
HAL Id: lirmm-03772271
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03772271v1

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A relaxation of the Directed Disjoint Paths problem: A
global congestion metric helps

Raul Lopes, Ignasi Sau

To cite this version:
Raul Lopes, Ignasi Sau. A relaxation of the Directed Disjoint Paths problem: A global congestion
metric helps. Theoretical Computer Science, 2022, 898, pp.75-91. �10.1016/j.tcs.2021.10.023�. �lirmm-
03772271�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03772271v1
https://hal.archives-ouvertes.fr

A relaxation of the Directed Disjoint Paths
problem: a global congestion metric helps
Raul Lopes
Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil, and
LIRMM, Université de Montpellier, Montpellier, France
raul.lopes@lia.ufc.br

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France
ignasi.sau@lirmm.fr

Abstract
In the Directed Disjoint Paths problem, we are given a digraph D and a set of requests
{(s1, t1), . . . , (sk, tk)}, and the task is to find a collection of pairwise vertex-disjoint paths {P1, . . . , Pk}
such that each Pi is a path from si to ti in D. This problem is NP-complete for fixed k = 2 and
W[1]-hard with parameter k in DAGs. A few positive results are known under restrictions on the
input digraph, such as being planar or having bounded directed tree-width, or under relaxations
of the problem, such as allowing for vertex congestion. Positive results are scarce, however, for
general digraphs. In this article we propose a novel global congestion metric for the problem: we
only require the paths to be “disjoint enough”, in the sense that they must behave properly not
in the whole graph, but in an unspecified part of size prescribed by a parameter. Namely, in the
Disjoint Enough Directed Paths problem, given an n-vertex digraph D, a set of k requests, and
non-negative integers d and s, the task is to find a collection of paths connecting the requests such
that at least d vertices of D occur in at most s paths of the collection. We study the parameterized
complexity of this problem for a number of choices of the parameter, including the directed tree-width
of D. Among other results, we show that the problem is W[1]-hard in DAGs with parameter d and,
on the positive side, we give an algorithm in time O(nd+2 ·kd·s) and a kernel of size d · 2k−s ·

(
k
s

)
+ 2k

in general digraphs. This latter result has consequences for the Steiner Network problem: we
show that it is FPT parameterized by the number k of terminals and p, where p = n− q and q is the
size of the solution.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Parameterized complexity, directed disjoint paths, congestion, dual paramet-
erization, kernelization, directed tree-width.

Related Version A conference version of this article appeared in the Proceedings of the 45th
International Symposium on Mathematical Foundations of Computer Science (MFCS), volume
170 of LIPIcs, pages 66:1–66:15, 2020. A full version of the paper is permanently available at
https://arxiv.org/abs/1909.13848.

Funding Raul Lopes: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Ignasi Sau: Projects DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), ELIT
(ANR-20-CE48-0008-01) and UTMA (ANR-20-CE92-0027).

1 Introduction

In the Disjoint Paths problem, we are given a graph G and a set of pairs of vertices
{(s1, t1), . . . , (sk, tk)}, the requests, and the task is to find a collection of pairwise vertex-
disjoint paths {P1, . . . , Pk} such that each Pi is a path from si to ti in G. Since this problem
is NP-complete in the directed and undirected cases, even if the input graph is planar [19,25],
algorithmic approaches usually involve approximations, parameterizations, and relaxations.
In this article, we focus on the latter two approaches and the directed case.

https://orcid.org/0000-0002-7487-3475
mailto:raul.lopes@lia.ufc.br
https://orcid.org/0000-0002-8981-9287
mailto:ignasi.sau@lirmm.fr
https://arxiv.org/abs/1909.13848

2 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

Previous work. For the undirected case, Robertson and Seymour [31] showed, in their
seminal work on graph minors, that Disjoint Paths can be solved in time f(k) · nO(1) for
some computable function f , where n is the number of vertices of G; that is, the problem is
fixed-parameter tractable (FPT) when parameterized by the number of requests.

The directed case, henceforth referred to as the Directed Disjoint Paths (DDP)
problem, turns out to be significantly harder: Fortune et al. [19] showed that the problem is
NP-complete even for fixed k = 2. In order to obtain positive results, a common approach
has been to consider restricted input digraphs. For instance, it is also shown in [19] that
DDP is solvable in time nO(k) if the input digraph is acyclic. In other words, DDP is XP in
DAGs with parameter k. For some time the question of whether this could be improved to
an FPT algorithm remained open, but a negative answer was given by Slivkins [33]: DDP
is W[1]-hard in DAGs with parameter k. Johnson et al. introduced in [20] the notion of
directed tree-width, as a measure of the distance of a digraph to being a DAG, and provided
generic conditions that, if satisfied by a given problem, yield an XP algorithm on graphs of
bounded directed tree-width. In particular, they gave an nO(k+w) algorithm for DDP on
digraphs with directed tree-width at most w. Another restriction considered in the literature
is to ask for the underlying graph of the input digraph to be planar. Under this restriction,
Schrijver [32] provided an XP algorithm for DDP with parameter k, which was improved a
long time afterwards to an FPT algorithm by Cygan et al. [13].

