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Abstract— As the semiconductor industry continues to shrink 

the transistor feature size, new fault models need to be invented 

and deployed to ensure manufacturing test and diagnostic of the 

highest quality. The Cell-Aware (CA) test and diagnosis 

methodology targets the detection of defects inside standard (std) 

cells, at the transistor level. While becoming an industry standard, 

the CA methodology, has a large and costly deployment overhead, 

involving numerous analog simulations. In [1], we presented an 

innovative flow using Machine-Learning (ML) to reduce the CA 

test method runtime and ease its adoption for industrial usage. 

Experiments using different technology nodes demonstrated an 

over 99% runtime reduction for 80% of combinational cells. In 

this paper, new elements are presented to more widely take 

advantage of the ML flow for CA characterization. This includes 

a new decision algorithm, leveraging ML techniques to decide 

whether the CA characterization of a new std cell should be ML-

based or simulation-based, thus allowing to decrease the CA 

characterization runtime while maintaining high quality CA 

models for all cells. Experimental results demonstrate the high 

performance of the new decision algorithm.  The fault coverage on 

real cell-internal defects of ATPG patterns using ML predicted 

CA data proves that our predicted CA data can accurately replace 

those obtained by running extensive analog simulations, thus 

proving the effectiveness and pertinence of the proposed 

methodology. 

Keywords—Intra-cell defects, Standard cell characterization, 

cell-aware models, Machine-learning, Test and diagnostic 

I. INTRODUCTION 

Cell-Aware (CA) test and diagnosis techniques have been 
introduced to target defects located inside the std cells (referred 
to as intra-cell or cell-aware defects) which are only fortuitously 
covered by traditional fault models and therefore are often found 
to be the root cause of a significant fraction of test escape with 
modern technology nodes [2-5]. CA techniques rely on the 
realistic assumption that the excitation of a defect inside a std 
cell is correlated with the logic values applied to its inputs [5-6]. 
When deploying CA methodology for a new technology each 
std cell is characterized with respect to all possible cell-internal 
defects. This CA characterization process is traditionally 
performed using analog (SPICE) simulations identifying which 
cell-internal defect is detected by which cell-pattern. The 
simulations results are then organized into a cell-internal-fault 
dictionary called CA model (also known as CA test model) 
[7-8]. As std cells may have more than 10 inputs and thousands 
of std cells with different complexities are used for a given 

technology, the generation time of CA models for complete std 
cell libraries of a given technology may reach up to several 
months, thus drastically increasing the library characterization 
process cost [9-10]. Decreasing the CA models generation 
runtime is mandatory to make it a standard in the qualification 
process of silicon products [11]. To this end, a breakthrough 
methodology based on Machine Learning (ML) was proposed 
in [1] for generating CA models for combinational std cells.  

To mitigate limitations presented in [1] and allow an ideal 
use of the fast ML-based CA model generation, this paper 
presents a new version of the so-called hybrid-flow, which 
mainly consists of a new decision block orienting cells between 
the fast ML-based CA model generation flow or the one based 
on analog simulations. This new decision block is based on a 
ML algorithm and replaces the structural analysis-based 
decision block in the hybrid CA model generation flow. 
Compared to the decision block in [1], this new decision block 
uses more data. The hybrid flow now considers combinations of 
(cell; defect type) as candidates for prediction rather than solely 
the cell itself. This fine-graining increases flexibility and the 
usage of ML-based CA models generation part of the flow. 
Experiments carried out on cells from five technologies show 
that the new decision block is significantly more accurate when 
selecting cells to be characterized with either the simulation-
based CA model generation part of the flow or the ML-based 
CA model generation part. 

To validate our overall workflow, this paper also presents 
novel experiments showing how CA models obtained using the 
new version of the hybrid flow are used to generate ATPG 
patterns for some ST industrial test chips. Results show that the 
test coverage achieved by using these patterns on actual defects 
is as high as the test coverage achieved by using patterns 
obtained only from the simulation-based CA models, thus 
demonstrating the quality of the ML-based CA models (now 
referred to as ML-CA-models) and the relevance of our method. 

