
HAL Id: lirmm-03772257
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03772257v1

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hitting forbidden induced subgraphs on bounded
treewidth graphs

Ignasi Sau, Uéverton dos Santos Souza

To cite this version:
Ignasi Sau, Uéverton dos Santos Souza. Hitting forbidden induced subgraphs on bounded treewidth
graphs. Information and Computation, 2021, 281, pp.104812. �10.1016/j.ic.2021.104812�. �lirmm-
03772257�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03772257v1
https://hal.archives-ouvertes.fr

Hitting forbidden induced subgraphs on bounded
treewidth graphs
Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France
ignasi.sau@lirmm.fr

Uéverton dos Santos Souza
Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
ueverton@ic.uff.br

Abstract
For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum

size of a set S ⊆ V (G) such that G \ S does not contain H as an induced subgraph. Motivated by
previous work about hitting (topological) minors and subgraphs on bounded treewidth graphs, we are
interested in determining, for a fixed graph H, the smallest function fH(t) such that H-IS-Deletion
can be solved in time fH(t) · nO(1) assuming the Exponential Time Hypothesis (ETH), where t and
n denote the treewidth and the number of vertices of the input graph, respectively.

We show that fH(t) = 2O(th−2) for every graph H on h ≥ 3 vertices, and that fH(t) = 2O(t) if H

is a clique or an independent set. We present a number of lower bounds by generalizing a reduction
of Cygan et al. [Inf. Comput. 2017] for the subgraph version. In particular, we show that when
H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from
a clique of size h by removing one edge, then fH(t) = 2Θ(th−2). We also show that fH(t) = 2Ω(th)

when H = Kh,h, and this reduction answers an open question of Mi. Pilipczuk [MFCS 2011] about
the function fC4 (t) for the subgraph version.

Motivated by Cygan et al. [Inf. Comput. 2017], we also consider the colorful variant of the
problem, where each vertex of G is colored with some color from V (H) and we require to hit only
induced copies of H with matching colors. In this case, we determine, under the ETH, the function
fH(t) for every connected graph H on h vertices: if h ≤ 2 the problem can be solved in polynomial
time; if h ≥ 3, fH(t) = 2Θ(t) if H is a clique, and fH(t) = 2Θ(th−2) otherwise.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis; Theory of computation → Parameterized
complexity and exact algorithms

Keywords and phrases parameterized complexity, induced subgraphs, treewidth, hitting subgraphs,
dynamic programming, lower bound, Exponential Time Hypothesis.

Related Version A conference version of this article appeared in the Proceedings of the 45th
International Symposium on Mathematical Foundations of Computer Science (MFCS), volume
170 of LIPIcs, pages 82:1–82:15, 2020. A full version of the paper is permanently available at
https://arxiv.org/abs/2004.08324.

Funding Ignasi Sau: CAPES-PRINT Institutional Internationalization Program, process 88887.371209/
2019-00, and projects DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), and
ELIT (ANR-20-CE48-0008-01).
Uéverton dos Santos Souza: Grant E-26/203.272/2017 Rio de Janeiro Research Foundation (FAPERJ)
and Grant 303726/2017-2 National Council for Scientific and Technological Development (CNPq).

https://orcid.org/0000-0002-8981-9287
mailto:ignasi.sau@lirmm.fr
https://orcid.org/0000-0002-5320-9209
mailto:ueverton@ic.uff.br
https://arxiv.org/abs/2004.08324

2 Hitting forbidden induced subgraphs on bounded treewidth graphs

1 Introduction

Graph modification problems play a central role in modern algorithmic graph theory. In
general, such a problem is determined by a target graph class G and some prespecified setM
of allowed local modifications, and the question is, given an input graph G and an integer k,
whether it is possible to transform G to a graph in G by applying k modification operations
fromM. A wealth of graph problems can be formulated for different instantiations of G and
M, and applications span diverse topics such as computational biology, computer vision,
machine learning, networking, and sociology [8, 11,19].

The most studied local modification operation in the literature is vertex deletion and,
among the target graph classes, of particular relevance are the ones defined by excluding the
graphs in a family F according to some natural graph containment relation, such as minor,
topological minor, subgraph, or induced subgraph. By the well-known classification result of
Lewis and Yannakakis [25], all interesting cases of these problems are NP-hard.

One of the common strategies to cope with NP-hard problems is that of parameterized
complexity [12,17], where the core idea is to identify a parameter k associated with an input
of size n that allows for an algorithm in time f(k) · nO(1), called fixed-parameter tractable (or
FPT for short). A natural goal within parameterized algorithms is the quest for the “best
possible” function f(k) in an FPT algorithm. Usually, the working hypothesis to prove lower
bounds is the Exponential Time Hypothesis (ETH) that states, in a simplified version, that
the 3-Sat problem on n variables cannot be solved in time 2o(n); see [21,22] for more details.

Among graph parameters, one of the most successful ones is treewidth, which –informally
speaking– quantifies the topological resemblance of a graph to a tree. The celebrated theorem
due to Courcelle [10] states that every graph problem that can be expressed in Monadic
Second Order logic is solvable in time f(t) · n on n-vertex graphs given along with a tree
decomposition of width at most t. In particular, it applies to most vertex deletion problems
discussed above. A very active area in parameterized complexity during the last years consists
in optimizing, under the ETH, the function f(t) for several classes of vertex deletion problems.
As a byproduct, several cutting-edge techniques for obtaining both lower bounds [26] and
algorithms [6, 14,18] have been obtained, which have become part of the standard toolbox of
parameterized complexity. Obtaining tight bounds under the ETH for this kind of vertex
deletion problems is, in general, a challenging task, as we proceed to discuss.

Let H be a fixed graph and let ≺ be a fixed graph containment relation. In the H-≺-
Deletion (meta)problem, given an n-vertex graph G, the objective is to find a set S ⊆ V (G)
of minimum size such that G \ S does not contain H according to containment relation ≺.
We parameterize the problem by the treewidth of G, denoted by t, and the objective is to find
the smallest function fH(t) such that H-≺-Deletion can be solved in time fH(t) · nO(1).

The case ≺= ‘minor’ has been object of intense study during the last years [6, 14,16,23,
27,29], culminating in a tight dichotomy about the function fH(t) when H is connected [2–5].

The case ≺= ‘topological minor’ has been also studied recently [3–5], but we are still
far from obtaining a complete characterization of the function fH(t). For both minors and
topological minors, so far there is no graph H such that1 fH(t) = 2Ω(tc) for some c > 1.

Recently, Cygan et al. [13] started a systematic study of the case ≺= ‘subgraph’, which
turns out to exhibit a quite different behavior from the above cases: for every integer c ≥ 1
there is a graph H such that fH(t) = 2Θ(tc). Cygan et al. [13] provided a general upper bound

1 For conciseness, we use (in a non-standard way) the asymptotic notations Ω and Θ to denote conditional
lower bounds under the ETH.

Ignasi Sau and Uéverton S. Souza 3

and some particular lower bounds on the function fH(t), but a complete characterization
seems to be currently out of reach. Previously, Mi. Pilipczuk [28] had studied the cases
where H is a cycle, finding the function fCi

(t) for every i ≥ 3 except for i = 4.
In this article we focus on the case ≺= ‘induced subgraph’ that, to the best of our

knowledge, had not been studied before in the literature, except for the case K1,3, for which
Bonomo-Braberman et al. [9] showed very recently that fK1,3(t) = 2O(t2).

Our results and techniques. We first show (Theorem 2) that, for every graph H on h ≥ 3
vertices, fH(t) = 2O(th−2). The algorithm uses standard dynamic programming over a nice
tree decomposition of the input graph. However, in order to achieve the claimed running
time, we need to use a slightly non-trivial encoding in the tables that generalizes an idea of
Bonomo-Braberman et al. [9], by introducing an object that we call rooted H-folio, inspired
by similar encodings in the context of graph minors [1, 3].

It turns out that whenH is a clique or an independent set (in particular, when |V (H)| ≤ 2),
the problem can be solved in single-exponential time, that is, fH(t) = 2O(t). The case of
cliques (Theorem 5), which coincides with the subgraph version, had been already observed
by Cygan et al. [13], using essentially the folklore fact that every clique is contained in some
bag of a tree decomposition. The case of independent sets (Theorem 8) is more interesting,
as we exploit tree decompositions in a novel way, by showing (Lemma 6) that a chordal
completion of the complement of a solution can be covered by a constant number of cliques,
which implies (Lemma 7) that the complement of a solution is contained in a constant number
of bags of the given tree decomposition.

Our main technical contribution consists of lower bounds. Somehow surprisingly, we show
(Theorem 10) that when H deviates slightly from a clique, the function fH(t) suffers a sharp
jump: if H is obtained from a clique of size h by removing one edge, then fH(t) = 2Ω(th−2),
and this bound is tight by Theorem 2. We also provide lower bounds for other graphs H
that are “close” to cliques (Theorems 11, 13, and 14), some of them being (almost) tight.
In particular, we show (Theorem 14) that when H = Kh,h, we have that fH(t) = 2Ω(th).
By observing that the proof of the latter lower bound also applies to occurrences of Kh,h

as a subgraph, the particular case h = 2 (Corollary 15) answers the open question of Mi.
Pilipczuk [28] about the function fC4(t). All these reductions are inspired by a reduction of
Cygan et al. [13] for the subgraph version. We first present the general frame of the reduction
together with some properties that the eventual instances constructed for each of the graphs
H have to satisfy, yielding in a unified way (Lemma 9) lower bounds for the corresponding
problems.

Motivated by the work of Cygan et al. [13], we also consider the colorful variant of the
problem, where the input graph G comes equipped with a coloring σ : V (G)→ V (H) and
we are only interested in hitting induced subgraphs of G isomorphic to H such that their
colors match. In this case, we first observe that essentially the same dynamic programming
algorithm of the non-colored version (Theorem 3) yields the upper bound fH(t) = 2O(th−2)

for every graph H on h ≥ 3 vertices. Again, our main contribution concerns lower bounds:
we show (Theorem 16), by modifying appropriately the frame introduced for the non-colored
version, that fH(t) = 2Ω(th−2) for every graph H having a connected component on h

vertices that is not a clique. Since the case where H is a clique can also be easily solved in
single-exponential time (Theorem 5), which can be shown (Theorem 18) to be optimal, it
follows that if H is a connected graph on h ≥ 3 vertices, fH(t) = 2Θ(t) if H is a clique, and
fH(t) = 2Θ(th−2) otherwise. It is easy to see that the cases where |V (H)| ≤ 2 can be solved
in polynomial time by computing a minimum vertex cover in a bipartite graph.

4 Hitting forbidden induced subgraphs on bounded treewidth graphs

Organization. In Section 2 we provide some basic preliminaries and formally define the
problems. In Section 3 we present the algorithms for both problems, and in Section 4 (resp.
Section 5) we provide the lower bounds for the non-colored (resp. colored) version. Finally,
we conclude the article in Section 6 with some open questions.

2 Preliminaries

Graphs and functions. We use standard graph-theoretic notation, and we refer the reader
to [15] for any undefined notation. We will only consider undirected graphs without loops nor
multiple edges, and we denote an edge between two vertices u and v by {u, v}. A subgraph
H of a graph G is induced if H can be obtained from G by deleting vertices. A graph G is
H-free if it does not contain any induced subgraph isomorphic to H. For a graph G and
a set S ⊆ V (G), we use the notation G \ S := G[V (G) \ S]. A vertex v is complete (resp.
anticomplete) to a set S ⊆ V (G) if v is adjacent (resp. not adjacent) to every vertex in S. A
vertex set S of a connected graph G is a separator if G \ S is disconnected.

We denote by ∆(G) (resp. ω(G)) the maximum vertex degree (resp. clique size) of a
graph G. For an integer h ≥ 1, we denote by Ph (resp. Ih, Kh) the path (resp. independent
set, clique) on h vertices, and by Kh − e the graph obtained from Kh by deleting one edge.
For two integers a, b ≥ 1, we denote by Ka,b the bipartite graph with parts of sizes a and b.
We denote the disjoint union of two graphs G1 and G2 by G1 +G2.

