dynamic) in a
two-input cell as used in [33].
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As the goal with training data is to provide a distinct feature vector
for each data (defect), it is important to be able to distinguish between
static and dynamic defects with such a new format of the training
dataset. Let us consider two defects D1 and D11 where D1 is static and
detectable by {00} and D11 is dynamic and detectable by {F0} (note
that {00} is the second vector of {F0}). As can be seen in Fig. 5, these
two defects can easily be distinguished since their training data in-
stances (or feature vectors) are different. The consequence of using such
a new format for training data (and hence for new data as will be shown
later on) is not an improved accuracy or resolution, but rather a simpli-
fied manipulation of feature vectors.

3.2. Generation of instance tables

An instance table is a failure mapping file generated for each sus-
pected cell by using information contained in the tester datalog. It de-
scribes the behavior (pass/fail) of the cell for each cell-pattern occur-
ring on its inputs during test of the CUD. The generation process of in-
stance tables is sketched in Fig. 6. First, CA test patterns are applied to
the CUD. These test patterns are obtained from a commercial CA test
pattern generation tool that targets intra-cell defects. Next, a datalog
containing information on the failing test patterns and corresponding
failing primary outputs is obtained. From this datalog and the circuit
netlist, a logic diagnosis is carried out (still using a commercial tool)
and gives the list of suspected cells. From this list and the datalog infor-
mation, we can finally generate an instance table for each suspected
cell. Note that in case several test sequences, e.g., one static and one dy-
namic, are used for diagnosis of the CUD, the generation process is re-
peated so as to produce static and dynamic instance tables for all sus-
pected cells. This is the case in [31,32].

The format of a static instance table is illustrated in Fig. 7 for a given
two-input NOR cell and two static cell-patterns. In this example, the

Fig. 6. Generation flow of instance tables.

Fig. 7. Example of static and dynamic instance tables.

first part of the file gives information on how the cell is linked to other
cells in the circuit, while the second part represents, respectively, the
pattern number, the pattern status (failing, passing), and the cell output
Z with the associated fault model for which exercising conditions are re-
ported. These conditions shown right below each cell-pattern in Fig. 7
represent the stimulus arriving at the cell inputs during the shift phase
(before ‘-’) and applied during the launch cycle (after ‘-’). For example,
cell-pattern 2 consists in applying a 1 on input A and B, and failing thus
detecting a stuck-at 1 on Z.

3.3. Generation of new data

New data are generated after post-processing of instance tables.
They are composed of various instances, each of them being associated
to one suspected cell in the CUD, and represent a feature vector that
characterizes the real behavior of the cell during test application. From
each new data instance, we can extract one or more defect candidates
that have to be classified as good or bad candidate with a corresponding
probability to be the root cause of failure. This classification is done by
comparing the new data instance with the training data of the corre-
sponding suspected cell, and identify those training data instances that
match (or not) with the new data instance.

The formats of a new data instance as used in [28–32] and [33] are
illustrated in Figs. 8 and 9 respectively. This format is quite close to the
format of a training data instance, but has a different meaning. In each
instance, the value ‘1’ (resp. ‘0’) is associated to a failing (resp. passing)
cell-pattern Pi for a given defect candidate, meaning that the candidate
is indeed detectable (resp. undetectable) by the cell-pattern Pi at the
output of the cell during test of the CUD, and hence can (cannot) be the
real defect. In such instance, the value ‘0.5’ is associated to a cell-
pattern for a given defect candidate when this pattern cannot appear at
the inputs of a suspected cell during real test application with an ATE.
The median value ‘0.5’ was chosen to avoid missing information in new
data instances while not biasing the features of these data.

4. Diagnosis of defects in sequential cells

All the work carried out in [28–33] was about diagnosis of defects
occurring in combinational standard cells of a customer returns. How-
ever, defects in SoCs may also occur in sequential standard cells of logic
blocks. In this section, we show how the previous diagnosis flow can
handle sequential cells and related defects by adding new information
to the training dataset.