A natural relaxation for the Directed Disjoint Paths problem is to allow for vertex
and/or edge congestion. Namely, in the Directed Disjoint Paths with Congestion
problem (DDPC for short, or DDPC-c if we want to specify the value of the congestion), the
task is to find a collection of paths satisfying the k requests such that no vertex in the graph
occurs in more than c paths of the collection. Amiri et al. [2] considered the tractability of
this problem when restricted to DAGs. By a simple local reduction to the disjoint version,
they showed how to apply the algorithm by Fortune et al. [19] to solve DDPC in time
nO(k), and proved that, for every fixed c ≥ 1, not only DDPC is W[1]-hard with relation
to the parameter k, but also that the exponent O(k) of n is the best possible under the
Exponential Time Hypothesis. Together with the result by Johnson et al. [20], this simple
reduction presented in [2] is sufficient to show that DDPC-c admits an XP algorithm with
parameters k and w for every fixed 1 ≤ c ≤ k − 1 in digraphs with directed tree-width at
most w, and the same result also holds when we allow for congestion on the edges. In the
main algorithmic result of the article, Amiri et al. [2] proved that DDPC-c admits an XP
algorithm with parameter d in DAGs, where d = k − c.

Motivated by Thomassen’s proof [34] that DDP remains NP-complete for k = 2 when
restricted to β-strongly connected digraphs, for any integer β ≥ 1, Edwards et al. [17] recently
considered the DDPC-2 problem (this version of the problem is usually called half-integral
in the literature) and proved, among other results, that it can be solved in time nf(k) when
restricted to (36k3 + 2k)-strongly connected digraphs.

Kawarabayashi et al. [22] considered the following asymmetric version of the DDPC-4
problem: the task is to either find a set of paths satisfying the requests with congestion at
most four, or to conclude that no set of pairwise vertex-disjoint paths satisfying the requests
exists. In other words, we ask for a solution for DDPC-4 or a certificate that there is no
solution for DDP. They proved that this problem admits an XP algorithm with parameter
k in general digraphs, and claimed –without a proof– that Slivkins’ reduction [33] can be
modified to show that it is W[1]-hard in DAGs. In their celebrated proof of the Directed Grid
Theorem, Kawarabayashi and Kreutzer [23] claimed that an XP algorithm can be obtained
for the asymmetric version with congestion at most three. To the best of our knowledge, the

Raul Lopes and Ignasi Sau 3

existence of an XP algorithm in general digraphs for the DDPC-2 problem, or even for its
asymmetric version, remains open.

Summarizing, the existing positive results in the literature for parameterizations and/or
relaxations of the Directed Disjoint Paths problem in general digraphs are quite scarce.

Our approach, results, and techniques. In this article, we propose another congestion
metric for DDP. In contrast to the usual relaxations discussed above, which focus on a
local congestion metric that applies to every vertex, our approach considers, on top of local
congestion, a global congestion metric: we want to keep control of how many vertices (a
global metric) appear in “too many” paths (a local metric) of the solution. That is, we want
the paths to be such that “most” vertices of the graph do not occur in too many paths, while
allowing for any congestion in the remaining vertices. In the particular case where we do not
allow for local congestion, we want the paths to be pairwise vertex-disjoint not in the whole
graph, but in an unspecified part of size prescribed by a parameter; this is why we call such
paths “disjoint enough”.

Formally, in the Disjoint Enough Directed Paths (DEDP) problem, we are given a
set of requests {(s1, t1), . . . , (sk, tk)} in a digraph D and two non-negative integers c and s,
and the task is to find a collection of paths {P1, . . . , Pk} such that each Pi is a path from si
to ti in D and at most c vertices of D occur in more than s paths of the collection. If s = 1,
for instance, we ask for the paths to be pairwise vertex-disjoint in at least n− c vertices of
the graph, and allow for at most c vertices occurring in two or more paths. Choosing c = 0
and s = 1, DEDP is exactly the DDP problem and, choosing s = 0, DEDP is exactly the
Steiner Network problem (see [18] for its definition).

By a simple reduction from the Directed Disjoint Paths with Congestion problem,
it is easy to prove that DEDP is NP-complete for fixed k ≥ 3 and s ≥ 1, even if c is large
with respect to n, namely at most n − nα for some real value 0 < α ≤ 1, and W[1]-hard
in DAGs with parameter k. By applying the framework of Johnson et al. [20], we give an
nO(k+w) algorithm to solve DEDP in digraphs with directed tree-width at most w.

The fact that DEDP is NP-complete for fixed values of k = 2, c = 0, and s = 1 [19]
motivates us to consider the “dual” parameter d = n− c. That is, instead of bounding from
above the number of vertices of D that lie in the intersection of many paths of a collection
satisfying the given requests, we want to bound from below the number of vertices that occur
only in few paths of the collection. Formally, we want to find X ⊆ V (D) with |X| ≥ d such
that there is a collection of paths P satisfying the given requests such that every vertex
in X is in at most s paths of the collection. We first prove, from a reduction from the
Independent Set problem, that DEDP is W[1]-hard with parameter d for every fixed
s ≥ 0, even if the input graph is a DAG and all source vertices of the request set are the
same.