A graph property is hereditary if whenever it holds for a graph G, it holds for all its
induced subgraphs as well. The open (resp. closed) neighborhood of a vertex v is denoted
by N(v) (resp. N [v]). A vertex is simplicial if its (open or closed) neighborhood induces
a clique. A graph G is chordal if it does not contain induced cycles of length at least four
or, equivalently, if V (G) can be ordered v1, . . . , vn such that, for every 2 ≤ i ≤ n, vertex vi
is simplicial in the subgraph of G induced by {v1, . . . , vi−1}. Note that being chordal is a
hereditary property.

Given a function f : A→ B between two sets A and B and a subset A′ ⊆ A, we denote
by f |A′ the restriction of f to A′ and by im(f) the image of f , that is, im(f) = {b ∈ B |
∃a ∈ A : f(a) = b}. For an integer k ≥ 1, we let [k] be the set containing all integers i with
1 ≤ i ≤ k.

Definition of the problems. Before formally defining the problems considered in this
article, we introduce some terminology, mostly taken from [13]. Given a graph H, an
H-coloring of a graph G is a function σ : V (G)→ V (H). A homomorphism (resp. induced
homomorphism from a graph H to a graph G is a function π : V (H) → V (G) such that
{u, v} ∈ E(H) implies (resp. if and only if) {π(u), π(v)} ∈ E(G). When G is H-colored by a
function σ, an (induced) σ-homomorphism from H to G is an (induced) homomorphism π

from H to G with the additional property that every vertex is mapped to the appropriate
color, that is, σ(π(a)) = a for every vertex a ∈ V (H). An (induced) H-subgraph of G is an
(induced) injective homomorphism from H to G and, if G is H-colored by a function σ, an
(induced) σ-H-subgraph of G is an (induced) injective σ-homomorphism from H to G. We
say that a vertex set X ⊆ V (G) hits an (induced) σ-H-subgraph π if X ∩ π(V (H)) 6= ∅.

For a fixed graph H, the problems we consider in this article are defined as follows.

H-IS-Deletion
Input: A graph G.
Output: The minimum size of a set X ⊆ V (G) that hits all induced H-subgraphs of G.

Ignasi Sau and Uéverton S. Souza 5

Colorful H-IS-Deletion
Input: A graph G and an H-coloring σ of G.
Output: The minimum size of a set X ⊆ V (G) that hits all induced σ-H-subgraphs of G.

The H-S-Deletion and Colorful H-S-Deletion problems are defined similarly, just
by removing the word ‘induced’ from the above definitions. In the decision version of these
problems, we are given a target budget k, and the objective is to decide whether there exists
a hitting set of size at most k. Unless stated otherwise, we let n denote the number of
vertices of input graph of the problem under consideration. When expressing the running
time of an algorithm, we will sometimes use the O∗(·) notation, which suppresses polynomial
factors in the input size.

Tree decompositions. A tree decomposition of a graph G is a pair D = (T,X), where T is
a tree and X = {Xw | w ∈ V (T)} is a collection of subsets of V (G), called bags, such that:⋃

w∈V (T)Xw = V (G),
for every edge {u, v} ∈ E, there is a w ∈ V (T) such that {u, v} ⊆ Xw, and
for each {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T ,
Xx ∩Xy ⊆ Xz.

We call the vertices of T nodes of D and the sets in X bags of D. The width of a tree
decomposition D = (T,X) is maxw∈V (T) |Xw| − 1. The treewidth of a graph G, denoted by
tw(G), is the smallest integer t such that there exists a tree decomposition of G of width at
most t. We need to introduce nice tree decompositions, which will make the presentation of
the algorithms much simpler.

Nice tree decompositions. Let D = (T,X) be a tree decomposition of G, r be a vertex
of T , and G = {Gw | w ∈ V (T)} be a collection of subgraphs of G, indexed by the vertices of
T . A triple (D, r,G) is a nice tree decomposition of G if the following conditions hold:

Xr = ∅ and Gr = G,
each node of D has at most two children in T ,
for each leaf ` ∈ V (T), X` = ∅ and G` = (∅, ∅). Such an ` is called a leaf node,
if w ∈ V (T) has exactly one child w′, then either
Xw = Xw′ ∪ {vin} for some vin 6∈ Xw′ and Gw = G[V (Gw′) ∪ {vin}]. The node w is
called an introduce node and the vertex vin is the introduced vertex of Xw,
Xw = Xw′ \ {vout} for some vout ∈ Xw′ and Gw = Gw′ . The node w is called a forget
node node and vout is the forget vertex of Xw.

if w ∈ V (T) has exactly two children w1 and w2, then Xw = Xw1 = Xw2 , E(Gw1) ∩
E(Gw2) = E(G[Xw]), and Gw = (V (Gw1) ∪ V (Gw2), E(Gw1) ∪ E(Gw2)). The node w is
called a join node.

For each w ∈ V (T), we denote by Vw the set V (Gw). Given a tree decomposition, it is
possible to transform it in polynomial time to a nice one of the same width [24]. Moreover,
by Bodlaender et al. [7] we can find in time 2O(tw) · n a tree decomposition of width O(tw) of
any graph G with treewidth tw. Since the running time of our algorithms dominates this
function, we may assume that a nice tree decomposition of width t = O(tw) is given along
with the input.

Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) of Impagliazzo
and Paturi [21] implies that the 3-Sat problem on n variables cannot be solved in time 2o(n).
The Sparsification Lemma of Impagliazzo et al. [22] implies that if the ETH holds, then there
is no algorithm solving a 3-Sat formula with n variables and m clauses in time 2o(n+m).

6 Hitting forbidden induced subgraphs on bounded treewidth graphs

Using the terminology from Cygan et al. [13], a 3-Sat formula ϕ in conjunctive normal form
is said to be clean if each variable of ϕ appears exactly three times, at least once positively
and at least once negatively, and each clause of ϕ contains two or three literals and does not
contain twice the same variable. Cygan et al. [13] observed the following useful lemma.

I Lemma 1 (Cygan et al. [13]). The existence of an algorithm in time 2o(n) deciding whether
a clean 3-Sat formula with n variables is satisfiable would violate the ETH.

3 Algorithms

In this section we present algorithms for H-IS-Deletion and Colorful H-IS-Deletion.
We start in Subsection 3.1 with a general dynamic programming algorithm that solves
H-IS-Deletion and Colorful H-IS-Deletion in time O∗(2O(th−2)) for any graph H on
at least h ≥ 3 vertices. In Subsection 3.2 we focus on hitting cliques and independent sets.

3.1 A general dynamic programming algorithm
We present the algorithm for H-IS-Deletion, and then we discuss that essentially the
same algorithm applies to Colorful H-IS-Deletion as well. Our algorithm to solve
H-IS-Deletion in time O∗(2O(th−2)) uses standard dynamic programming over a nice tree
decomposition of the input graph; we refer the reader to [12] for a nice exposition. However,
in order to achieve the claimed running time, we need to use a slightly non-trivial encoding
in the tables, which we proceed to explain.

Let |V (H)| = h and assume that we are given a nice tree decomposition of the input
graph G such that its bags contain at most t vertices (in a tree decomposition of width t,
the bags have size at most t+ 1, but to simplify the exposition we assume that they have
size at most t, which does not change the asymptotic complexity of the algorithm).

Intuitively, our algorithm proceeds as follows. At each bag Xw of the nice tree decompos-
ition of G, a state is indexed by the intersection of the desired hitting set constructed so far
with the bag, and the collection of proper subgraphs of H that occur as induced subgraphs
in the graph obtained from Gw after removing the current solution. In order to be able
to proceed with the dynamic programming routine while keeping the complement of the
hitting set H-free, we need to remember how these proper subgraphs of H intersect with
Xw, and this is the most expensive part of the algorithm in terms of running time. We
encode this collection of rooted subgraphs (where the “roots” correspond to the vertices in
Xw) of H with an object Hw that we call a rooted H-folio, inspired by similar encodings in
the context of graph minors [1, 3]. Since we need to remember proper subgraphs of H on
at most h− 1 vertices, and we have up to t choices to root each of their vertices in the bag
Xw, the number of rooted proper subgraphs of H is at most th−1. Therefore, the number
of rooted H-folios, each corresponding to a collection of rooted proper subgraphs of H, is
bounded from above by 2th−1 . This encoding naturally leads to a dynamic programming
algorithm to solve H-IS-Deletion in time O∗(2O(th−1)), where the hidden constants (but
not the degree of the polynomial in n) may depend on H.

In order to further reduce the exponent to h−2, we use the following trick inspired by the
dynamic programming algorithm of Bonomo-Braberman et al. [9] to solve K1,3-IS-Deletion
in time O∗(2O(t2)). The crucial observation is the following: the existence of proper induced
subgraphs of H that are fully contained in the current bag Xw can be checked locally
within that bag, without needing to root their vertices. That is, we distinguish these local
occurrences of proper induced subgraphs of H, and we encode them separately in Hw, without

Ignasi Sau and Uéverton S. Souza 7

rooting their vertices in Xw. Note that the number of choices for those local occurrences
depends only on H. In particular, since the proper subgraphs of H have at most h − 1
vertices, the previous observation implies that we never need to root exactly h− 1 vertices
of an induced subgraph of H, since such occurrences would be fully contained in Xw. This
permits to improve the running time to O∗(2O(th−2)). The details follow.

Note that we may assume that H has at least three vertices, as otherwise it is a clique or
an independent set, and then H-IS-Deletion can be solved in single-exponential time by
the algorithms in Subsection 3.2.

I Theorem 2. For every graph H on h ≥ 3 vertices, the H-IS-Deletion problem can be
solved in time 2O(th−2) · n, where n and t are the number of vertices and the treewidth of the
input graph, respectively.

Proof. As discussed in Section 2, we may assume that we are given are nice tree decomposition
(D, r,G) of G of width O(tw(G)). To simplify the exposition, suppose that the bags of D
contain at most t vertices, and recall that this assumption does not change the asymptotic
complexity of the algorithm.

At each bag Xw of the given nice tree decomposition of G, a valid state of our dynamic
programming table is indexed by the following two objects:

A subset Ŝw ⊆ Xw that corresponds to the intersection of the desired H-hitting set with
the current bag. With this in mind, we say that a set Sw ⊆ Vw is feasible for Ŝw if
Gw \ Sw is H-free and Sw ∩Xw = Ŝw.
A rooted H-folio Hw, containing the following two collections of (rooted) proper induced
subgraphs of H:

The set Lw of local occurrences of proper induced subgraphs of H, consisting of the
set of proper induced subgraphs of H that occur in G[Xw \ Ŝw].
The set Rw of rooted occurrences of proper induced subgraphs of H, consisting of a
set of triples (H̃, R, ρ) where H̃ is a proper induced subgraph of H, R ⊆ V (H̃) is a set
with 0 ≤ |R| ≤ h−2 corresponding to the roots of H̃ in Xw \ Ŝw, and ρ : R→ Xw \ Ŝw
is an injective function that maps each vertex in R to its corresponding vertex in
Xw \ Ŝw.

Note that the number of local occurrences of proper induced subgraphs of H depends only on
H, and that the number of tuples (H̃, R, ρ) of rooted occurrences is at most 2h · 2h−1 · th−2,
and therefore the number of rooted H-folios is at most 2O(th−2), as desired.

We say that the rooted H-folio of a subgraph G′w ⊆ Gw is Hw if the local and rooted
occurrences of induced subgraphs of H in G′w correspond exactly to the collections Lw and
Rw of Hw, respectively. Our algorithm stores, for each state (Ŝw,Hw) of a node w of a nice
tree decomposition of G, the minimum size of a set Sw ⊆ Vw feasible for Ŝw such that the
rooted H-folio of Gw \ Sw is Hw, or +∞ if such a set does not exist. We denote this value
by opt(Ŝw,Hw).

When r is the root of the nice tree decomposition, note that the solution of the H-
IS-Deletion problem in G equals minHr

{opt(∅,Hr)}, where Hr = (Lr,Rr) runs over all
rooted H-folios such that Lr = ∅ and Rr contains the triples (H̃, ∅, ∅) for all proper induced
subgraphs H̃ of H.