The two main differences between combinational cells and sequen-
tial cells are that i) the latter have a clock input pin and ii) the fact that
the previous logic value of a sequential cell output can affect the cur-
rent output value of the cell. To take this difference into account, each
cell-pattern for a sequential cell is considered as a tuple in which the
first value represents the input clock signal (pulsing or not), the second
value is associated to the main input of the cell (e.g., D), and the third
value is associated to a virtual input pin representing the previous value
of the output pin of the cell (e.g., Q). Note that in case of sequential cells
with multiple real inputs (e.g., D flip-flop with a D, Scan-In, Scan-Enable
and Clock input signals), the cell-pattern representation is extended accord-
ingly. In each tuple, the first value is either U (i.e., pUlse) or 0, depend-

Fig. 8. Format of a new data instance for a two-input cell.

Fig. 9. Format of a new data instance as used in [33].
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ing on whether or not there is an active clock signal. The second value
can be 0, 1, R or F. The third value can only be static (i.e., 0 or 1). An ex-
ample of training dataset for all defect types (static and dynamic) that
may occur in a sequential cell is shown in Fig. 10. Note that the CA
views used during the generation of training data do not contain infor-
mation about cell-patterns with non-pulsing clock signals (i.e., none of
the cell internal defects can be detected at the cell output without clock
pulse). Consequently, the training data do not include such cell-patterns
as can be observed in the example of Fig. 10. Note also that instance ta-
bles of sequential cells may contain cell-patterns with no transition on
the main inputs of the cell. To allow the ML algorithm understanding
this information, we include static cell-patterns (e.g., P1 to P4 in Fig.
10) in the training data of sequential cells.

With the above representation of training data for sequential cells,
one can see that the diagnosis flow in Fig. 3 can be used in a straightfor-
ward manner without any change. The two main steps (model training
by using a training dataset, implementation of the NB classifier to make
inference) remain the same irrespective of the manipulated standard
cell type.

5. Experimental results

This new CA diagnosis flow targeting defects in both combinational
and sequential cells of customer returns has been implemented in a
Python program. For validation purpose, we have experimented the
proposed flow in three different ways:

• First, we conducted experiments on ITC'99 benchmark
circuits with defect injection campaigns targeting
combinational cells in each circuit. Various results are reported
in [28–33] to show the superiority of our framework when
compared to commercial diagnosis solutions. A summary of
these results is given in Subsection 5.1.

• Next, we considered a test chip developed by
STMicroelectronics and designed using a 28 nm FDSOI
technology, and we conducted two defect injection campaigns
targeting sequential cells. Results are reported in Subsection 5.2
and also demonstrate the effectiveness of our diagnosis
framework.

• Finally, we considered a customer return from
STMicroelectronics and we performed a silicon case study with a
real defect subsequently analyzed and identified during PFA.
Results are reported in Subsection 5.3.

5.1. Summary of results reported in [32]

In [32], we conducted experiments on ITC'99 benchmark circuits
synthesized in a full scan manner using a 28 nm FDSOI technology from
STMicroelectronics. A commercial CA ATPG tool was used to generate
static and dynamic CA test sequences targeting maximum fault cover-
age for each circuit. The behavior of the tester was simulated by per-
forming a defect injection campaign in each circuit (about 2000 injec-
tions per circuit). Defects were injected into a number of randomly se-
lected combinational cells by considering each cell transistor and tar-

Fig. 10. Example of training dataset for all defect types (static and dynamic) in
a sequential cell. The pin order is clock-data-previous output.

geting all possible static and dynamic defects affecting that transistor.
As several defects have the same impact on the logic behavior of the
cell, and hence are logical-equivalent defects, they were grouped in de-
fect classes. After test sequences application, test information were col-
lected to build the tester data log. Afterwards, we used a commercial
logic diagnosis tool to determine the lists of suspected cells after static
and dynamic test sequences application. Main circuit characteristics
(number of cells and scan flip-flops) and test parameters (number of sta-
tic and dynamic test patterns, stuck-at and static CA fault coverage,
transition and dynamic CA fault coverage) can be found in [32].