The rest of this paper is organized as follows. Section II 
presents the new version of the hybrid flow to overcome 
limitations presented in [1]. Section III presents experimental 
results using the new hybrid flow as well as some validations of 
the ML-CA-models quality on industrial designs. Section IV 
concludes this paper.  

II. NEW DECISION BLOCK IN THE HYBRID FLOW 

To exploit all the possibilities of a CA model generation 
based on ML, a new decision block with major novelties has 



 

 

Short Paper                                          
 

been developed. This new decision block replaces the one based 
on the structure analysis of cells presented in [1]. Its objective 
remains the same, i.e., orienting a std cell through the hybrid 
flow by choosing if the CA model for the new cell should be 
simulated or can be predicted by ML. A comparison of 
performance of the new decision block versus the previous one 
is proposed in Section III. Figure 1 is a schematic of the updated 
hybrid flow with the new decision block. 

A. Presentation of the new decision block 

The first major novelty relies on a new paradigm. Indeed, the 
decision block of [1] considered each std cell as atomic, meaning 
that a cell is characterized either through a ML-based CA model 
generation or through a simulation-based CA model generation. 
However, we observed that inside each cell, the prediction 
accuracies of each defect type vary. Table I illustrates this 
phenomenon. It contains averaged prediction accuracy for 
several types of cell-internal defects. The row labelled as 
“known structure” reports the values of accuracy for cells which 
have at least a cell with an identical or similar structure in the 
std cells database. The row labelled as “unknown structure” 
reports values for the other cells.  

From Table I, we noticed that (i) the presence or absence of 
a cell with an identical/similar structure in the ML training group 
has a real impact on the prediction accuracy, confirming the 
result from [1]; and (ii) in some cases, a single badly predicted 
intra-cell defect type brings down the prediction accuracy of the 
entire cell under the quality criterion, preventing the cell from 
using a ML-based CA model generation. To alleviate this issue, 
fine-graining has been introduced in this work to mitigate this 
effect. Rather than considering the entire cell as a candidate for 
ML-based CA model generation, several combinations of (cell; 
cell-internal defect type) are considered independently. All 
components of the hybrid-flow have been modified to allow 
such fine-graining during the training and prediction or 
simulation phases, and then merging the results in a single CA 
model. 

 

Fig. 1: Updated hybrid flow with the new decision block  
based on machine learning 

The decision block now analyzes every combination of (cell; 
defect type) and decides which ones should have their behavior 
predicted by ML and which ones should be electrically 
simulated. After generation, the predicted and simulated results 
are merged in the CA model of the cell. This fine-graining 
allows to use of the ML algorithm more extensively, thus 
decreasing the number of analog simulations, and ultimately 
decreasing the run-time and cost. Note that the quality criterion 
is still used on a (cell; defect type) combination basis rather than 
simply on the cell basis, meaning that a badly predicted defect 

type will no longer prevent the cell to be entirely ML predicted, 
i.e., all eligible defect types will go through ML while the 
remaining ones will go through simulation. From now on, any 
% of population should be understood as a % of the total number 
of (cell; defect type) combinations. Moreover, every decision by 
the decision block is taken on a (cell; defect type) basis. 

TABLE I.  AVERAGE PREDICTION ACCURACY PER DEFECT TYPE 
FOR A POPULATION OF C40 CELLS. 

 Open defects Short defect 

 Source Drain Gate S-D S-G G-D 

Known 
structure 

~97% ~97% ~90% ~99% ~93% ~81% 

Unknown 
structure 

~87% ~87% ~78% <60% <60% <60% 

The second major novelty of the new decision block is the 
use of ML. As already pointed out, the decision block is in 
charge of orienting (cell; defect type) combinations to the ML-
based CA model generation or to the simulation-based CA 
model generation parts of the flow. The decision is taken by a 
new ML algorithm which is independent from the one used in 
the ML-based part of the hybrid flow. This ML-based decision 
algorithm (now referred to as ML-decision) should decide 
whether or not each (cell; defect type) combination should go 
through the ML-based part of the flow depending on what is 
available in the std cells database. This new ML-decision 
algorithm uses supervised learning and its specificities regarding 
the training phase will be presented hereafter. 