Our main contribution consists of positive algorithmic results for this dual parameteriza-
tion. On the one hand, we give an algorithm for DEDP running in time O(nd · kd·s). This
algorithm is not complicated, and basically performs a brute-force search over all vertex sets
of size d, followed by k connectivity tests in a digraph D′ obtained from D by an appropriate
local modification. On the other hand, our most technically involved result is a kernel for
DEDP with at most d · 2k−s ·

(
k
s

)
non-terminal vertices. This algorithm first starts by a

reduction rule that eliminates what we call congested vertices; we say that the resulting
instance is clean. We then show that if D is clean and sufficiently large, and k = s+ 1, then
the instance is positive and a solution can be found in polynomial time. This fact is used
as the base case of an iterative algorithm. Namely, we start with the original instance and
proceed through k − s+ 1 iterations. At each iteration, we choose one path from some si

4 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

to its destination ti such that a large part of the graph remains unused by any of the pairs
chosen so far (we prove that such a request always exists) and consider only the remaining
requests for the next iteration. We repeat this procedure until we arrive at an instance
where the number of requests is exactly s+ 1, and use the base case to output a solution for
it. From this solution, we extract in polynomial time a solution for the original instance,
yielding a kernel of the claimed size.

Since positive results for the Directed Disjoint Paths problem are not common in
the literature, especially in general digraphs, we consider our algorithmic results to be of
particular interest. Furthermore, the kernelization algorithm also brings good news for
the Steiner Network problem: when s = 0 Feldmann and Marx in [18] showed that
the tractability of the Steiner Network problem when parameterized by the number
of requests depends on how the requests are structured. Our result adds to the latter by
showing that the problem remains FPT if we drop this structural condition on the request
set but add d, the number of vertices occurring in at most s paths of the solution, as a
parameter. More details can be found in Section 2.

Table 1 shows a summary of our algorithmic and complexity results, which altogether
provide an accurate picture of the parameterized complexity of the DEDP problem for
distinct choices of the parameters.

k d s w Complexity
fixed ≥ 3 Ω(nα) fixed ≥ 1 — NP-complete (Theorem 3)
parameter Ω(nα) fixed ≥ 1 0 W[1]-hard (Theorem 3)

input parameter fixed ≥ 0 — W[1]-hard (Theorem 4)
parameter — — parameter XP (Theorem 16)

input parameter parameter — XP (Theorem 18)
parameter parameter parameter — FPT (Theorem 27)

Table 1 Summary of hardness and algorithmic results for distinct choices of the parameters. A
horizontal line in a cell means no restrictions for that case. In all cases, we have that c = n− d.

Organization. In Section 2 we present some preliminaries relevant to all parts of this article
and formally define the Disjoint Enough Directed Paths problem. We provide the
hardness results in Section 3 and the algorithms in Section 4. The corresponding notations
and definitions related to directed tree-width are presented in Section 4.1, where they are
used. We conclude the article in Section 5 with some open questions for further research.

2 Preliminaries and definitions

For a graph G = (V,E), directed or not, and a set X ⊆ V (G), we write G−X for the graph
resulting from the deletion of X from G and G[X] for the graph induced by X. We also
write G′ ⊆ G to say that G′ is a subgraph of G. If e is an edge of a directed or undirected
graph with endpoints u and v, we may refer to e as (u, v). If e is an edge of a digraph, we
say that e has tail u, head v and is oriented from u to v.

The in-degree deg−D(v) (resp. out-degree deg+
D(v)) of a vertex v in a digraph D is the

number of edges with head (resp. tail) v. The degree degD(v) of v in D is the sum of deg−D(v)
with deg+

D(v). The in-neighborhood N−D (v) of v is the set {u ∈ V (D) | (u, v) ∈ E(G)}, and
the out-neighborhood N+

D (v) is the set {u ∈ V (D) | (v, u) ∈ E(G)}. We say that u is an
in-neighbor of v if u ∈ N−D (v) and that u is an out-neighbor of v if u ∈ N+

D (v).
A walk in a digraph D is an alternating sequence W of vertices and edges that starts and

ends with a vertex, and such that for every edge (u, v) in the walk, vertex u (resp. vertex

Raul Lopes and Ignasi Sau 5

v) is the element right before (resp. right after) edge (u, v) in W . A walk is a path if all
the vertices in it are distinct. All paths mentioned henceforth, unless stated otherwise, are
considered to be directed.

An orientation of an undirected graph G is a digraph D obtained from G by choosing
an orientation for each edge e ∈ E(G). The undirected graph G formed by ignoring the
orientation of the edges of a digraph D is the underlying graph of D.