We now show how these valid states and associated values can be computed recursively
in a typical bottom-up fashion starting from the leaves, by distinguishing the distinct types
of nodes in a nice tree decomposition. We let V (H) = {z1, . . . , zh}.

8 Hitting forbidden induced subgraphs on bounded treewidth graphs

Leaf node. The unique valid state is (∅, ∅) and opt(∅, ∅) = 0.

Introduce node. Let w be an introduce node with child w′ such that Xw \Xw′ = {v}. For
each valid state (Ŝw′ ,Hw′) for w′, with Hw′ = (Lw′ ,Rw′), we generate the following valid
states for w, depending on whether v is included in the current partial hitting set in Xw or
not:

(Ŝw′ ∪ {v},Hw′). In this case, we just include v into the partial hitting set, hence the
rooted H-folio remains the same. Therefore, opt(Ŝw′ ∪ {v},Hw′) = opt(Ŝw′ ,Hw′) + 1.
(Ŝw′ ,Hw) only if G[Xw \ Ŝw′] is H-free, where Hw = (Lw,Rw) is defined as follows:
Lw contains all the proper induced subgraphs of H that occur in G[Xw \ Ŝw′]. Note
that this set can be computed in time O(th), where the hidden constant depends on h.
In order to define the set of triples contained in Rw, we first check that H does not
occur when introducing v: if for some triple (H̃ ′, R′, ρ′) ∈ Rw′ , the graph obtained
from H̃ ′ by adding a new vertex u and an edge {u, z} for every root vertex z ∈ R′ such
that ρ′(z) is adjacent to v in G, is isomorphic to H, we discard the state (Ŝw′ ,Hw)
from the table of Xw, and we move on to the next state for w′. If there is no such
triple, we add the whole collection Rw′ to Rw. Moreover, we add to Rw every triple
(H̃, R, ρ) that can be obtained from a triple (H̃ ′, R′, ρ′) ∈ Rw′ with |V (H̃ ′)| ≤ h− 2,
|R′| ≤ h − 3, v ∈ im(ρ), |R| = |R′| + 1, ρ|R′ = ρ′, H̃ is a proper induced subgraph
of H, and H̃ ′ is isomorphic to H̃ \ {ρ−1(v)}. That is, since in this case v does not
belong to the partial hitting set, we also add to Rw any rooted occurrence that can be
obtained from a rooted occurrence in Rw′ by adding vertex v to the set of roots R to
form a larger H̃.

In this case we set opt(Ŝw′ ,Hw) = opt(Ŝw′ ,Hw′).

Forget node. Let w be a forget node with child w′ such that Xw′ \Xw = {v}. For each
valid state (Ŝw′ ,Hw′) for w′, with Hw′ = (Lw′ ,Rw′), we generate the following valid states
for w, depending on whether v ∈ Ŝw′ or not:

If v ∈ Ŝw′ we add the state (Ŝw′ \{v},Hw′) and we set opt(Ŝw′ \{v},Hw′) = opt(Ŝw′ ,Hw′).
In this case, we just forget vertex v, which was in the solution, and Hw′ remains the
same.
Otherwise, if v /∈ Ŝw′ , we add the state (Ŝw′ ,Hw) where Hw = (Lw,Rw) is defined as
follows:
Lw contains all the proper induced subgraphs of H that occur in G[Xw \ Ŝw′]. Again,
this set can be computed locally in time O(th).
Rw contains every triple (H̃, R, ρ) that can be constructed by any of the following two
operations:
∗ If there is a local occurrence H̃ ′ ∈ Lw′ such that v belongs to an induced H̃ ′-

subgraph F of G[Xw′ \ Ŝw′], we add to Rw the triple (H̃, R, ρ) defined as H̃ = H̃ ′,
R = V (H̃ ′) \ {z} where z is the vertex of H̃ ′ mapped to v, and ρ mapping every
vertex of R to their image in F . That is, if v was part of a local occurrence for node
w′, now this occurrence becomes a rooted one for node w, defined in the natural
way.

∗ Let (H̃ ′, R′, ρ′) ∈ Rw′ be a rooted occurrence in Rw′ . We distinguish two cases:
· If v /∈ im(ρ′), we add (H̃ ′, R′, ρ′) to Rw.
· Otherwise, if v ∈ im(ρ′), we add to to Rw the triple (H̃, R, ρ) defined as H̃ = H̃ ′,

R = R′ \ {ρ′−1(v)}, and ρ = ρ′|R. That is, we just remove the forgotten vertex v
from the root set of the corresponding rooted occurrence.

Ignasi Sau and Uéverton S. Souza 9

In this case we set opt(Ŝw′ ,Hw) = opt(Ŝw′ ,Hw′).

Join node. Let w be a join node with children w1 and w2. For each pair of valid states
(Ŝw1 ,Hw1) and (Ŝw2 ,Hw2) for w1 and w2, with Hw1 = (Lw1 ,Rw1) and Hw2 = (Lw2 ,Rw2),
respectively, such that Ŝw1 = Ŝw2 and Lw1 = Lw2 , we generate the valid state (Ŝw1 ,Hw) for
w, where Hw = (Lw1 ,Rw) and Rw is defined as follows. For every pair of rooted triples
(H̃1, R1, ρ1) ∈ Rw1 and (H̃2, R2, ρ2) ∈ Rw2 with R1 = R2, ρ1 = ρ2, and (V (H̃1) \ R1) ∩
(V (H̃2) \R2) = ∅ (recall that the vertices of H are labeled, so this condition is well-defined),
we add to Rw the triple (H̃1 ∪ H̃2, R1, ρ1). That is, we just merge the rooted triples that
coincide in Xw = Xw1 = Xw2 , by taking the union of the corresponding subgraphs of H.

Finally, for (Ŝw1 ,Hw) to be indeed a valid state for w, we have to check that an occurrence
of H has not been created in those triples: if for some such a triple (H̃1 ∪ H̃2, R1, ρ1) ∈ Rw,
we have that H̃1 ∪ H̃2 = H, we discard the state (Ŝw1 ,Hw) for w, and we move on to the
next pair of valid states (Ŝw1 ,Hw1) and (Ŝw2 ,Hw2) for w1 and w2, respectively.

If the state (Ŝw1 ,Hw) has not been discarded, we set

opt(Ŝw1 ,Hw) = opt(Ŝw1 ,Hw1) + opt(Ŝw2 ,Hw2)− |Ŝw1 |.

In all cases, if distinct valid states of the child(ren) node(s) generate the same valid state
(Ŝw,Hw) at the current node w, we update opt(Ŝw,Hw) to be the minimum among all the
obtained values, as usual. This concludes the description of the algorithm, whose correctness
follows from the definition of the tables and the fact that the solution of the H-IS-Deletion
problem on G is computed at the root of the nice tree decomposition. Clearly, all the above
operations can be performed at each node in time 2O(th−2), and the proof is complete by
taking into account that we may assume that the given nice tree decomposition has O(t · n)
nodes [24]. J

A dynamic programming algorithm similar to the one provided in Theorem 2 can also
solve the Colorful H-IS-Deletion problem in time 2O(th−2) · n for every graph H on
h ≥ 3 vertices. Indeed, the algorithm remains basically the same, except that we have to
keep track only of colorful copies of proper subgraphs of H, and to discard only the states in
which a colorful occurrence of H appears. In order to do that, in the tables of the dynamic
programming algorithm we just need to replace rooted H-folios by rooted σ-H-folios, defined
in the natural way. Since the number of further computations at each node in order to verify
that the colors match in the obtained rooted subgraphs of H is a function dominated by
2O(th−2), we obtain the same asymptotic running time. We omit the details.

I Theorem 3. For every graph H on h ≥ 3 vertices, the Colorful H-IS-Deletion
problem can be solved in time 2O(th−2) · n, where n and t are the number of vertices and the
treewidth of the input graph, respectively.

It is easy to check that small adaptations of the algorithms of Theorems 2 and 3 also
work for the (not necessarily induced) subgraph version of both problems. Nevertheless,
the obtained running times never outperform those obtained by Cygan et al. [13] for those
problems.

3.2 Hitting cliques and independent sets
The following folklore lemma follows easily from the definition of tree decomposition.

10 Hitting forbidden induced subgraphs on bounded treewidth graphs

I Lemma 4. Let G be a graph and let D be a tree decomposition of G. Then every clique of
G is contained in some bag of D.

Note that if H is a clique, then the (Colorful) H-IS-Deletion problem is the same
as the (Colorful) H-S-Deletion problem. Cygan et al. [13] observed that, by Lemma 4,
in order to solve (Colorful) Kh-IS-Deletion it is enough to do the following: store, for
every bag of a (nice) tree decomposition of the input graph, the subset of vertices of the bag
that belongs to the partial hitting set, and check locally within the bag that the remaining
vertices do not induce a Kh. A typical dynamic programming routine yields the following
result2.

I Theorem 5 (Cygan et al. [13]). For every integer h ≥ 1, Kh-IS-Deletion and Colorful
Kh-IS-Deletion can be solved in time 2O(t) · n, where n and t are the number of vertices
and the treewidth of the input graph, respectively.

The case where H is an independent set, which is NP-hard by [25], turns out to be more
interesting. We proceed to present a single-exponential algorithm for Ih-IS-Deletion, and
we remark that this algorithm does not apply to the colorful version.

Note that I2-IS-Deletion is the dual problem of Maximum Clique, since a minimum
I2-hitting set is the complement of a maximum clique. This duality together with Lemma 4
yield the following key insight: in any graph G, after the removal of an optimal solution
of I2-IS-Deletion, all the remaining vertices are contained in a single bag of any tree
decomposition of G. Our algorithm is based on a generalization of this property to any h ≥ 1,
stated in Lemma 7, which gives an alternative way to exploit tree decompositions in order to
solve the H-IS-Deletion problem.

We first need a technical lemma. A clique cover of a graph G is a collection of cliques of
G that cover V (G), and its size is the number of cliques in the cover.

I Lemma 6. Every Ih-free chordal graph G admits a clique cover of size at most h− 1.

Proof. We prove the lemma by induction on h. For h = 2, G itself is a clique and the claim
is trivial. Suppose inductively that any Ih−1-free chordal graph admits a clique cover of size
at most h− 2, let G be an Ih-free chordal graph, and let v be a simplicial vertex of G. Since
N [v] is a clique and G is Ih-free, it follows that G \N [v] is Ih−1-free. Since being chordal
is a hereditary property, G \N [v] is an Ih−1-free chordal graph, so by induction G \N [v]
admits a clique cover of size at most h− 2. These h− 2 cliques together with N [v] define a
clique cover of G of size at most h− 1. J

I Lemma 7. Let h ≥ 2 be an integer, let G be a graph, let D be a tree decomposition of
G, and let S be any solution for Ih-IS-Deletion on G. Then there are at most h− 1 bags
X1, X2, . . . , Xh−1 of D such that V (G) \ S ⊆

⋃
i∈[h−1]Xi.

Proof. Let D be a tree decomposition of G, let S be a solution for Ih-IS-Deletion on G,
and let G? be the graph obtained from G by adding an edge between any pair of vertices
contained in the same bag of D. Note that G? is a chordal graph, and that D is also a tree
decomposition of G?. Since being a chordal graph is a hereditary property, it follows that
G? \ S is chordal. Since G \ S is Ih-free, and the property of being Ih-free is closed under
edge addition, we have that G? \ S is also Ih-free. Thus, G? \ S is an Ih-free chordal graph,

2 In fact, Cygan et al. [13] presented an algorithm only for Colorful Kh-S-Deletion, but the algorithm
for Kh-S-Deletion is just a simplified version of the colorful version, just by forgetting the colors.

Ignasi Sau and Uéverton S. Souza 11

and Lemma 6 implies that G? \ S admits a clique cover of size at most h − 1. Since any
clique in G? \S is also a clique in G?, and D is a tree decomposition of G?, Lemma 4 implies
that every clique of G? \ S is contained in some bag of D, and therefore there are at most
h− 1 bags of D that cover all vertices in V (G?) \ S = V (G) \ S. J

Recall that Ih-IS-Deletion is NP-hard even for h = 2, thus the problem cannot be
solved in time nf(h) for any function f , unless P = NP.