Let us first consider the usage of such a ML-based decision 
block. To be oriented, the structure of the new cell is computed 
and compared to the ones available in the std cells database. The 
number of times the new cell’s structure is present in the std cells 
database is used by the ML-decision algorithm. The ML-
decision algorithm is bound to answer the question “Considering 
the content of the std cells database, should this (cell; defect 
type) combination use the ML-based CA model prediction part 
of the flow?”. A ‘yes/no’ Boolean answer is expected. To this 
end, the ML-decision algorithm receives the following 
information as inputs: the cell’s (i) name, (ii) function, (iii) drive 
strength, numbers of (iv) inputs and (v) transistors and (vi) 
structure. The ML algorithm also receives information about 
(vii) the presence or absence of the cell structure in the std cells 
database and (viii) the number of times the cell structure is 
present in the std cells database. The (ix) considered defect type 
is also provided. 

B. Training of the new ML-decision algorithm 

The supervised training of this ML-decision algorithm is the 
most challenging part of this work. The creation of a dataset for 
the training and evaluation of the ML-decision algorithm should 
be carefully considered, as it should account for the numerous 
situations that the ML-decision algorithm may encounter in the 
field. The dataset is a list of samples, each of them contains the 
information given as inputs to the ML-decision algorithm along 
with the expected ‘yes/no’ answer. The dataset allows both the 
training and the evaluation of the ML-decision algorithm.  

The dataset should prepare the ML-decision algorithm to 
orient the (cell; defect type) combinations according to what is 
available on the std cells database at the time of decision. In a 
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real industrial application, the content of the std cells database 
depends on the history of the company (e.g., electrically 
simulated CA models anterior to the deployment of the proposed 
methodology) and on the history of the hybrid-flow usage, i.e., 
the simulated CA models obtained using the proposed 
methodology and added to the std cells database by the 
improvement loop introduced in Fig. 1. To deal with this 
changing database, the ML-decision algorithm should have a 
fast-training phase so it can be quickly trained every time the 
database changes or be compatible with reinforcement training. 
Our chosen ML-decision algorithm is again a Random Forest 
Classifier (RFC), which can be trained in a fraction of second 
over the dataset. Creating the first version of the dataset by 
scanning the std cells database takes a few minutes. Updating 
the dataset because a new cell has been added to the std cells 
database by the reinforcement loop takes a few seconds (which 
is negligeable compared to the simulation-based CA model 
generation run time). All these timings make the usage of the 
ML-decision algorithm realistic and appropriate. 

 
Fig. 2: Process to create a dataset for the ML-decision algorithm. It is 

composed of several independent experiments with changing parameters.  
The results of all experiments are merged in a main dataset. 

To create a dataset accounting for a wide variety of industrial 
usages and std cell databases, the process depicted in Fig. 2 has 
been proposed. This process is composed of several 
experiments, each of them represents a different industrial 
setting and std cells database. Each experiment randomly 
chooses cells to constitute its own std cells database, then 
randomly choose cells for which it will generate ML-CA 
models. The experiment then generates CA models for the 
chosen cells using its std cells database and assess the quality 
(accuracy) of the prediction. Note that in the framework of this 
study, every cell has a CA model which has been obtained by 
simulations and acts as a reference when evaluating the 
prediction accuracy of the ML-based CA model generation. The 
accuracy of the prediction for each (cell; defect type) 
combinations is compared to a threshold (similar to the quality 
criterion presented in Section II.A). This comparison gives an 

answer to the (re-phrased) question: “Will this (cell; defect type) 
combination be correctly predicted, considering the content of 
the std cells database?”. A prediction accuracy higher than the 
threshold leads to a ‘yes’, while lower accuracy leads to a ‘no’. 
Using the content of the cells database and the ‘yes/no’ answer, 
the experiment’s dataset is assembled. 