A digraph D is strongly connected if, for every pair of vertices u, v ∈ V (D), there is a
walk from u to v and a walk from v to u in D. We say that D is weakly connected if the
underlying graph of D is connected. A separator of D is a set S (V (D) such that D \ S
is not strongly connected. If |V (D)| ≥ k + 1 and k is the minimum size of a separator of
D, we say that D is k-strongly connected. A strong component of D is a maximal induced
subdigraph of D that is strongly connected, and a weak component of D is a maximal induced
subdigraph of D that is weakly connected.

Unless stated otherwise, n will always denote the number of vertices of the input graph.
For an integer ` ≥ 1, we denote by [`] the set {1, 2, . . . , `}. We make use of Menger’s
Theorem [26] for digraphs. Here a (u, v)-separator is a set of vertices X such that there is no
path from u to v in D −X.

I Theorem 1 (Menger’s Theorem). Let D be a digraph and u, v ∈ V (D) such that (u, v) 6∈
E(D). Then the minimum size of a (u, v)-separator equals the maximum number of pairwise
internally vertex-disjoint paths from u to v.

2.1 Parameterized complexity

We refer the reader to [12, 15] for basic background on parameterized complexity, and we
recall here only some basic definitions. A parameterized problem is a language L ⊆ Σ∗ × N.
For an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f , and a constant c such that given an instance I = (x, k), A
(called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.
For instance, the Vertex Cover problem parameterized by the size of the solution is FPT.

A parameterized problem is XP if there exists an algorithm A and two computable
functions f and g such that given an instance I = (x, k), A (called an XP algorithm) correctly
decides whether I ∈ L in time bounded by f(k) · |I|g(k). For instance, the Clique problem
parameterized by the size of the solution is in XP.

Within parameterized problems, the W-hierarchy may be seen as the parameterized
equivalent to the class NP of classical decision problems. Without entering into details
(see [12, 15] for the formal definitions), a parameterized problem being W[1]-hard can be
seen as a strong evidence that this problem is not FPT. The canonical example of W[1]-hard
problem is Clique parameterized by the size of the solution.

For an instance (x, k) of a parameterized problem Q, a kernelization algorithm is an
algorithm A that, in polynomial time, generates from (x, k) an equivalent instance (x′, k′) of
Q such that |x′|+ k′ ≤ f(k), for some computable function f : N→ N. If f(k) is bounded
from above by a polynomial of the parameter, we say that Q admits a polynomial kernel.

A polynomial time and parameter reduction is an algorithm that, given an instance (x, k)
of a parameterized problem A, runs in time f(k) · |x|O(1) and outputs an instance (x′, k′) of
a parameterized problem B such that k′ is bounded from above by a polynomial on k and
(x, k) is positive if and only if (x′, k′) is positive.

6 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

2.2 The Disjoint Enough Directed Paths problem
Before defining the problem, we define requests and satisfying collections.

I Definition 2 (Requests and satisfying collections). Let D be a digraph and P be a collection
of paths of D. A request in D is an ordered pair of vertices of D. For a request (multi)set R =
{(s1, t1), (s2, t2), . . . , (sk, tk)}, we say that the vertices {s1, s2, . . . , sk} are source vertices and
that {t1, t2, . . . , tk} are target vertices, and we refer to them as S(R) and T (R), respectively.
We say that P satisfies I if P = {P1, . . . , Pk} and Pi is a path from si to ti, for i ∈ [k].

We remark that a request multiset may contain many copies of the same pair, and that
when considering the union of two or more of those multisets, we keep all such copies in the
resulting request multiset. For instance, if R1 = {(u1, v1)} and R2 = {(u1, v1), (u2, v2)} then
R1 ∪R2 = {(u1, v1), (u1, v1), (u2, v2)}, and this indicates that a collection of paths satisfying
this request set must contain two paths from u1 to v1. To simplify the notation, we simply
refer to request multisets as request sets. The DEDP problem is defined as follows.

Disjoint Enough Directed Paths (DEDP)

Input: A digraph D, a request set R of size k, and two non-negative integers c and s.

Output: A collection of paths P satisfying R such that at most c vertices of D occur in at
least s + 1 paths of P and all other vertices of D occur in at most s paths of P.

Unless stated otherwise, we consider d = n−c for the remaining of this article. Intuitively,
c imposes an upper bound on the size of the “congested” part of the solution, while d imposes
a lower bound on the size of the “disjoint” part. For a parameterized version of DEDP, we
sometimes include the parameters before the name. For instance, we denote by (k, d)-DEDP
the Disjoint Enough Directed Paths problem with parameters k and d. We refer to
instances of DEDP as (D,R, k, c, s).

Notice that if c ≥ n or s ≥ k, the problem is trivial since every vertex of the graph is
allowed to be in all paths of a collection satisfying the requests, and thus we need only to
check for connectivity between the given pairs of vertices. Furthermore, if there is a pair
(si, ti) in the request set such that there is no path from si to ti in the input digraph D, the
instance is negative. Thus we henceforth assume that c < n, that s < k, and that there is a
path from si to ti in D for every pair (si, ti) in the set of requests.

Choosing the values of k, d, and s appropriately, we show in Table 2 that the DEDP
problem generalizes some problems in the literature.