I Theorem 8. For every integer h ≥ 1, Ih-IS-Deletion can be solved in time 2O(t) · nh,
where n and t are the number of vertices and the treewidth of the input graph, respectively.

Proof. For h = 1 the problem can be trivially solved in linear time, so assume h ≥ 2. Let
D be a tree decomposition of G with width t, and let S be an (unknown) optimal solution
for Ih-IS-Deletion on G. By Lemma 7, there are at most h − 1 bags X1, X2, . . . , Xh−1
of D such that V (G) \ S ⊆

⋃
i∈[h−1]Xi. Since we may assume that D has O(n) nodes [24],

we can enumerate the candidate sets of bags X1, X2, . . . , Xh−1 in time O(nh−1). For
each such fixed set X1, X2, . . . , Xh−1, we generate all subsets S̄ ⊆

⋃
i∈[h−1]Xi, which are

at most 2(h−1)(t+1) many, and for each S̄ we check whether the graph G[S̄] is Ih-free,
in time 2t · tO(1) · n, by computing a maximum independent set of G[S̄] using dynamic
programming based on treewidth [12] (note that having treewidth at most t is a hereditary
property). Note that, by Lemma 7, there exists some of the considered sets S̄ such that
V (G) \ S̄ = S, and therefore an optimal solution S of Ih-IS-Deletion on G can be found
in time O(nh−1 · 2(h−1)(t+1) · 2t · tO(1) · n) = 2O(t) · nh , as claimed. J

We would like to mention that the approach used in the algorithm of Theorem 8 does not
seem to be easily applicable to the colorful version of the problem. Indeed, the colored version
of Lemma 6 fails: removing a clique from a σ-Ih-free chordal graph does not necessarily yield
a σ-Ih−1-free chordal graph, and the inductive argument does not apply.

To conclude this section, note that, for any graph H and any instance (G, σ) of Colorful
H-IS-Deletion, any edge between two vertices u, v with σ(u) = σ(v) can be safely deleted
without affecting the instance. Hence, if H = K2 we can assume that the input graph is
bipartite, and therefore the Colorful K2-IS-Deletion problem (where the goal is to hit
all edges) is equivalent to computing a minimum vertex cover in a bipartite graph, which
can be done in polynomial time. Similarly, the Colorful I2-IS-Deletion problem can
also be solved in polynomial time, by computing a minimum vertex cover in the bipartite
complement of the input graph. This is in sharp contrast to the uncolored version, where
both problems are NP-hard [25].

4 Lower bounds for H-IS-Deletion

In this section we present lower bounds for the H-IS-Deletion problem. Our reductions will
be from the 3-Sat problem restricted to clean formulas (see Section 2 for the definition), and
are strongly inspired by a reduction of Cygan et al. [13, Theorem 4] for the H-S-Deletion
problem when H is the graph obtained from K2,h by attaching a triangle to each of the two
vertices of degree h. More precisely, the reduction from the 3-Sat problem restricted to
clean formulas of Cygan et al. [13, Theorem 4] is based on a frame graph that is a simplified
version of the general one that we define below, but that enjoys its essential properties,
namely that each occurrence of the forbidden (induced) graph H corresponds to a satisfying
variable/clause pair. Our technical contribution is to enhance this basic frame graph in order
to deal with different forbidden subgraphs H, in particular (as discussed in detail below)

12 Hitting forbidden induced subgraphs on bounded treewidth graphs

by adding edges inside the central part, redefining the “attached graphs” L, changing the
adjacencies given by the functions fC,` defined below, or adding a new vertex set T into the
central part (cf. Figure 1).

We start by presenting the general frame of the reductions together with some generic
properties that our eventual instances of H-IS-Deletion will satisfy, which allow to prove
in a unified way (cf. Lemma 9) the equivalence of the instances. Variations of this general
frame will yield the concrete reductions for distinct graphs H (cf. Theorems 10, 11, 13,
and 14).

General frame of the reductions. Given a clean 3-Sat formula ϕ with n variables and
m clauses, we proceed to build a so-called frame graph FH,ϕ. For each graph H considered in
the reductions, FH,ϕ will be enhanced with additional vertices and edges, obtaining a graph
GH,ϕ that will be the constructed instance of the H-IS-Deletion problem.

Let h be an integer depending on H, to be specified in each particular reduction, let s be
the smallest positive integer such that sh ≥ 3n, and note that s = O(n1/h). We introduce a
set of vertices M = {wi,j | i ∈ [s], j ∈ [h]}, which we call the central part of the frame. One
may think of this set M as a matrix with s rows and h columns. We will sometimes add
an extra set T of vertices to the central part, with |T | depending only on H, obtaining an
enhanced central part M ′ = M ∪ T .

Let L be a graph, to be specified according to each particular considered graph H. By
attaching a copy of L between two vertices u, v ∈ V (FH,ϕ) we mean adding a new copy of L,
choosing two arbitrary distinct vertices of L, and identifying them with u and v, respectively.

For each variable x of ϕ and for each clause C containing x in a literal ` ∈ {x, x̄}, we add
to Fϕ a new vertex ax,C,`. We also introduce another “dummy” vertex ax. Since ϕ is clean,
we have introduced four vertices in FH,ϕ for each variable x. Let ax,C1,`, ax,C2,¯̀, ax,C3,`, ax
be the four introduced vertices (recall that x appears at least once positively and negatively
in ϕ). We attach a copy of L between the following four pairs of vertices: (ax,C1,`, ax,C2,¯̀),
(ax,C2,¯̀, ax,C3,`), (ax,C3,`, ax), and (ax, ax,C1,`). We denote by A the union of all the vertices
in these variable gadgets.

For each clause C of ϕ and for each literal ` in C, we add to Fϕ a new vertex bC,`. Since
ϕ is clean, we have introduced two or three vertices in FH,ϕ for each clause C. We attach a
copy of L between every pair of these vertices. We denote by B the union of all the vertices
in these clause gadgets. This concludes the construction of the frame FH,ϕ; cf. Figure 1.

w1,1

w2,1

ws,1

wi,j

ws,h

w1,hw1,2

M

h

s

BA

L

L

L

bC,`1

bC,`2

bC,`3ax,C3,`

M ′T

ax,C2,¯̀

L

L

L

ax,C1,`

ax ax,C2,¯̀

L

ax,C1,`

ax

Figure 1 Illustration of the general frame graph FH,ϕ.

Ignasi Sau and Uéverton S. Souza 13

In all our reductions, the graph GH,ϕ will satisfy the following property:

P1: All the connected components of GH,ϕ \M ′ are of size bounded by a function of H.

Also, in all our reductions the budget that we set for the solution of H-IS-Deletion on
GH,ϕ is k := 2n +

∑
C∈ϕ(|C| − 1) = 5n −m, where |C| denotes the number of literals in

clause C. For each fixed graph H, the choice of k, the edges within M ′, and the edges
between M ′ and the sets A,B will force the following behavior in GH,ϕ:

P2: For each gadget corresponding to a variable x, at least one of the pairs (ax,C1,`, ax,C3,`)
P2: and (ax, ax,C2,¯̀) needs to be in the solution and, for each gadget corresponding to a
P2: clause C, at least |C| − 1 vertices in the set {bC,` | ` ∈ C} need to be in the solution.

The above property together with the choice of k imply that the budget is tight: exactly
one of the pairs (ax,C1,`, ax,C3,`) and (ax, ax,C2,¯̀) is in the solution, thereby defining the
true/false assignment of variable x; and exactly one of the vertices in {bC,` | ` ∈ C} is not in
the solution, corresponding to a satisfied literal in C. More precisely, our graph GH,ϕ will
satisfy the following key property:

P3: Let X ⊆ V (GH,ϕ) contain exactly one of (ax,C1,`, ax,C3,`) and (ax, ax,C2,¯̀) for each
P3: variable x, and exactly |C|−1 vertices in {bC,` | ` ∈ C} for each clause C. If GH,ϕ \X
P3: contains H as an induced subgraph, then it has an occurrence of H as an induced
P3: subgraph containing exactly one vertex ax,C,` ∈ A and exactly one vertex bC′,`′ ∈ B,
P3: with (C, `) = (C ′, `′). Moreover, each such a pair of vertices gives rise to an occurrence
P3: of H in GH,ϕ \X.

Note that property P3 states that the occurrences of H described above are “representative”
of all occurrences of H, in the sense that it is enough that the set X hits these particular
occurrences in order to guarantee that GH,ϕ \X contains no occurrence of H at all. We now
show that the above three properties are enough to construct the desired reductions.

I Lemma 9. Let H be a fixed graph and, given a clean 3-Sat formula ϕ, let GH,ϕ be a
graph constructed starting from the frame graph FH,ϕ described above, where the central part
M has h columns for some constant h ≥ 1 depending on H. If GH,ϕ satisfies properties P1,
P2, and P3, then the H-IS-Deletion problem cannot be solved in time O∗(2o(th)) unless
the ETH fails, where t is the width of a given tree decomposition of the input graph.

Proof. Since H is a fixed graph, property P1 implies that we can easily construct in
polynomial time a tree decomposition of GH,ϕ of width O(|M ′|) = O(|M |) = O(s) = O(n1/h).
Let t be the width of the constructed tree decomposition of GH,ϕ. We set k := 5n −m,
where n and m are the number of variables and clauses of ϕ, respectively. We claim that
ϕ is satisfiable if and only if GH,ϕ has a solution of H-IS-Deletion of size at most k.
This will conclude the proof of the lemma, since an algorithm in time O∗(2o(th)) to solve
H-IS-Deletion on GH,ϕ would imply the existence of an algorithm in time 2o(n) to decide
whether ϕ is satisfiable, which would contradict the ETH by Lemma 1.

Suppose first that α is an assignment of the variables that satisfies all the clauses in ϕ,
and we define a set X ⊆ V (GH,ϕ) as follows. For each variable x, add to X all vertices
ax,C,` such that α(`) is true. If only one vertex was added in the previous step, add to X
vertex ax as well. For each clause X, choose a literal ` that satisfies C, and add to X the set
{bC,`′ | `′ 6= `}. By construction we have that |X| = k, and property P3 guarantees that H
does not occur in GH,ϕ \X as an induced subgraph.

14 Hitting forbidden induced subgraphs on bounded treewidth graphs

Conversely, suppose that there exists X ⊆ V (GH,ϕ) with |X| ≤ k such that GH,ϕ \X
does not contain H as an induced subgraph. By property P2 and the choice of k, X contains
exactly one of (ax,C1,`, ax,C3,`) and (ax, ax,C2,¯̀) for each variable x, and exactly |C|−1 vertices
in {bC,` | ` ∈ C} for each clause C. We define the following assignment α of the variables:
for each variable x, let ` ∈ {x, x̄} such that ax,C,` ∈ X for some clause C. Then we set α(x)
to true if ` = x, and to false if ` = x̄. By the above discussion, this is a valid assignment.
Consider a clause C of ϕ, and let ` be the literal in C such that bC,` /∈ X. Property P3 and
the hypothesis that X is a solution imply that there exists a variable x ∈ {`, ¯̀} such that
ax,C,` ∈ X, as otherwise there would be an occurrence of H in GH,ϕ \X. By the definition
of α, necessarily α(`) is true, and therefore α satisfies C. Since this argument holds for every
clause, we conclude that ϕ is satisfiable. J

We now proceed to describe concrete reductions for several instantiations of H. In order
to add edges between the enhanced central part M ′ and the sets A,B, we use the following
nice trick introduced in [13]. To each pair (C, `), where C is a clause of ϕ and ` is a literal in
C, we assign a function fC,` : [h] → [s]. Note that there are sh many such functions, and
recall that s has been chosen so that sh ≥ 3n. We assign these functions in such a way that
fC,` 6= fC′,`′ whenever (C, `) 6= (C ′, `′); note that this is possible by the choice of s and the
fact that, since ϕ is clean, each clause contains at most three literals. We assume henceforth
that these functions are fixed.

We start with the following result that provides a tight lower bound for a graph that is
very “close” to a clique, namely a clique minus one edge.

I Theorem 10. For any integer h ≥ 1, the (Kh+2−e)-IS-Deletion problem cannot be solved
in time O∗(2o(th)) unless the ETH fails, where t is the width of a given tree decomposition of
the input graph.