For generating training data, we used characterization data pro-
vided by a commercial tool and ST libraries. For generating new data
instances, we performed post-processing of instance tables obtained as
shown in Fig. 6. From the training data and the Gaussian NB model, we
make predictions on new data instances. Results obtained are a list of
defect candidates with the highest probability to be the root cause of
failure.

Fig. 11 summarizes the results obtained on the biggest ITC'99
benchmark circuits. The curves report the accuracy and give, for each
circuit, the percentage of cases in which the injected defect was re-
ported in the list of suspects provided by the proposed CA diagnosis
and the commercial CA diagnosis tool, respectively. The commercial
tool is non-probabilistic and provides the list of all suspects obtained af-
ter CA diagnosis with a ranking and a matching score. The same char-
acterization data and test scenario were used in both cases. These re-
sults show that the real (injected) defect is always identified by the
proposed diagnosis flow. Sometimes, it is the only candidate and has a
probability of 1 to be the best candidate. Sometimes, it is reported with
some other candidates identified in one or more suspected cells. Con-
versely, we can observe that the commercial tool is not always able to
report the injected defect as candidate. This proves the superiority of
our proposed framework in terms of accuracy (always 100 %), which is
not the case of the commercial tool that sometimes provides inaccurate
results (at least for 5 out of 6 circuits). The reason of these misdiagnosis
cases with the commercial tool are explained in [32].

The bars in Fig. 11 report the resolution and give, for each circuit
and considering all injection campaigns, the average number of sus-
pects reported by the proposed method and the commercial tool, re-
spectively. As can be seen, the resolution achieved with our method is
always better. So, overall, these results confirm the superiority of our
approach.

In our experiments, suspected defects were classified using a pub-
licly available machine learning software package called Scikit-learn,
which is an integrated development environment with a suite of ML
tools [35]. The single defect assumption was considered, although the
proposed framework is able to manage situations where multiple de-
fects have occurred, provided that those defects are not in the same cell.
This significant feature comes from the fact that our diagnosis flow con-
siders all suspected cells one at a time, and then incrementally con-
structs a list of suspected defects identified in each of these cells. Fi-
nally, in-field failure mechanisms related to premature aging, such as
NBTI or HCI, essentially lead to resistive opens and shorts. These mech-

Fig. 11. Overall cell-aware diagnosis results [32].
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anisms, that need to be considered in the context of customer returns,
can be appropriately taken into account with our CA diagnosis flow.

The CPU time taken by the proposed flow to provide a list of defect
candidates is always very low (few seconds) and does not depend on the
circuit size. Only the number of suspected cells obtained after logic di-
agnosis may have an impact on the CPU time (to generate instances ta-
bles) but in a very light way (as this number is always very low). The
most time-consuming part of the flow (few hours) is the characteriza-
tion phase, but it is done only once and is not correlated with the circuit
size.

5.2. Simulated test case studies

We also conducted experiments on a silicon test chip developed by
STMicroelectronics and designed with a 28 nm FDSOI technology. The
test chip is only composed of digital and memory blocks, and one PLL.
The digital blocks are made of 3.8 million cells. Other features (number
of primary inputs, primary outputs and scan flip-flops) are given in
Table I.

We performed a first simulated case study with a static defect injec-
tion campaign. We successively injected all possible static defects into
three scan flip-flops (SFF) of a single full-scan digital block. We tested
this block with a static CA test sequence achieving a stuck-at + static
CA fault coverage of 100 %. The average numbers of passing and failing
test patterns are given in Table II. Results obtained after executing our
CA diagnosis flow and averaged over all defect injections have shown
an accuracy of 100 % (the injected defect was always reported in the
list of suspects) and a resolution of 1.25. The resolution ranges between
1 and 3, and Fig. 12 shows the distribution of this resolution with re-
spect to the total number of simulated cases. As can be seen, in most of
the cases, the number of suspects is equal to 1 (perfect resolution).