Parameters Equivalent to Complexity

d = n, s = 1 Directed Disjoint Paths NP-complete for k = 2 [19]

d = n, s ≥ 1 Directed Disjoint Paths
with Congestion s

W[1]-hard with parameter k [2, 33]

d ≥ 1, s = 0 Steiner Network FPT with parameters k and d

Table 2 Summary of related problems.

The last line of Table 2 is of particular interest, and we focus on it in the next two
paragraphs. In the Steiner Network problem, we are given a digraph D and a request set
R and we are asked to find an induced subgraph D′ of D with minimum number of vertices
such that D′ admits a collection of paths satisfying R. For a request set R in a digraph D,

Raul Lopes and Ignasi Sau 7

let D(R) be the digraph with vertex set S(R) ∪ T (R) and edge set {(s, t) | (s, t) ∈ R}. The
complexity landscape of the Steiner Network problem when parameterized by the size of
the request set was given by Feldmann and Marx [18]. They showed that the tractability
of the problem depends on D(R). Namely, they proved that if D(R) is close to being a
caterpillar, then the Steiner network problem is FPT when parameterized by |R|, and
W[1]-hard otherwise. When parameterized by the size of the solution, Jones et al. [21]
showed that the Steiner Network problem is FPT when D(R) is a star whose edges are
all oriented from the unique source and the underlying graph of the input digraph excludes a
topological minor, and W[2]-hard on graphs of degeneracy two [21].

Our algorithmic results for DEDP for the particular case s = 0 yield an FPT algorithm
for another parameterized variant of the Steiner Network problem. In this case, we want
to decide whether D admits a large set of vertices whose removal does not disconnect any
pair of requests. That is, we want to find a set X ⊆ V (D) with |X| ≥ d such that D −X
contains a collection of paths satisfying R. In Theorem 27 we give an FPT algorithm (in
fact, a kernel) for this problem with parameters |R| and d. We remark that this tractability
does not depend on D(R).

3 Hardness results for DEDP

In this section we provide hardness results for the DEDP problem. Namely, we first provide
in Theorem 3 a simple reduction from Disjoint Paths with Congestion, implying NP-
completeness for fixed values of k, c, d and W[1]-hardness in DAGs with parameter k. We
then prove in Theorem 4 that DEDP is W[1]-hard in DAGs with parameter d.

As mentioned in [21], the Steiner Network problem is W[2]-hard when parameterized
by the size of the solution (as a consequence of the results of [27]). Hence (c)-DEDP is
W[2]-hard for fixed s = 0. As discussed in the introduction, the Directed Disjoint Paths
problem is NP-complete for fixed k = 2 [19] and W[1]-hard with parameter k in DAGs [33].
Allowing for vertex congestion does not improve the tractability of the problem: Disjoint
Paths with Congestion parameterized by number of requests is also W[1]-hard in DAGs
for every fixed congestion s ≥ 1, as observed in [2]. When c = 0 and s ≥ 1, DEDP is
equivalent to the Directed Disjoint Paths with Congestion problem and thus the
aforementioned bounds apply to it as well. In the following theorem we complete this picture
by showing that DEDP is NP-complete for fixed k ≥ 3 and s ≥ 1, even if c is quite large
with respect to n (note that if c = n all instances are trivially positive), namely for c as large
as n− nα with α being any fixed real number such that 0 < α ≤ 1. The same reduction also
allows to prove W[1]-hardness in DAGs with parameter k. The idea is, given the instance
of DDPC with input digraph D, build an instance of DEDP where the “disjoint” part
corresponds to the original instance, and the “congested” part consists of c new vertices that
are necessarily used by s+ 1 paths of any solution. In this process, we generate an instance
of DEDP in a digraph D′ with |V (D′)| = n = d+ c and d = |V (D)|. This is why we restrict
the value of d to be of the form nα, but not smaller: if we ask d to be “too small”, d = logn
for example, our procedure would generate an instance of DEDP such that the size of the
“disjoint part” d satisfies d = log(d+ c) which in turn implies that the size of this instance
would be exponential on the size of the original instance of DDPC.

Following, we refer to instances of DDPC with input graph D, request set R, k = |R|,
and congestion s as (D,R, k, s).

I Theorem 3. Let 0 < α ≤ 1, d : N→ N with d(n) = Ω(nα), and c(n) = n− d(n). Then,
for c = c(n) and d = d(n),

8 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

(i) DEDP is NP-complete for every fixed k ≥ 3 and s ≥ 1 such that k > s; and
(ii) (k)-DEDP is W[1]-hard in DAGs for every fixed s ≥ 1.