Proof. We first treat the case h = 1 separately, by presenting a polynomial-time reduction
from the Vertex Cover problem, which is well-known not to be solvable, assuming the
ETH, in time 2o(n+m) on graphs with n vertices and m edges [21,22]. In fact, we will prove
the stronger lower bound of O∗(2o(n)), which implies the lower bound O∗(2o(t)) corresponding
to the case h = 1 claimed in the statement of the theorem. Note that, in the case h = 1,
K3 − e = P3. Given an instance G of Vertex Cover, let G′ be obtained from G by
attaching a private neighbor to every vertex of G, and note that |V (G′)| = 2|V (G)|. It can
be easily verified that the size of a minimum vertex cover of G equals the minimum size of a
vertex set of G′ intersecting all its induced P3’s. Hence, the (K3 − e)-IS-Deletion problem
cannot be solved in time O∗(2o(n)) under the ETH.

Suppose henceforth that h ≥ 2, and let H = Kh′+2 − e for some h′ ≥ 2 (we relabel h
as h′ in H to keep the index h for the number of columns in the frame graph FH,ϕ). We
will present a reduction from the 3-Sat problem restricted to clean formulas. Given such
a formula ϕ, let FH,ϕ be the frame graph described above the statement of the theorem,
with h = h′, L = Kh+2 − e, and T = ∅. In this construction, when attaching copies of L, we
choose the attachment vertices to be two distinct vertices of L different from the endvertices
of its unique non-edge. Note that this is always possible as h ≥ 2. We proceed to build,
starting from FH,ϕ, an instance GH,ϕ of H-IS-Deletion with budget k = 5n−m satisfying
properties P1, P2, and P3, and then Lemma 9 will imply the claimed lower bound.

We add an edge between any two vertices wi,j , wi′,j′ ∈M with j 6= j′. That is, we turn
GH,ϕ[M] into a complete h-partite graph, where each part has size s. For each clause C and
each literal ` in C, where ` ∈ {x, x̄} for some variable x, we add the edges {aC,x,`, wfC,`(j),j}
and {bC,`, wfC,`(j),j} for every j ∈ [h]. That is, the function fC,` indicates the unique neighbor

Ignasi Sau and Uéverton S. Souza 15

of aC,x,` and bC,` in the j-th column of M , for every j ∈ [h]. This concludes the construction
of GH,ϕ, which clearly satisfies property P1. By the choice of k and the fact that there is a
copy of H between the corresponding vertices of A and B (cf. Figure 1), property P2 holds
as well. Let X ⊆ V (GH,ϕ) be a set as in property P3, and let H̃ be an induced subgraph of
GH,ϕ \X isomorphic to H. Since ω(GH,ϕ[M]) = h, ω(GH,ϕ[(A ∪B) \X]) ≤ h (here we use
that h ≥ 2 and the choice of the attachment vertices of L), and ω(H) = h+ 1, H̃ intersects
both M and A ∪ B. Moreover, since no two adjacent vertices in (A ∪ B) \ X both have
neighbors in M , necessarily |V (H̃) ∩ (A ∪ B)| = 2 and V (H̃) ∩M induces a clique of size
h, which implies that H̃ contains a vertex in each column of M . By the definition of the
functions fC,` and the construction of GH,ϕ, the two vertices in V (H̃) ∩ (A ∪ B) must be
ax,C,` ∈ A and bC′,`′ ∈ B with (C, `) = (C ′, `′), and therefore property P3 follows and we
are done by Lemma 9. J

In the following result we provide an almost tight lower bound for another graph H that
is also “close” to a clique, in this case a clique of size h plus two isolated vertices. Since this
graph is somehow symmetric to the one considered in Theorem 10, the natural approach is
to reverse the roles of neighbors and non-neighbors given by the functions fC,`. However,
in this way there would be many cliques of size h consisting of a vertex in A ∪B together
with h− 1 of its neighbors in M , which would create many undesired induced occurrences
of H with any two vertices anticomplete to such a clique. We circumvent this problem by
“reducing” the number of columns of the central part to h− 1, and adding a vertex s0 to the
set T that is complete to M and anticomplete to A∪B. This vertex guarantees property P3,
at the price of achieving only a near-optimal lower bound3 for H = Kh + I2, except for
the case h = 1, in which the lower bound is optimal under the ETH. For technical reasons
discussed in the proof of Theorem 11, in our construction we need to assume that h ≥ 4.

I Theorem 11. Let h ≥ 1 be an integer. Assuming the ETH, the (Kh + I2)-IS-Deletion
problem cannot be solved in time O∗(2o(t)) if h ≤ 3, and in time O∗(2o(th−1)) if h ≥ 4, where
t is the width of a given tree decomposition of the input graph.

Proof. We first treat the cases h ∈ {1, 2, 3} separately. As in the proof of Theorem 10, we
present polynomial-time reductions from the Vertex Cover problem. Again, we will prove
the stronger lower bound of O∗(2o(n)), which implies the lower bound O∗(2o(t)) corresponding
to the cases where h ≤ 3 claimed in the statement of the theorem.

Let first h = 1, and note that K1 + I2 = I3. We will show that, under the ETH, K3-IS-
Deletion cannot be solved in time O∗(2o(n)), which implies, by taking the complement
of the input graph, that I3-IS-Deletion cannot be solved in time O∗(2o(n)), concluding
the proof. Given an instance G of Vertex Cover, let G′ be obtained from G by adding,
for each edge {u, v} ∈ E(G), a new vertex w and two edges {u,w} and {v, w}. Note that
|V (G′)| = |V (G)|+ |E(G)|, and recall that Vertex Cover cannot be solved in time 2o(n+m)

under the ETH. It can be easily verified that the size of a minimum vertex cover of G equals
the minimum size of a vertex set of G′ intersecting all its K3’s. Hence, the K3-IS-Deletion
problem cannot be solved in time O∗(2o(n)) under the ETH.

Let h = 2. Given an instance G of Vertex Cover, let G′ be obtained from G by adding
|V (G)| isolated vertices. It can be easily verified that the size of a minimum vertex cover of
G equals the minimum size of a vertex set of G′ intersecting all the induced occurrences of
K2 + I2.

3 In the conference version of this article presented at MFCS 2020, we claimed a tight bound of O∗(2o(t
h))

for H = Kh + I2, but the proof contained a flaw that we have fixed in the full version.

16 Hitting forbidden induced subgraphs on bounded treewidth graphs

Finally, let h = 3. Given an instance G of Vertex Cover, let G′ be obtained from G by
adding |V (G)| isolated vertices and, for each edge {u, v} ∈ E(G), a new vertex w and two
edges {u,w} and {v, w}. It can be easily verified that the size of a minimum vertex cover of
G equals the minimum size of a vertex set of G′ intersecting all the induced occurrences of
K3 + I2.

Suppose henceforth that h ≥ 4, and let H = Kh′ + I2 for some h′ ≥ 4 (again, we relabel
h as h′ in H to keep the index h for the number of columns in the frame graph FH,ϕ). We
will present a reduction from the 3-Sat problem restricted to clean formulas. Given such
a formula ϕ, let FH,ϕ be the frame graph described above the statement of the theorem,
with h = h′ − 1, L = Kh′ , and T = {s0} where s0 is a new vertex. We proceed to build,
starting from FH,ϕ, an instance GH,ϕ of H-IS-Deletion with budget k = 5n−m satisfying
properties P1, P2, and P3, and then Lemma 9 will imply the claimed lower bound.

We add an edge between any two vertices wi,j , wi′,j′ ∈M with j 6= j′. That is, we turn
GH,ϕ[M] into a complete h-partite graph, where each part has size s. For each clause C
and each literal ` in C, where ` ∈ {x, x̄} for some variable x, we add the edges {aC,x,`, wi,j}
and {bC,`, wi,j} for every j ∈ [h] and every i ∈ [h] \ {fC,`(j)}. That is, in this case, the
function fC,` indicates the unique non-neighbor of aC,x,` and bC,` in the j-th column of M ,
for every j ∈ [h]. We make vertex s0 complete to M and anticomplete to A ∪ B. Finally,
for every copy of L that we have attached in GH,ϕ, let v1, . . . , vh′−2 be the vertices of L
distinct from the two attachment vertices, ordered arbitrarily. For j ∈ [h′ − 2], we make vj
complete to the j-th column of M (note that the last column of M is not used). We add
these edges for two reasons. The first one is to prevent that the non-attachment vertices of
L may play the role of the two isolated vertices in a potential occurrence of Kh′ + I2. The
second one is to prevent that the non-attachment vertices of L may participate in a clique of
size h′ in an occurrence of Kh′ + I2. Here is where the hypothesis that h′ ≥ 4 is important.
Indeed, since h′ ≥ 4, each copy of L contains at least two non-attachment vertices, and the
fact that each such vertex is adjacent to a distinct column of M implies that, together with
one of the “surviving” attachment vertices and some vertices of M , these non-attachment
vertices cannot participate in a clique of size h′ (for this, we also use that each column of M
induces an independent set). This concludes the construction of GH,ϕ, which clearly satisfies
property P1, since the vertices in the variable and clauses gadgets have neighbors only in M
and within those gadgets.

Let us now argue that GH,ϕ satisfies property P2. Assume for contradiction that there
exists a hitting set X of size at most k and a variable x such that none of the pairs
(ax,C1,`, ax,C3,`) and (ax, ax,C2,¯̀) is entirely in X. The choice of k and the construction of
the frame graph FH,ϕ imply that, in that case, there exists an entire copy of L = Kh′ in
GH,ϕ \X. Since the vertices in the variable or clause gadget where this copy of L lies do
not have neighbors in other variable or clause gadgets, in order for a copy of H not to
occur in GH,ϕ \X, necessarily X must contain all vertices in all variable and clause gadgets
except possibly two of them (the one containing L, and another one that may allow for the
occurrence of Kh′ + I1), which clearly exceeds the budget k. An analogous argument applies
if we assume that |X ∩ {bC,` | ` ∈ C}| ≤ |C| − 2 for some clause C. Thus, GH,ϕ satisfies
property P2.

Finally, let X be a set as in property P3, let H̃ be an induced occurrence of H in
GH,ϕ \ X, and let K be the subgraph of H̃ isomorphic to K ′h. The choice of X and the
discussion above about the edges between M and the copies of L imply that K cannot
contain a non-attachment vertex of a copy of L. However, K may contain a variable or clause
vertex v ∈ A ∪B together with h of its neighbors in M , one in each column. Note that, by

Ignasi Sau and Uéverton S. Souza 17

construction of GH,ϕ, |V (K)∩ (A∪B)| ≤ 1. In order to complete K into Kh′ + I2, H̃ should
contain two non-adjacent vertices in A ∪B that are anticomplete to K. The construction of
GH,ϕ forces that these two vertices must be ax,C,` ∈ A and bC′,`′ ∈ B with (C, `) = (C ′, `′).
We distinguish two cases. If |V (K) ∩ (A ∪B)| = 0, property P3 follows and we are done by
Lemma 9. Otherwise, V (K) ∩ (A ∪ B) = {v} for some vertex v. Note that, since v is not
adjacent to s0 and s0 is complete to M , s0 /∈ V (H̃). We construct from H̃ another induced
occurrence H̃ ′ of H in GH,ϕ \X by defining V (H̃ ′) := V (H̃) \ {v} ∪ {s0}. The subgraph H̃ ′
satisfies the conditions of property P3, and the theorem follows. J

Note that, in the proof of Theorem 10 for H = Kh+2 − e, all the occurrences of H in
GH,ϕ are induced, and therefore the lower bound also applies to the (Kh+2− e)-S-Deletion
problem. On the other hand, for H = Kh + I2 the proof of Theorem 11 strongly uses the
fact that H cannot occur as an induced subgraph. The following lemma explains why the
proof does not work for the subgraph version: it can be easily solved in single-exponential
time. This points out an interesting difference between both problems.

I Lemma 12. For every two integers h ≥ 1 and ` ≥ 0, the (Kh + I`)-S-Deletion problem
can be solved in time O∗(2O(t)), where t is the width of a given tree decomposition of the
input graph.