Figure 2 also shows the process where the experiments are 
repeated a large number of times with variations in the 
technologies and number of cells. The main merged dataset is 
the concatenation of all experiments’ datasets. This process 
leads to a dataset which contains a large number of samples for 
various (cell; defect type) combinations with different std cells 
databases to represent the variety of industrial usage. The 
correctness of our ML-decision algorithm is evaluated using this 
dataset and the results are presented in the next section. 

III. EXPERIMENTAL RESULTS 

This section presents experimental results using std cells 
coming from five technologies. In the first sub-section, the 
process of Fig. 2 is used to evaluate the new ML-decision block. 
The second sub-section uses the CA models generated by the 
hybrid flow with an ATPG to generate test patterns for several  
IC designs  

A. Machine-Learning decision block evaluation 

The experiments in Fig. 2 are repeated many times and lead 
to a dataset for the ML-decision algorithm. With such a dataset, 
the ML-decision algorithm can be evaluated using conventional 
ML techniques (e.g., k-fold). Our metric is the decision error 
which is the fraction of badly predicted answers which have a 
potential impact on the quality of CA model over the total 
number of samples in the validation dataset (the lower, the 
better). This fraction represents the number of times the ML-
decision block takes the wrong decision when orienting a (cell; 
defect type) combination through one part of the hybrid flow, 
considering the content of the cells database. Among the two 
possible mis-decisions, only the false-positive one can have a 
negative impact on the quality of the CA models. The false-
positive error consists in sending a (cell; defect type) 
combination through the ML-based CA model generation even 
though the content of the cells database is not sufficient to 
reliably predict the behavior of the defects in the cell. The other 
type of mis-decision consists in sending a (cell; defect type) 
combination through the simulation-based CA model generation 
even though its defective behavior could have been accurately 
predicted by the ML-based CA model generation part of the 
flow (false-negative). This false-negative mis-decision does not 
negatively impact the quality of the generated CA model and is 
therefore not accounted for in the decision error.  

The experiments presented in this sub-section mimic the 
usage of the proposed hybrid flow, i.e., when the cells of a new 
library/technology need to be oriented toward one part of the 
hybrid flow by the decision block, the std cells database only 
contains cells from older technologies. We used library cells 
from five technologies (from older to recent): C40, C28, P28, 
P18 and FinFET16.  

Table II presents the decision error of the ML-decision 
algorithm using a growing dataset detailed in the first column. 
The decision error is computed when orienting the cells of the 
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new technology (right side of the arrow), considering cells 
databases filled with cells from the technologies mentioned on 
the left side of the arrow. For each row in Table II, the process 
of Fig. 2 has been repeated at least five times to form the dataset. 
The expected ‘yes/no’ answer for (cell; defect type) combination 
sample depends on the quality threshold introduced in the 
previous section. Accepting a lower prediction accuracy of the 
ML-based CA model generation algorithm means that the 
predicted CA models can widely differ from the reference 
simulated CA model. We intuitively consider that the lower the 
threshold, the more (cell; defect type) combinations will use the 
ML-based CA model generation part of the flow. The decision 
block should be efficient at orienting the cells through the hybrid 
flow irrespective of the chosen quality criterion. Table II 
contains decision errors for several quality thresholds 
(respectively 85%/93%/97%) for each experiment. 