Proof. We prove items (i) and (ii) at the same time by a simple reduction from the Directed
Disjoint Paths with Congestion (DDPC) problem. Given an instance (D,R, k, s) of
DDPC, we output an equivalent instance (D′, R′, k+s, c, s) of DEDP that does not generate
any new cycles and such that the size d(|V (D′)|) of the disjoint part of the new instance is
equal to |V (D)|, with d(n) as in the statement of the theorem. Since DDP, which is exactly
the DDPC problem with congestion one, is NP-complete for fixed k ≥ 2 [19] and k-DDPC is
W[1]-hard in DAGs [2], our reduction implies that DEDP with c = n− d(n) is NP-complete
for every fixed k ≥ 3 and s ≥ 1 such that k > s, and W[1]-hard in DAGs with parameter k
and any fixed s ≥ 1. We can assume that c ≥ 1 since DEDP is exactly DDPC when c = 0
and s ≥ 1 (as discussed previously).

Formally, let (D,R, k, s) be an instance of DDPC with R = {(s1, t1), (s2, t2), . . . , (sk, tk)}
and choose i ∈ [k] arbitrarily. We construct an instance of DEDP as follows. Let D′ be a
digraph constructed by adding to D a path with vertex set {v1, . . . , vc} and an edge from ti
to v1. Then, add to R′ all pairs in (R \ {si, ti}), the pair (si, vc), and s copies of the pair
(v1, vc). Figure 1 illustrates this construction. It is easy to verify that (D,R, k, s) is positive

V (D)

s2

s1

t2

t1

vc
v1

{v1, . . . , vc}

Figure 1 Example of the construction from Theorem 3 with k = 2, s = 1, and i = 2. Source and
target vertices are represented by square vertices in the figure.

if and only if the instance (D′, R′, k+ s, c, s) of DEDP is positive since every solution to the
second contains s+ 1 copies of the path from v1 to vc (one being to satisfy the pair (si, vc)),
every vertex in V (D) can occur in at most s paths of any solution.

Since D′ is formed by adding a path on c vertices to a copy of D, it is constructed in
time O(|V (D)| + |E(D)| + c). Choosing c to satisfy d(|V (D)′|) = |V (D)|, the hypothesis
that d(|V (D)′|) = Ω(|V (D)′|α) easily implies that c = O(|V (D)|1/α) which in turn implies
that the procedure ends in polynomial time. J

Next, we show that (d)-DEDP is W[1]-hard, even when the input graph is acyclic and all
source vertices of the request set are the same. The reduction is from the Independent
Set problem parameterized by the size of the solution, which is W[1]-hard [12,15].

I Theorem 4. The DEDP problem is W[1]-hard with parameter d for every fixed s ≥ 0,
even when the input graph is acyclic and all source vertices in the request set are the same.

Proof. Let (G, d) be an instance of the Independent Set problem, in which we want to
decide whether the (undirected) graph G contains an independent set of size at least d, and
s be a non-negative integer. Let V E be the set {ve | e ∈ E(G)} and D a directed graph with
vertex set V (G) ∪ {r} ∪ V E . Add to D the following edges:
• for every v ∈ V (G), add the edge (r, v); and

Raul Lopes and Ignasi Sau 9

• for every edge e ∈ E(G) with endpoints u and w, add the edges (u, ve) and (w, ve).
Finally, for every ve ∈ V E , add 2s+ 1 copies of the pair (r, ve) to R. Figure 2 illustrates this
construction.

u w

r

ve

Figure 2 Example of the construction from Theorem 4 with s = 1 and e = (u, w). A dashed line
indicates a request in R.

Notice that each vertex ve of D associated with an edge E of D has out-degree zero in D
and r has in-degree zero. Moreover, every edge of D has as extremity either r or a vertex of
the form ve. Thus D is a acyclic, as desired. Furthermore |S(R)| = 1 since all of its elements
are of the form (r, ve), for e ∈ E(G). We now show that (G, d) is positive if and only if
(D,R, k, c, s) is positive, where k = |R| = m · (2s+ 1).

For the necessity, let X be an independent set of size d in G. Start with a collection
P = ∅. We classify the edges of G into two sets: the set E1 containing all edges with both
endpoints in V (G)−X, and the set E2 containing all edges with exactly one endpoint in X.
Now, for each e ∈ E1, choose arbitrarily one endpoint u of e and add to P 2s+ 1 copies of
the path in D from r to ve using u. For each e ∈ E2 with e = (u,w) and w 6∈ X, add to P
2s+ 1 copies of the path in D from r to ve using w. Since X is an independent set, no vertex
in X occurs in any path of P, and since E(G) = E1 ∪ E2, P satisfies R and the necessity
follows as c = n− d.

Let P be a solution for (D,R, k, c, s) and X ⊆ V (D) be a set of vertices with |X| = d

and such that each vertex of X occurs in at most s paths of P . Such choice is possible since
d = n− c. For contradiction, assume that X is not an independent set in G. Then there is
an edge e ∈ E(G) with e = (u,w) and u,w ∈ X, and 2s+ 1 copies of the request (r, ve) in
R. Thus each path satisfying one of those requests uses u or w, but not both, and therefore
either u or w occurs in at least s+ 1 paths of P , a contradiction. We conclude that X is an
independent set in G and the sufficiency follows. J