Proof. We will use the fact that, as observed in [13], Kh-S-Deletion can be solved in time
O∗(2O(t)) for every h ≥ 1. This proves the result for ` = 0, so let now ` ≥ 1. Without loss
of generality, assume that n ≥ h+ `, as otherwise the solution is zero. Given an n-vertex
input graph G together with a tree decomposition of width t, we first solve Kh-S-Deletion
on G in time O∗(2O(t)). Let X be a smallest Kh-hitting set in G and let |X| = k. Notice
that if n ≥ h + `, whenever G contains a clique of size h then it contains Kh + I` as a
subgraph as well. Thus, if k ≥ n − (h + `) + 1, then |V (G) \X| < h+ `, so we can safely
output n − (h + `) + 1 as the size of a smallest (Kh + I`)-hitting set in G. Otherwise, if
k ≤ n− (h+ `), we output k. The algorithm is correct by the fact that a (Kh + I`)-hitting
set is not smaller than a Kh-hitting set. J

By Theorem 2, the lower bound presented in Theorem 10 for H = Kh+2 − e is tight
under the ETH, and the one presented in Theorem 11 for H = Kh + I2 is almost tight. These
two graphs are very symmetric, in the sense that each of them contains two non-adjacent
vertices that are either complete or anticomplete to a “central” clique Kh (cf. Figure 2).
Unfortunately, for graphs without two such non-adjacent symmetric vertices, our framework
described above is not capable of obtaining (almost) tight lower bounds. For instance, let
H = Kh+1 + I1, that is, a clique of size h+ 1 plus an isolated vertex. Let a ∈ V (H) be any
vertex in Kh+1 and let b be the isolated vertex. The natural idea in order to obtain a tight
lower bound of O∗(2o(th)) would be, starting from the frame graph FH,ϕ described above, to
make the vertices ax,C,` ∈ A play the role of a, and vertices bC,` ∈ B that of b. Then, the
functions fC,` would indicate, for each vertex ax,C,` (resp. bC,`), its unique neighbor (resp.
unique non-neighbor) in each of the columns of M . However, this idea does not work for the
following reason: many undesired copies of H appear by interchanging the expected roles of
vertices ax,C,` and bC,`, and selecting, in each column of M , any of the s− 1 non-neighbors of
a and any of the s− 1 neighbors of b. We overcome this problem by “pledging” one column
of M and introducing a sentinel vertex s0 ∈ T that is complete to M and the vertices ax,C,`,
and anticomplete to the vertices bC,`. This vertex “fixes” the roles of vertices in A and B
at the price of losing one column of M , hence getting (by Lemma 9) a weaker lower bound
of O∗(2o(th−1)), as in Theorem 11. In the following theorem we formalize this idea and we

18 Hitting forbidden induced subgraphs on bounded treewidth graphs

extend it to a more general graph H, namely Kh+1 + vx for 0 ≤ x ≤ h− 1, defined as the
graph obtained from Kh+1 by adding a vertex v adjacent to x vertices in the clique (cf.
Figure 2). We will need an extra sentinel vertex in T for each of the neighbors of v in the
clique, losing one column of the central part M for each of them.

Kh + I2

Kh
a b

Kh+1 + vx

Kh
a b

x

Kh+2 − e

Kh
a b

Figure 2 Graphs H considered in Theorem 10, Theorem 11, and Theorem 13, respectively.

I Theorem 13. Let h ≥ 1 and 0 ≤ x ≤ h − 1 be integers and let Kh+1 + vx be the graph
obtained from Kh+1 by adding a vertex adjacent to x vertices in the clique. Then, unless the
ETH fails, the (Kh+1 + vx)-IS-Deletion problem cannot be solved in time O∗(2o(th−x−1)),
where t is the width of a given tree decomposition of the input graph.

Proof. Let H = Kh′+1 + vx for h′ ≥ 1 and 0 ≤ x ≤ h′ − 1 (again, we relabel h as h′ in H to
keep the index h for the number of columns in the frame graph FH,ϕ). We will again present
a reduction from the 3-Sat problem restricted to clean formulas. Given such a formula
ϕ, let FH,ϕ be the frame graph described above with h = h′ − x − 1, T = {s0, s1, . . . , sx},
and L = Kh′+1 if x = 0 and L = H if x ≥ 1. We proceed to build, starting from FH,ϕ, an
instance GH,ϕ of H-IS-Deletion with budget k = 5n −m satisfying properties P1, P2,
and P3.

We first add an edge between any two vertices wi,j , wi′,j′ ∈ M with j 6= j′. That is,
we turn GH,ϕ[M] into a complete h-partite graph, where each part has size s. We make
s0 ∈ T complete to A ∪M and anticomplete to B, and all vertices in T \ {s0} complete to
A ∪B ∪M . We also turn GH,ϕ[T] into a clique. For each clause C and each literal ` in C,
where ` ∈ {x, x̄} for some variable x, we add the edges {aC,x,`, wfC,`(j),j} and {bC,`, wi,j} for
every j ∈ [h] and every i ∈ [h] \ {fC,`(j)}. That is, the functions fC,` indicate the neighbors
of the vertices in A and the non-neighbors of the vertices in B.

Moreover, in the case x = 0 (that is, when H = Kh′+1 + I1, which is disconnected), for
each copy of L in GH,ϕ[B], we do the following. Let v1, . . . , vh′−1 be the vertices of L distinct
from the two attachment vertices, ordered arbitrarily. For j ∈ [h′ − 1], we make vj complete
to the j-th column of M . We add these edges to prevent that the non-attachment vertices of
L may play the role of the isolated vertex in a potential occurrence of Kh′+1 + I1.

This concludes the construction of GH,ϕ, which can be easily seen to satisfy properties P1
and P2 using arguments analogous to those used in the proof of Theorem 10. LetX ⊆ V (GH,ϕ)
be a set as in property P3, and let H̃ be an induced subgraph of GH,ϕ \X isomorphic to H.

Suppose first that x ≥ 1. Since ω(GH,ϕ[M ∪ T]) = h′, ω(GH,ϕ[(A ∪B) \X]) ≤ h′, and
ω(H) = h′ + 1, H̃ intersects both M ′ = M ∪ T and A ∪B. Moreover, since no two adjacent
vertices in (A ∪ B) \X both have neighbors in M , necessarily |V (H̃) ∩ (A ∪ B)| = 2 and
V (H̃)∩M ′ induces a clique of size h′, which implies that H̃ contains a vertex in each column
of M ′ and the whole set T . By the definition of the functions fC,` and the construction
of GH,ϕ, the two vertices in V (H̃) ∩ (A ∪ B) must be ax,C,` ∈ A and bC′,`′ ∈ B with
(C, `) = (C ′, `′), and therefore property P3 follows and we are done by Lemma 9.

Finally, when x = 0, the same arguments yield that V (H̃)∩M ′ induces a clique K of size
h′. Note that K must contain one vertex from each column of M and the whole set T . By

Ignasi Sau and Uéverton S. Souza 19

construction of GH,ϕ, the only vertices in A ∪B that can be complete to K (resp. complete
to T \ {s0} and anticomplete to K \ (T \ {s0})) are the vertices ax,C,` (resp. bC,`). Hence,
the two vertices in V (H̃) ∩ (A ∪B) must be ax,C,` ∈ A and bC′,`′ ∈ B with (C, `) = (C ′, `′),
and therefore property P3 also follows and we are done again by Lemma 9. J

It is worth mentioning that the lower bound given in Theorem 13 can be strengthened
to O∗(2o(th−x̃−1)), where x̃ = min{x, h− 1− x}, by using the following trick. If the vertex
not belonging to the clique Kh+1 (vertex b in Figure 2) has more than h−1

2 neighbors in
the clique (i.e., if x̃ = h − 1 − x), we can interchange, for vertices bC,` ∈ B, the roles of
neighbors/non-neighbors of the set T \ {s0} and the vertices in M given by the functions
fC,`. Doing this modification, an analogous proof works and we can keep the number of
columns of M to be h− x̃− 1, which is always at least h−3

2 . We omit the details.
Another direction for transferring the lower bounds of Theorem 10 and Theorem 13 to

other graphs H is to consider complete bipartite graphs.

I Theorem 14. For any integer h ≥ 2, the Kh,h-IS-Deletion problem cannot be solved in
time O∗(2o(th)) unless the ETH fails, where t is the width of a given tree decomposition of
the input graph.

Proof. Let H = Kh′,h′ for h′ ≥ 2. Given a clean 3-Sat formula ϕ, let FH,ϕ be the frame
graph described above with h = h′, T = ∅, and L = Kh,h. In this reduction we will slightly
change the budget and property P3 of the constructed instance GH,ϕ of H-IS-Deletion.

Starting from FH,ϕ, for each clause C and each literal ` in C, where ` ∈ {x, x̄} for some
variable x, we add the edges {aC,x,`, wfC,`(j),j} and {bC,`, wfC,`(j),j} for every j ∈ [h]. We
duplicate h− 2 times the subgraph GH,ϕ[A], obtaining h− 1 copies overall, and each copy
has the same neighborhood in GH,ϕ[M ∪ B] as the original one. We relabel the vertices
ax,C,` in each copy as aβx,C,` for β ∈ [h− 1], and we call again A the set V (GH,ϕ) \ (M ∪B).
This concludes the construction of GH,ϕ, which clearly satisfies properties P1 and P2, where
the latter one applies to all the pairs (aβx,C1,`

, aβx,C3,`
) and (aβx , a

β

x,C2,¯̀
) for β ∈ [h− 1]. Hence,

we update the budget accordingly to k := 5n−m+ 2(h− 2)n = (2h+ 1)n−m.
We proceed to prove the following modified version of property P3 adapted to the current

construction:

P3′: Let X ⊆ V (GH,ϕ) contain exactly one of (aβx,C1,`
, aβx,C3,`

) and (aβx , a
β

x,C2,¯̀
) for each

P3’: variable x and β ∈ [h− 1], and |C| − 1 vertices in {bC,` | ` ∈ C} for each clause C.
P3’: Then all occurrences of Kh,h in GH,ϕ \X as an induced subgraph contain a set
P3’: {aβx,C,` | β ∈ [h− 1]} ⊆ A, and exactly one vertex bC′,`′ ∈ B, with (C, `) = (C ′, `′).
P3’: Moreover, each such a vertex set gives rise to an occurrence of H in GH,ϕ \X.

Basically, property P3′ states that all the copies of the former set A behave in a similar way.
With this in mind, it is easy to see that Lemma 9 still holds if we replace, for an instance
GH,ϕ constructed in this reduction, property P3 by property P3′.

Consider a set X ⊆ V (GH,ϕ) as in property P3′, and let H̃ be an induced subgraph of
GH,ϕ \X isomorphic to Kh,h. By construction of GH,ϕ, one of the two parts of H̃ must lie
entirely inside M , as there are no edges among distinct variable or clause gadgets. Since the
other part of H̃ must lie entirely inside A ∪B, the choice of the functions fC,` implies that
the only vertex sets of size h in A ∪B that are complete to a set of h non-adjacent vertices
are of the form {aβx,C,` | β ∈ [h− 1]}∪{bC,`} for some clause C and a literal ` ∈ {x, x̄}, hence
property P3′ holds and the theorem follows. J

20 Hitting forbidden induced subgraphs on bounded treewidth graphs

Note that the proof of Theorem 14 works for both Kh,h-IS-Deletion and Kh,h-S-
Deletion, since all the occurrences of Kh,h in the constructed graph GH,ϕ are induced.
Hence, as the particular case of Theorem 14 for h = 2 we get the following corollary, which
answers a question of Mi. Pilipczuk [28] about the asymptotic complexity of C4-S-Deletion
parameterized by treewidth.

I Corollary 15. Neither C4-IS-Deletion nor C4-S-Deletion can be solved in time
O∗(2o(t2)) unless the ETH fails, where t is the width of a given tree decomposition of the
input graph.

As mentioned in [28], C4-S-Deletion can be easily solved in time O∗(2O(t2)). This fact
together with Theorem 2 imply that both lower bounds of Corollary 15 are tight.