We then performed a second simulated case study with another de-
fect injection campaign on the same test chip. We successively injected
all possible dynamic defects into three scan flip-flops of a single full-
scan digital block. This time, we applied a dynamic CA test sequence
achieving a transition + dynamic CA fault coverage of 89.8 %. The av-
erage number of failing test patterns was 7.9. Again, the results ob-
tained after executing our CA diagnosis flow and averaged over all de-
fect injections have shown an accuracy of 100 %. The average resolu-
tion obtained for dynamic defect injection experiments was 1.37.
Again, the resolution ranged between 1 and 3, and in most of the case,
the number of suspects was equal to 1.

Table I
Main features of the silicon test chip.
#cells #PIs #POs #SFF

3.8 M 97 32 17.5 k

Table II
Average pattern count in instance tables of the first simulated case study.
#passing
patterns

#unique
passing patterns

#failing
patterns

#unique
failing patterns

43.4 24.0 15.5 8.6

Fig. 12. Distribution of the resolution w.r.t. the simulated cases.

5.3. Silicon test case study

Finally, we performed a silicon case study on a customer return de-
signed with a 28 nm FDSOI technology from STMicroelectronics. The
test conditions used to run the experiments were the following: a nomi-
nal supply voltage of 0.83 V, a scan test frequency of 10 MHz, a launch-
to-capture clock speed (for the dynamic CA test sequence application)
adjusted with respect to the nominal clock frequency of the circuit, and
a temperature of 25 °C. The process was considered as typical. We ex-
perimented our CA diagnosis flow, and we obtained the following re-
sults:

• Initially, the circuit failed on the tester after application of the
static CA test sequence when applied at the nominal voltage. This
information was stored in a “static” datalog.

• Then, a logic diagnosis gave a short list of suspected cells among
which a six-input SFF cell made of 56 transistors and having a
Reset, an Enable, a Test-Input and Test-Enable input pins. The cell
contains 758 potential short or open defects. A static instance table
was then generated for this suspected cell, and contained 5 failing
and 75 passing cell-level test patterns.

• From the new data generated after post-processing of this
instance table, the NB classifier identified four suspected defects
among which defect D62 (a short between the gate and source of
NMOS 19).

The above diagnosis results were provided to the Failure Analysis
team of STMicroelectronics, who made a PFA in the past on this cus-
tomer return based on the results found by their in-house intra-cell di-
agnosis tool. The result obtained with our CA diagnosis flow was vali-
dated as defect D62 was found to be the real defect. This was done after
performing a polysilicon level inspection on the layout of the cell (cf.
Fig. 13) and observing the failure analysis cross-sectional view.

6. Improvement of diagnosis resolution

Each test scenario as exemplified in Fig. 2 may lead to the occur-
rence of one or more failing patterns producing failure files to be diag-
nosed. The knowledge of failing and passing test scenarios can be used
to improve the diagnosis resolution. To this end, it is crucial to have
perfect knowledge about which defect type is detected by each test se-
quence and related test patterns. Let us clarify this point as follows:

Static defects require only one test pattern to be detected and they
are usually targeted by static test patterns. However, these defects can
also be detected by low speed and @speed dynamic test patterns. In
fact, dynamic test patterns are two-vector test patterns, and it may hap-
pen that the second one exercises a stimulus detecting static defects.

Low speed dynamic defects require two-vector test patterns to be
detected. The test frequency used to catch these defects is not relevant
as the delay they induce is so huge that even a very low speed test can
catch them. Therefore, low speed dynamic defects can be easily de-
tected either by a low speed test or by a dynamic at-speed test. It is also
worth mentioning that for scan designs, low speed defects can be acci-

Fig. 13. Layout view of the suspected cell and the incriminated transistor. Yel-
low circles indicate defect candidates and red mark indicates actual observed
defect. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 14. Failing and passing test scenarios and corresponding analysis for diagnosis improvement.

dentally detected by static test patterns. Indeed, it happens that during
the last scan shift cycle plus the capture cycle, a two-vector test pattern
that exercises a dynamic defect is created.