4 Algorithms for DEDP

In this section we focus on algorithmic results for DEDP. In Theorem 3 we showed that
DEDP is NP-complete for every fixed k ≥ 3 and a large range of values of c, and showed
that considering only d as a parameter is still not enough to improve the tractability of
the problem: Theorem 4 states that (d)-DEDP is W[1]-hard in DAGs even if all requests
share the same source. Thus DEDP is as hard as the Directed Disjoint Paths problem
when k is not a parameter. Here we show that, similarly to the latter, DEDP admits an XP
algorithm when parameterized by the number of requests and the directed tree-width of the
input digraph. Then, we show how the tractability of DEDP improves when we consider
stronger parameterizations including d. Namely, we show that DEDP is XP with parameters
d and s (cf. Theorem 18), and FPT with parameters k and d (hence s as well, since we may
assume that k > s as discussed in Section 2.2; cf. Theorem 27). It is worth mentioning that
this kind of dual parameterization (remember that d = n− c) has proved useful in order to
improve the tractability of several notoriously hard problems (cf. for instance [2, 3, 5, 9, 16]).

10 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

In Section 4.1 we formally define directed tree-width and arboreal decompositions, as
provided by Johnson et al. [20], and apply the ideas and results they used to show an XP
algorithm for the Directed Disjoint Paths problem parameterized by the number of
requests in digraphs of bounded directed tree-width to show that a similar result holds for
DEDP. In Section 4.2 we show our algorithms for parameterizations of DEDP including d
as a parameter.

4.1 An XP algorithm with parameters k and dtw(D)
Given the success obtained in the design of efficient algorithms in undirected graphs of
bounded tree-width (cf. [10,11], for example), and the enormous success achieved by the Grid
Theorem [30] and by the Bidimensionality framework [14], it is no surprise that there was
interest in finding an analogous definition for digraphs. As the tree-width of an undirected
graph measures, informally, its distance to being a tree, the directed tree-width of a digraph,
as defined by Johnson et al. [20], measures its distance to being a DAG, and an arboreal
decomposition of a digraph exposes a (strong) connectivity measure of the original graph.
The authors conjectured the existence of a grid-like theorem for their width measure [20].
In a recent breakthrough, Kawarabayashi and Kreutzer [23] proved this conjecture to be
true: they showed that there is a computable function g such that every digraph of directed
tree-width at least g(k) has a cylindrical grid as a butterfly minor1. Recently Campos et al. [7]
improved the running time of the algorithm that follows from the proof of Kawarabayashi
and Kreutzer [23], by locally modifying some steps of the original proof.

The technical contents of this section are mostly taken from [20]. By an arborescence
T , we mean an orientation of a tree with root r0 in such a way that all edges are pointing
away from r0. If a vertex v of T has out-degree zero, we say that v is a leaf of T . We now
define guarded sets and arboreal decompositions of directed graphs. From here on, we refer
to oriented edges only, unless stated otherwise, and D will always stand for a directed graph.
All the considered directed graphs mentioned may contain directed cycles of length two.

I Definition 5 (Z-guarded sets). Let D be a digraph, let Z ⊆ V (D), and S ⊆ V (D) \ Z. We
say that S is Z-guarded if there is no directed walk in D−Z with first and last vertices in S
that uses a vertex of D − (Z ∪ S). For an integer w ≥ 0, we say that S is w-guarded if S is
Z-guarded for some set Z with |Z| ≤ w.

See Figure 3 for an illustration of a Z-guarded set. If a set S is Z-guarded, we may also
say that Z is a guard for S. We remark that in [20, 23], the authors use the terminology
Z-normal sets instead of Z-guarded sets. In this article, we adopt the terminology used, for
instance, in [4].

Let T be an arborescence, r ∈ V (T), e ∈ E(T), and r′ be the head of e. We say that
r > e if there is a path from r′ to r in T (notice that this definition implies that r′ > e). We
say that e ∼ r if r is the head or the tail of e. To define the directed tree-width of directed
graphs, we first need to introduce arboreal decompositions.

I Definition 6 (Arboreal decomposition and directed tree-width). An arboreal decomposition
β of a digraph D is a triple (T,X ,W) where T is an arborescence, X = {Xe : e ∈ E(T)},
W = {Wr : r ∈ V (T)}, and X ,W are collections of sets of vertices of D (called bags) such
that

1 The full version of [23], available at https://arxiv.org/abs/1411.5681, contains all these definitions.

Raul Lopes and Ignasi Sau 11

V (D) \ (Z ∪ S)

S

Z

u v

Figure 3 A Z-guarded set S. The dashed line indicates that there cannot be a walk from u to v

in V (D) \ (Z ∪ S).

(i) W is a partition of V (D) into non-empty sets, and
(ii) if e ∈ E(T), then

⋃
{Wr : r ∈ V (T) and r > e} is Xe-guarded.

We say that r is a leaf of (T,X ,W) if r has out-degree zero in T .
For a vertex r ∈ V (T), we denote by width(r) the size of the set Wr ∪ (

⋃
e∼rXe). The

width of (T,X ,W) is the least integer k such that, for all r ∈ V (T), width(r) ≤ k + 1.
The directed tree-width of D, denoted by dtw(D), is the least integer k such that D has an
arboreal decomposition of width k.