We can obtain lower bounds for other graphs H that are “close” to a complete bipartite
graph. Indeed, note that the lower bound of Theorem 14 also applies to the graph H obtained
from Kh,h by turning one of the two parts into a clique: the same reduction works similarly,
and the only change in the construction is to turn the whole central part M into a clique.
We can also consider complete bipartite graphs Ka,b with parts of different sizes, by letting
the number of columns of the central part M be equal to max{a, b}, hence obtaining a lower
bound of O∗(2o(tmax{a,b})). Similarly, we can also turn one of the two parts of Ka,b into a
clique, and obtain the same lower bound. In particular, in this way we can obtain a lower
bound of O∗(2o(th)) for the graph H obtained from Kh+3 by removing the edges in a triangle.

5 Lower bounds for Colorful H-IS-Deletion

Our main reduction for the colored version is again strongly inspired by the corresponding
reduction of Cygan et al. [13, Theorem 2] for the non-induced version, again based on a
reduction from the 3-Sat problem restricted to clean formulas and the frame graph defined
in Section 4. The main difference with respect to their reduction is that in the non-induced
version, the graph H is required to contain a connected component that is neither a clique nor
a path, while for the induced version we only require a component that is not a clique, and
therefore we need extra arguments to deal with the case where all the connected components
of H are paths. In particular, in the proof of Theorem 16, the definition of the graphs LA
and LB where the graph H0 is a path is inspired from the proof of [13, Theorem 22].

I Theorem 16. Let H be a graph having a connected component on h vertices that is not a
clique. Then Colorful H-IS-Deletion cannot be solved in time O∗(2o(th−2)) unless the
ETH fails, where t is the width of a given tree decomposition of the input graph.

Proof. Let H0, H1, . . . ,Hp be the connected components of H, where H0 is not a clique.
Hence, |V (H0)| ≥ 3. As in Section 4, we will again reduce from the 3-Sat problem restricted
to clean formulas. Given such a formula ϕ with n variables and m clauses, we proceed to
construct an instance (GH,ϕ, σ) of Colorful H-IS-Deletion such that ϕ is satisfiable
if and only if G has a set X ⊆ V (G) of size at most k := 15n − 4m hitting all induced
σ-H-subgraphs of G, satisfying properties P1, P2, and P3 (the latter one, concerning only
colorful copies of H, of course), and then Lemma 9 will imply the claimed lower bound. The
choice of the budget of the current reduction will become clear below, and does not affect
the main properties of the reduction.

We start with the frame graph FH,ϕ defined in Section 4, with h = |V (H0)| − 2 ≥ 1,
T = ∅, and L to be specified later. Let the vertices of H0 be labeled z0, z1, . . . , zh+1 such
that {z0, zh+1} /∈ E(H0); note that this is always possible since H0 is not a clique. We

Ignasi Sau and Uéverton S. Souza 21

define the H-coloring σ of GH,ϕ starting from the vertices of FH,ϕ except for the non-
attachment vertices of the graphs L, whose coloring will be defined later together with the
description of L. Namely, for each variable x and each clause C containing ` ∈ {x, x̄}, we
define σ(ax,C,`) = σ(ax) = z0 and σ(bC,`) = zh+1. For every i ∈ [s] and j ∈ [h] we define
σ(wi,j) = zj . That is, the vertices ax,C,` (resp. bC,`) are mapped to z0 (resp. zh+1), and the
whole j-th column of M is mapped to zj for j ∈ [h]. We now add edges among the already
colored vertices as follows. Within M , the edges mimic those in H0: for any two vertices
wi,j , wi′,j′ ∈M we add the edge {wi,j , wi′,j′} in GH,ϕ if and only if {zj , zj′} ∈ E(H0). As for
the edges between A∪B and M , the functions fC,` capture the existence or non-existence of
the edges in H0 between the corresponding vertices. Namely, for each clause C and each
literal ` in C, where ` ∈ {x, x̄} for some variable x, and for every j ∈ [h], we do the following:

If {z0, zj} ∈ E(H0), then we add the edge {aC,x,`, wfC,`(j),j}. Otherwise (i.e., if {z0, zj} /∈
E(H0)), we add the edges {aC,x,`, wi,j} for every i ∈ [h] \ {fC,`(j)}.
Similarly, if {zh+1, zj} ∈ E(H0), then we add the edge {bC,`, wfC,`(j),j}. Otherwise (i.e.,
if {zh+1, zj} /∈ E(H0)), we add the edges {bC,`, wi,j} for every i ∈ [h] \ {fC,`(j)}.

We now proceed to describe the graph L together with its H-coloring. In fact, we define
different (but very similar) graphs L for the copies to be attached in A and B; we call them
LA and LB, respectively. We start with the definition of LA, and we distinguish two cases
according to H0:

Suppose first that H0 is not a path. As observed in [13], it is easy to see that every
graph that is not a path contains at least three vertices that are not separators. Let
zβ , zγ be two such non-separating vertices of H0 different from z0. We define LA as the
graph obtained from the disjoint union of three copies H1

0 , H
2
0 , H

3
0 of H0 by identifying

the vertices zβ of H1
0 and H2

0 , and the vertices zγ of H2
0 and H3

0 . See Figure 3(a) for an
example.
Suppose now that H0 is a path. Let zβ be an endvertex of H0 different from z0, and let
zγ be an internal vertex of H0 different from z0. Note that the latter choice is always
possible as |V (H0)| ≥ 3 and, if z0 were the only internal vertex of H0, then z0 would not
have a non-neighbor in H0, contradicting the choice of z0 and zh+1. We define LA as the
graph obtained from the disjoint union of three copies H1

0 , H
2
0 , H

3
0 of H0 by identifying

the vertices zβ of H1
0 and H2

0 , identifying the vertices zγ of H2
0 and H3

0 , and adding
an edge between every vertex in V (H2

0) \ {zγ} and every vertex in V (H3
0) \ {zγ}. See

Figure 3(b) for an example.

In both the above cases, when we attach a copy of LA between two vertices u, v ∈ A, we
identify u and v with the vertices z0 of the first and third copies of H0, respectively. The
H-coloring σ of LA is defined naturally, that is, each vertex gets its original color in H0.

The graph LB is defined in a completely symmetric way, just by replacing vertex z0 ∈
V (H0) in the above definition of LA by vertex zh+1 ∈ V (H0).

B Claim 17. In the graph LA (resp. LB) defined above, where u and v are the attachment
vertices, there are exactly two vertex sets X1, X2 ⊆ V (LA) (resp. V (LB)) of minimum size
hitting all induced σ-H0-subgraphs of LA (resp. LB), |X1| = |X2| = 2, X1 ∩ {u, v} = {u},
and X2 ∩ {u, v} = {v}.

Proof. By symmetry, it suffices to present the proof for LA. In order to prove the claim, it is
enough to prove that there are exactly three induced σ-H0-subgraphs in LA, corresponding
to the three copies H1

0 , H
2
0 , H

3
0 of H0. Indeed, once this is proved, there are exactly two

22 Hitting forbidden induced subgraphs on bounded treewidth graphs

z0

z2

z1 z3

z0
z3z1

z2

z1

z0

z0

z1z3
LA

H0

H1
0 H2

0 H3
0

z2

(a)

z0 z1 z2

z0
z1

z0 z2
z0

z2 z1

H3
0H2

0H1
0

H0

LA

(b)

Figure 3 Examples of the construction of LA: (a) A graph H0 that is not a path, with zβ = z3

and zγ = z2. (b) A path H0, with zβ = z2 and zγ = z1. For better visibility, the edges {z0, z0} and
{z2, z2} between H2

0 and H3
0 in LA are not shown in the figure.

minimum-sized hitting sets in LA: u together with vertex zγ ∈ V (H2
0) ∩ V (H3

0), and v

together with vertex zβ ∈ V (H1
0) ∩ V (H2

0).
So suppose for contradiction that there exists an induced σ-H0-subgraph H̃0 in LA

containing vertices in V (Hi
0) \ V (Hj

0) and V (Hj
0) \ V (Hi

0) for some distinct i, j ∈ [3]. (For
notational simplicity, we interpret an induced σ-H0-subgraph as an induced subgraph of LA
isomorphic to H0, with matching colors.) We distinguish two cases depending on H0.

If H0 is not a path, the existence of such an H̃0 in LA would imply, by the construction of
LA and since H0 is connected, that at least one of zβ and zγ is a separator in H0, contradicting
their choice.

Otherwise, if H0 is a path, first note that since the vertex zβ ∈ V (H1
0) ∩ V (H2

0) is an
endvertex of H0, H̃0 cannot contain vertices in V (H1

0) \ V (H2
0) and V (H2

0) \ V (H1
0). Hence,

necessarily H̃0 contains vertices in both V (H2
0) \ V (H3

0) and V (H3
0) \ V (H2

0). In particular,
note that zγ = V (H2

0) ∩ V (H3
0) ∈ V (H̃0). Since in LA, vertex zγ was chosen as an internal

vertex of H0, let zi and zj be the two neighbors of zγ in H̃0. Recall that in LA we added all
edges between V (H2

0) \ {zγ} and V (H3
0) \ {zγ}. We distinguish two cases:

Suppose first that both zi, zj ∈ V (H2
0) \ V (H3

0) or zi, zj ∈ V (H3
0) \ V (H2

0). Assume that
the former case holds –the other one being symmetric– and let zr be a vertex of H̃0 in
V (H3

0) \ V (H2
0), which exists by hypothesis. Then {zγ , zi, zj , zr} induces a C4 in H̃0, a

contradiction since H̃0 is a path.
Otherwise, suppose without loss of generality that zi ∈ V (H2

0) ∩ V (H3
0) and zj ∈

V (H3
0) ∩ V (H2

0). Then {zγ , zi, zj} induces a C3 in H̃0 (for example, in Figure 3(b), the
vertices {z1, z0, z2} with z1 ∈ V (H2

0) ∩ V (H3
0) induce a C3), a contradiction again. J

Note that Claim 17 justifies the budget k of our eventual instance (GH,ϕ, σ) of Colorful
H-IS-Deletion: any optimal solution X needs to contain one of the pairs (ax,C1,`, ax,C3,`)
and (ax, ax,C2,¯̀) for each variable x, and |C| − 1 vertices in {bC,` | ` ∈ C} for each clause C.
Moreover, X contains an extra internal vertex for each of the gadgets LA and LB. Taking
into account that the number of clauses in ϕ with exactly three (resp. two) literals equals
3n−2m (resp. 3m−3n), the number of gadgets LA or LB equals 4n+(3m−3n)+3(3n−2m).
Therefore, this amounts to a budget of

2n+
∑
C∈ϕ

(|C| − 1) + 4n+ (3m− 3n) + 3(3n− 2m) = 15n− 4m = k.

Finally, for every i ∈ [p], add k + 1 disjoint copies of Hi, and color their vertices according
to their colors in H. This concludes the construction of (GH,ϕ, σ), which clearly satisfies

Ignasi Sau and Uéverton S. Souza 23

property P1. Note that since for every i ∈ [p] the number of copies of Hi in GH,ϕ exceeds the
budget, hitting all colorful induced copies of H in GH,ϕ with at most k vertices is equivalent
to hitting all colorful induced copies of component H0. Therefore, Claim 17 implies that
(GH,ϕ, σ) satisfies property P2 as well.

Consider a set X ⊆ V (GH,ϕ) as in property P3, and let H̃ be an induced σ-H-subgraph
of GH,ϕ \X. Since for every j ∈ [h] the only vertices of GH,ϕ colored zj by σ are those in
the j-th column of M , we conclude that, for every j ∈ [h], H̃ contains exactly one vertex
from the j-column of M . Since H0 is connected and the only vertices in GH,ϕ colored
z0 (resp. zh+1) with neighbors in M are those of type ax,C,` (resp. bC,`), it follows that
H̃ contains exactly one vertex ax,C,` and exactly one vertex bC′,`′ . The properties of the
functions fC,`, which define the edges between A ∪B and M , and the fact that H̃ needs to
be an induced σ-H-subgraph, imply that necessarily (C, `) = (C ′, `′), and therefore (GH,ϕ, σ)
satisfies property P3 and the theorem follows by Lemma 9. J

When H is a connected graph, the lower bound of Theorem 16 together with the
algorithms given by Proposition 5 and Theorem 3 completely settle, under the ETH, the
asymptotic complexity of Colorful H-IS-Deletion parameterized by treewidth. Note
that, in particular, Theorem 16 applies when H is path, in contrast to the subgraph version
that can be solved in polynomial time [13].