@speed dynamic defects require two-vector test patterns applied
at high frequency to be detected. They induce a delay that can be mea-
sured during the cell-aware model creation. Only @speed tests can de-
tect these defects. The knowledge of the design max frequency can help
to identify if the delay caused by the defect is large enough to be de-
tected or not.

The ATPG flow as illustrated in Fig. 1 is an incremental flow, which
means that only undetected defects are targeted by each new test pat-
tern. However, it may happen that a defect targeted by, e.g., run 1, is
also detected by run 2 or 3 unintentionally. Therefore, in a preprocess-
ing step, we fault simulate the entire set of CA defects by each test pat-
tern and identify detectable and undetectable defects. This information
is further used to improve diagnosis resolution.

According to the above discussion, seven test scenarios may occur as
depicted in Fig. 14. Each scenario is specified by Columns 1, 2 and 3.
The letter ‘F’ indicates that the test is failing, ‘P’ indicates that the test
is passing. Column 4 lists the test sequences to consider in each test sce-
nario as well as the types of defect that can be detected with such sce-
nario. The last column proposes an additional analysis that can be per-
formed after the CA diagnosis to improve the diagnostic resolution. For
example, in the first scenario the test sequence is composed of static and
dynamic patterns since all test are failing. The defect type can be either
static or dynamic but it cannot be @speed since low speed and static
test are failing too. In order to improve the diagnosis, in this case we
can remove any @speed candidates reported by the ML tool from the
diagnosis report. Fig. 14 shows that the seven scenarios can be ad-
dressed by four methods (1), (2), (3) and (4) when the three types of
test (@speed, low speed and static) are available.

7. Conclusion, discussion and future work

In this paper, we have presented a framework for cell-aware diagno-
sis of customer returns based on supervised learning. The proposed flow
indistinctly deals with static and dynamic defects that may occur in
combinational cells or sequential cells of real circuits. A Naive Bayes
classifier was used to precisely identify defect candidates. A large set of
experiments on both benchmark circuits and silicon test cases has been
done to validate the proposed flow and demonstrate its efficacy in
terms of accuracy and resolution.

Results of these experiments prove the appropriateness of a learn-
ing-based method to solve our problem, despite the small size of the
training dataset used (only one sample for one defect class). When mul-
tiple defect sizes and test conditions will be used, this will be even truer.
Indeed, multiple samples (one for each defect size or defect size range,
one for each PVT test condition) will be associated to a given defect
class, simply because the behavior of the defect will differ when apply-
ing the same set of test patterns. In terms of timing and complexity, this
will just slightly impact our method, since training dataset is extracted

from characterized cell libraries that are generated anyway for test and
diagnosis purpose. So, even with large cell libraries with a huge number
of defects to be simulated (e.g., 631 cells in a library, each with 4 to 6
inputs, 951 shorts and 749 opens on average – typical example of an ST
library), our framework will still be easily and time-efficiently applica-
ble.

It is worth noting that among other factors, the effectiveness of our
framework can be explained by the fact that Naïve Bayes algorithm usu-
ally offers good classification performance [36].

The NB classifier requires a small amount of training data to esti-
mate its parameters [37], which is the case in our method, as only one
instance per class (i.e., CA defect) is available. On the other hand, other
popular ML classification algorithms, such as K-Nearest Neighbors
(KNN) classifier or classifiers based on a Support Vector Machine
(SVM), which estimate the class of a new sample by analyzing the
classes of similar training samples, cannot properly work when only
one sample per class is available.

In our simulated case studies, all injected defects for evaluation pur-
poses were present in the training dataset. Similarly, in our silicon case
studies, the actual defects were also present in the training dataset.
However, in customer returns, actual defect behavior may not perfectly
match the fault models that are used to train the NB classifier. Further
work will be done to see how well the proposed method works in that
scenario. Finally, by exploiting the ranking of suspected cells usually
provided after logic diagnosis by commercial tools, which was not done
in the current work, our flow will be able to provide a similar ranking
among defect candidates, thus giving additional useful information to
be used during PFA.
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