TABLE II.  DECISION ERROR (%) OF THE ML-DECISION BLOCKS, FOR 

SEVERAL EXPERIMENTS AND SEVERAL QUALITY THRESHOLD (85%/93%/97%) 

Experiment ML-
decision 

Structural 
analysis 

C40 C28 5/3/2 11/18/22 

C40 + C28 P28 3/6/5 8/17/29 

C40 + C28 + P28 P18 4/6/4 4/11/22 

C40 + C28 + P28 + P18 FF16 3/3/3 12/22/26 

The quality of the new ML-based decision block is 
compared to the old one based on structural analysis. To this 
end, the decision error of the old decision block is computed. 
The meaning of the decision error remains the same, i.e., how 
often does the decision block orient a (cell; defect type) 
combination through the ML-based CA model generation even 
though the content of the cells database is not yet sufficient to 
reliably predict the behavior of the defects in the cell. Note that 
the decision of the old decision block is based only on the 
content of the cells database and its decision for a given (cell; 
defect type) combination does not change with the quality 
threshold. However, the expected decision for the sample 
changes with the threshold, making ultimately the decision error 
of the old decision block to vary with the quality threshold. 

The last column of Table II reports the decision errors of the 
old decision block based on structural comparison. Table II 
clearly shows the supremacy of our new decision block over the 
structural one. The new ML-decision block will more often 
orient a (cell; defect type) combination through the appropriate 
CA model generation part of the flow, resulting in a better usage 
of the quick ML-based CA model generation part of the flow, 
and allowing to quickly get CA models for compatible cells and 
guarantying CA models of high quality for cells that would be 
badly predicted considering the current content of the cells 
database. 

While studying the low number of (cell; defect type) 
combinations which have been badly oriented by the ML-
decision block, we noticed that these combinations mostly have 
a prediction accuracy close to the threshold, making the ‘yes/no’ 
decision difficult and explaining the misprediction of the 
developed ML-decision algorithm. Providing more information 
about the cells and about the content of the cells database as 
inputs to the ML-decision algorithm may help to differentiate 
these cases, thus further decreasing the decision error and 
increase the global quality of the ML-based decision block.  

The mis-decision of sending a (cell; defect type) 
combination through the ML-based CA model generation part 
of the flow is susceptible to lead to a bad prediction of the 
behavior of these defects in this cell. This is an improvement 
compared to the previous work presented in [1] as a mis-
prediction by the structural decision block would have sent the 
entire cell through the inappropriate CA model generation part 
of the flow. The new fine-graining and the marginal number of 
mis-predictions lead the behavior of other defect types in the 
same cell to be accurately predicted or simulated. The CA 

model of the entire cell will only contain a few percentages 
of error. For example, on a population of nearly 2000 cells, 
sending all cells through the ML-based CA-model generation 
part of the flow would generate CA models that are on average 
91.3% identical to the reference (i.e., simulations only CA 
models). This average is 92.4% when the old structural hybrid 
flow ensure quality by orienting some cells through the 
simulation-based CA model part of the flow. Finally, when fine 
graining and the new ML-based decision block are used, the 
average resemblance of the hybrid generated CA models is 
99.1%. These few percentages of error can be tolerated by the 
industry. The next sub-section will demonstrate this point. 

B. Industrial validation : ATPG with ML-based CA 

models 

The ultimate goal of this work is to generate CA models for 
std cells from the hybrid flow, and use them in an exigent 
industrial environment. This sub-section demonstrates the 
appropriateness of our method to obtain CA models of quality 
that can replace the ones obtained by SPICE simulations only.  

1) Methodology 

 

Fig. 3: ATPG flow to assess quality of the CA models  
obtained by the hybrid flow 

The proposed method is sketched in Fig. 3 and uses our CA 
models with an ATPG to generate test patterns targeting cell-
internal defects for several industrial designs. The fault coverage 
of these patterns is computed and compared to the fault coverage 
of patterns obtained while using commercial CA models (i.e., 
those obtained using SPICE simulation). Both sets of test 
patterns should allow the detection of a high fraction of the real 
cell-internal defects (ideally 100%). The real cell-internal 
defects are represented by the fault models contained in the CA 
models generated by SPICE simulations only. The important 
point of comparison between the two sets of patterns are the 
number of patterns and above all the fault coverage of real cell-
internal defects. Close values between the two sets are the proof 
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that the CA models generated by the proposed updated hybrid 
flow can efficiently replace the ones obtained by simulations 
only. 