Therefore, what remains is to obtain tight lower bounds when H is disconnected. In
particular, Theorem 16 cannot be applied at all when all the connected components of H
are cliques, since the machinery that we developed (inspired by Cygan et al. [13]) using
the framework graph FH,ϕ crucially needs two non-adjacent vertices in the same connected
component. Let us now focus on those graphs, sometimes called cluster graphs in the
literature.

As mentioned in Section 3, both Colorful K2-IS-Deletion and Colorful I2-IS-
Deletion can be solved in polynomial time. In our next result we show that if H is slightly
larger than these two graphs (namely, K2 or I2), then Colorful H-IS-Deletion becomes
hard. Namely, we provide a single-exponential lower bound for the following three graphs
H on three vertices that are not covered by Theorem 16: K3, I3, and K2 +K1. Note that
these lower bounds are tight by the algorithm of Theorem 3.

I Theorem 18. Let H ∈ {K3, I3,K2 + K1}. Then, unless the ETH fails, the Colorful
H-IS-Deletion problem cannot be solved in time O∗(2o(t)), where t is the width of a given
tree decomposition of the input graph.

Proof. We will prove that none of the considered problems can be solved in time 2o(n) under
the ETH, which clearly implies the statement of the theorem. For this, we reduce from the
Vertex Cover problem restricted to input graphs with maximum degree at most three. To
see that this problem cannot be solved in time 2o(n) under the ETH, where n is the number
of vertices of the input graph, one can apply the classical NP-hardness reduction [20] from
3-Sat to Vertex Cover, but restricting the input formulas to be clean. Then the result
follows from Lemma 1.

We first present a reduction for H = K3. Given an instance G of Vertex Cover, with
|V (G)| = n, |E(G)| = m, and ∆(G) ≤ 3, we proceed to construct an instance (GK3 , σ) of
H-IS-Deletion with |V (GK3)| = O(n) such that G has a vertex cover of size at most k
if and only if GK3 has a set of size at most k + m hitting all (induced) σ-K3-subgraphs.
Note that this will prove the desired result, as tw(GK3) ≤ |V (GK3)| = O(n), and a tree
decomposition of GK3 achieving that width consists of just one bag containing all vertices.

24 Hitting forbidden induced subgraphs on bounded treewidth graphs

Let V (K3) = {z1, z2, z3} and let L be the graph obtained from three disjoint copies of
K3 by identifying vertices z2 of the first and second copies, and vertices z3 of the second
and third copies. We define GK3 as the graph obtained from G be replacing each edge
{u, v} ∈ E(G) by the graph L, identifying vertex u (resp. v) with vertex z1 of the first
(resp. third) copy of K3 in L. We define the K3-coloring σ of GK3 in the natural way, that
is, each vertex of GK3 gets the color of its corresponding vertex in the gadget L. Note
that all vertices that were originally in G get color z1. Since ∆(G) ≤ 3, it follows that
|V (GK3)| = |V (G)|+ |E(G)| · (|V (L)| − 2) = |V (G)|+ 5|E(G)| ≤ 17|V (G)|/2 = O(n).

By construction of GK3 , each edge of G gives rise to exactly three (induced) σ-K3-
subgraphs in GK3 , and all σ-K3-subgraphs in GK3 are of this type. For each gadget L, there
are exactly two vertex sets of minimum size hitting its three σ-K3-subgraphs, of size two,
each of them containing exactly one of the original vertices of G. Therefore, a vertex cover of
G of size at most k can be easily transformed into a set X ⊆ V (GK3) of size at most k +m

hitting all σ-K3-subgraphs of GK3 , and vice versa.
Let now H = I3, with V (I3) = {z1, z2, z3}. Given an instance G of Vertex Cover, with

|V (G)| = n and ∆(G) ≤ 3, we start with the instance (GK3 , σ) of K3-IS-Deletion defined
above, and we construct an instance (GI3 , σ

′) of I3-IS-Deletion such that V (GI3) = V (GK3),
σ′ = σ (by associating the labels of V (K3) and V (I3)), and E(GI3) defined as the tripartite
complement of E(GK3), that is, for every pair of vertices u, v ∈ V (GI3), {u, v} ∈ E(GI3)
if and only if σ′(u) 6= σ′(v) and {u, v} /∈ E(GK3). Since |V (GI3)| = |V (GK3)| = O(n) and
there is a one-to-one correspondence between induced σ-K3-subgraphs in GK3 and induced
σ-I3-subgraphs in GI3 , the result follows.

Finally, let now H = K2 + K1, with V (H) = {z1, z2, z3} such that z1 and z2 are
adjacent. Similarly, we construct an instance (GK2+K1 , σ) of (K2 + K1)-IS-Deletion
starting from (GK3 , σ), but in this case we only complement the neighborhood of the vertices
u ∈ V (GK2+K1) with σ(u) = z3, keeping the set of vertices colored z3 an independent set.
Again, there is a one-to-one correspondence between induced σ-K3-subgraphs in GK3 and
induced σ-(K2 +K1)-subgraphs in GK2+K1 , and the proof is complete. J

The proof of Theorem 18 can be easily adapted to H = P3 by complementing the
appropriate neighborhoods, hence obtaining a lower bound of O∗(2o(t)) for Colorful P3-
IS-Deletion. Note, however, that this lower for P3 bound already follows from Theorem 16.

It is also easy to adapt the proof of Theorem 18 to larger graphs, but then the lower
bound of O∗(2o(t)) is not tight anymore. For example, for H = 2K2 (the disjoint union
of two edges), with V (H) = {z1, z2, z3, z4} such that the edges are {z1, z2} and {z3, z4}, it
suffices to take the instance (GK2+K1 , σ) of (K2 +K1)-IS-Deletion defined above and to
add a private neighbor colored z4 for every vertex of GK2+K1 colored z3. Also, for H = Kh

with h ≥ 4, in the gadget L we just replace the triangles by cliques of size h, and for H = Ih
with h ≥ 4, we take the h-partite complement of the previous instance of Kh-IS-Deletion.

6 Further research

Concerning H-IS-Deletion, the complexity gap is still quite large for most graphs H, as
our lower bounds (Theorems 10, 11, 13, and 14) only apply to graphs H that are “close” to
cliques or complete bipartite graphs. In particular, Theorem 10 provides tight bounds for
P3 or K4 − e (the diamond), but we do not know the tight function fH(t) for other small
graphs H on four vertices such as P4, K1,3 (the claw), or 2K2.

We think that for most graphs H on h vertices, the upper bound fH(t) = 2O(th−2) given
by Theorem 2 is the asymptotically tight function, and that the single-exponential algorithms

Ignasi Sau and Uéverton S. Souza 25

for cliques and independent sets are isolated exceptions. The reason is that, in contrast to the
subgraph version, when hitting induced subgraphs, edges and non-edges behave essentially
in the same way when performing dynamic programming, as one has to keep track of both
the existence and the non-existence of edges in order to construct the tables, and storing
this information seems to be unavoidable.

Concerning the algorithm for Ih-IS-Deletion running in time 2O(t) · nh (Theorem 8), it
would be interesting to find, if it exists, an FPT algorithm parameterized by both t and h
while keeping the dependency on t single-exponential, maybe even being linear in n.

As for Colorful H-IS-Deletion, in view of Theorems 3, 5, 16, and 18, only the
cases where H is a disjoint union of at least two cliques and |V (H)| ≥ 4 remain open. In
particular, we do not know the tight function when H is an independent set or a matching
with |V (H)| ≥ 4.

Acknowledgement. We would like to thank the anonymous reviewers for helpful remarks
that improved the presentation of the manuscript, in particular for pointing out a previous
flaw in the proof of Theorem 11.

References
1 Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and Dimitrios M. Thilikos. Faster

parameterized algorithms for minor containment. Theoretical Computer Science, 412(50):7018–
7028, 2011. doi:10.1016/j.tcs.2011.09.015.

2 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
951–970, 2020. doi:10.1137/1.9781611975994.57.

3 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. I. General upper bounds. SIAM Journal on Discrete Mathematics, 34(3):1623–1648,
2020. doi:10.1137/19M1287146.

4 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. II. Single-exponential algorithms. Theoretical Computer Science, 814:135–152, 2020.
doi:10.1016/j.tcs.2020.01.026.

5 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. III. Lower bounds. Journal of Computer and System Sciences, 109:56–77, 2020.
doi:10.1016/j.jcss.2019.11.002.

6 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

7 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

8 Hans L. Bodlaender, Pinar Heggernes, and Daniel Lokshtanov. Graph modification problems
(dagstuhl seminar 14071). Dagstuhl Reports, 4(2):38–59, 2014. doi:10.4230/DagRep.4.2.38.

9 Flavia Bonomo-Braberman, Julliano R. Nascimento, Fabiano de S. Oliveira, Uéverton S. Souza,
and Jayme Luiz Szwarcfiter. Linear-time algorithms for eliminating claws in graphs. In Proc.
of the 26th International Conference on Computing and Combinatorics (COCOON), volume
12273 of LNCS, pages 14–26, 2020. doi:10.1007/978-3-030-58150-3_2.

10 Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs. Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)
90043-H.

https://doi.org/10.1016/j.tcs.2011.09.015
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1137/19M1287146
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.4230/DagRep.4.2.38
https://doi.org/10.1007/978-3-030-58150-3_2
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H

26 Hitting forbidden induced subgraphs on bounded treewidth graphs

11 Christophe Crespelle, Pål Grønås, Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. CoRR, abs/2001.06867,
2013. URL: https://arxiv.org/abs/2001.06867.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/j.ic.2017.04.009.

14 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. In Proc. of the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 150–159, 2011. doi:10.1109/FOCS.2011.23.

15 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012. URL: https://dblp.org/rec/books/daglib/0030488.bib.

16 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient Exact
Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. Algorithmica, 58(3):790–
810, 2010. doi:10.1007/s00453-009-9296-1.

17 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

18 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. Journal of
the ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.

19 Fedor V. Fomin, Saket Saurabh, and Neeldhara Misra. Graph modification problems: A
modern perspective. In Proc. of the 9th International Frontiers in Algorithmics Workshop
(FAW), volume 9130 of LNCS, pages 3–6, 2015. doi:10.1007/978-3-319-19647-3_1.

20 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979. URL: https://dblp.org/rec/books/fm/
GareyJ79.bib.

21 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

22 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

23 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A Near-Optimal Planarization
Algorithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1802–1811, 2014. doi:10.1137/1.9781611973402.130.

24 Ton Kloks. Treewidth. Computations and Approximations. Springer-Verlag LNCS, 1994.
doi:10.1007/BFb0045375.

25 John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for Hereditary Properties
is NP-Complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4.

26 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

27 Marcin Pilipczuk. A tight lower bound for Vertex Planarization on graphs of bounded treewidth.
Discrete Applied Mathematics, 231:211–216, 2017. doi:10.1016/j.dam.2016.05.019.

28 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential
time: A logical approach. In Proc. of the 36th International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume 6907 of LNCS, pages 520–531, 2011.
doi:10.1007/978-3-642-22993-0_47.

29 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming for graphs on
surfaces. ACM Transactions on Algorithms, 10(2):8:1–8:26, 2014. doi:10.1145/2556952.

https://arxiv.org/abs/2001.06867
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1109/FOCS.2011.23
https://dblp.org/rec/books/daglib/0030488.bib
https://doi.org/10.1007/s00453-009-9296-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/2886094
https://doi.org/10.1007/978-3-319-19647-3_1
https://dblp.org/rec/books/fm/GareyJ79.bib
https://dblp.org/rec/books/fm/GareyJ79.bib
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/j.dam.2016.05.019
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1145/2556952

	Introduction
	Preliminaries
	Algorithms
	A general dynamic programming algorithm
	Hitting cliques and independent sets

	Lower bounds for H-IS-Deletion
	Lower bounds for Colorful H-IS-Deletion
	Further research