2) Experiments 
The proposed methodology has been applied on 15 designs 

from STMicroelectronics. These designs are blocks of a testchip 
designed using the P28 technology. The blocks have various 
complexities and are meant to be independently tested by 
different sets of ATPG patterns. The CA models for the cells 
used in the designs have been obtained by the updated hybrid 
flow. To mimic a realistic industrial usage, the CA models for 
these P28 cells have been obtained with a cells database filled 
with C40 and C28 cells. The quality criterion has been set to 
93%. In our working group of 1932 cells, 79% of (cell; defect 

types) combinations have had their behavior predicted by 
the ML-based part of the flow. 

Table III presents the number of patterns in each set as well 
as their corresponding fault coverage when targeting the real 
static cell-internal defects (due to lack of space, results are 
reported for 6 designs out of 15, missing lines are similar). 
Results while targeting real dynamic cell-internal defects are 
similar. The fault coverage is computed by the ATPG as the 
fraction of detected faults over the entire fault population. The 
average difference of fault coverage between the two sets of 
patterns is 0.002 percentage point. The slight difference in the 
number of patterns (6% on average) results from the slightly 
different number of faults marked as detected in the two types 
of CA models. 

TABLE III.  NUMBER OF PATTERNS AND ASSOCIATED FAULTS 

COVERAGES WHEN TARGETING REAL STATIC CELL-INTERNAL DEFECTS  
IN SEVERAL DESIGNS. 

# #cells With hybrid-flow With simulations only 

#patterns %coverage #patterns %coverage 

0 44k 2922 97.21% 2837 97.53% 

4 44k 2706 97.33% 2596 97.47% 

5 4.1k 17 100% 17 100% 

9 4.1k 25 100% 26 100% 

10 11k 1738 91.48% 1451 91.70% 

14 10k 1794 62.18% 1686 62.26% 

Those values clearly shows that the CA models obtained by 
the hybrid flow can be used to target real cell-internal defects 
with the same coverage that CA models obtained by simulations 
only. These results demonstrate the pertinence and effectiveness 
of our approach for CA models generation. 

IV. CONCLUSION  

CA model generation refers to the process of characterizing 
cell-internal defects, a key step to ensure high quality for test and 
diagnosis of digital ICs. In [1], we presented an innovative flow 
using the power of ML to generate CA models without relying 
on time consuming analog simulations and costly simulator 
licenses. To further ease easing the deployment of CA test and 
diagnosis methodologies, this paper presents a new decision 
algorithm, which orients std cells, on a defect type basis, towards 
the quick ML-based CA model generation or the traditional CA 
characterization flow using analog simulations. This new 
decision algorithm is an RFC ML algorithm and a takes its 
decisions by analyzing the cells to be oriented as well as the 
content of the std cells database. The cells database contains the 

existing CA models of previously characterized std cells and is 
used for the supervised training of the ML-algorithm for CA 
model generation. The new decision algorithm introduced fine-
graining, orienting (cell; defect types) combinations through the 
hybrid flow rather than entire cells. Fine-graining increases the 
quality of the generated CA models. Experiments mimicking the 
industrial usage of such a flow were performed using cells 
belonging to five technology nodes. The results show that the 
new decision algorithm is efficient at orienting cells across the 
two parts of the hybrid-flow. 

For the first time, we used the CA models obtained thanks to 
the hybrid flow with an ATPG tool on 15 industrial designs. 
Hybrid flow lead to 79% of the (cell; defect type) combinations 
to get their behavior predicted by the ML-based CA model part 
of the hybrid flow. The fault coverage of these test patterns on 
real cell-internal defects was computed. The fault coverage has 
been compared and found equivalent to the faut coverage of 
patterns using CA models obtained by simulations only. This 
proves that our predicted CA models can accurately replace 
those obtained by running extensive analog simulations, thus 
proving the effectiveness and pertinence of the proposed 
methodology. 
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