The left hand side of Figure 4 contains an example of a digraph D, while the right hand side
shows an arboreal decomposition for it. In the illustration of the arboreal decomposition,
squares are guards Xe and circles are bags of vertices Wr. For example, consider the edge
e ∈ E(T) with Xe = {b, c} from the bag W1 to the bag W2. Then

⋃
{Wr : r ∈ V (T) and r >

e} = V (D) \ {a} and, by item (ii) described above, this set must be {b, c}-guarded since
Xe = {b, c}. In other words, there cannot be a walk in D \{b, c} starting in V (D)\{a} going
to {a} and then back. This is true in D since every path reaching {a} from the remaining of
the graph must do so through vertices b or c. The reader is encouraged to verify the same
properties for the other guards in the decomposition.

a

a

b

b
c

c

d
d

e
e

f

f
g
g

aW1

b,c

W2
d,e

W3

f,g

W4

b, c

b c

Figure 4 A digraph D and an arboreal decomposition of D of width two. A bidirectional edge is
used to represent a pair of edges in both directions.

We remark that DAGs have directed tree-width zero. As shown in [20], it is not hard to
see that, if D is a digraph constructed by replacing every edge of an undirected graph G by
two edges in opposite directions, then the directed tree-width of D is equal to the tree-width
of G. This observation also implies that dtw(D) is at most the tree-width of its underlying
graph. Further intuitions of the similarities between the undirected and the directed cases
are given by Reed [29]. It is worth noting that, in contrast to the undirected case, the class
of digraphs of bounded directed tree-width is not closed under butterfly contractions [1].

12 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

The algorithm we present in this section consists of dynamic programming along an
arboreal decomposition of the input digraph. Following the notation used by Johnson et
al. [20], we refer to the information we want to compute at every step of the algorithm as an
itinerary. We provide a formal definition for an itinerary for DEDP later. We recall that a
set of vertices S is w-guarded if S is Z-guarded for some Z with |Z| ≤ w (cf. Definition 5).

Johnson et al. [20] provided two conditions that, if satisfied by a given problem, are
sufficient to provide an XP algorithm for it in digraphs with bounded directed tree-width.
More precisely, for a digraph D with dtw(D) = w, they ask that there is a real number α
depending on w (and possibly some parameters of the problem, if any) and two algorithms
satisfying the following conditions.

I Condition 7 (Johnson et al. [20]). Let A,B be two disjoint subsets of V (D) such that there
are no edges in D with head in A and tail in B. Then an itinerary for A∪B can be computed
from an itinerary for A and an itinerary for B in time O(nα).

I Condition 8 (Johnson et al. [20]). Let A,B be two disjoint subsets of V (D) such that A is
w-guarded and |B| ≤ w. Then an itinerary for A ∪B can be computed from an itinerary for
A and an itinerary for B in time O(nα).

Using this notation, the following theorem says how to compute an itinerary for V (D).

I Theorem 9 (Johnson et al. [20]). Provided that Conditions 7 and 8 hold, there is an
algorithm running in time O(nα+1) that receives as input a digraph D and an arboreal
decomposition for D with width at most w and outputs an itinerary for V (D).

In [20] an XP algorithm for the Directed Disjoint Paths problem in digraphs of
bounded directed tree-width is given as an example of application of the aforementioned
tools, and a similar approach is claimed to work for the Hamilton Path, Hamilton Path
With Prescribed Ends, Even Cycle Through a Specified Vertex problems, and
others. We follow their ideas to provide an XP algorithm for (k,w)-DEDP, where w is
the directed tree-width of the input digraph. The main idea, formalized by the following
definition and lemma, is that the number of weak components in the digraph formed by
the union of the paths in a collection P satisfying the request set is bounded by a function
depending on k and w only. Thus we can guess how the paths in P cross a set of vertices A
that is w-guarded and use an arboreal decomposition of the input digraph to propagate this
information in a dynamic programming scheme. We use the following definition.

I Definition 10. Let D be a digraph and P be a collection of paths in D. We denote by
D(P) the digraph formed by the union of all paths in P.

I Definition 11 (Limited collections). Let R be a request set in a digraph D with |R| = k

and P be a collection of paths satisfying R. We say that P is (k,w, S)-limited, for some
S ⊆ V (D), if D(P) ⊆ D[S] and for every w-guarded set S′ ⊆ S, the digraph induced by
V (D(P)) ∩ S′ has at most (w + 1) · k weak components.

The following lemma is inspired by [20, Lemma 4.5] and is key to the algorithm.

I Lemma 12. Let R be a request set of size k in a digraph D and w be an integer. Then
every collection of paths P satisfying R is (k,w, S)-limited for every S ⊆ V (D) containing
all paths in P.

Proof. Let k = |R| and S be as in the statement of the lemma and S′ be a w-guarded subset
of S. By the definition of w-guarded sets, there is a set Z ⊆ V (D) with |Z| ≤ w such that

Raul Lopes and Ignasi Sau 13

S′ is Z-guarded. For i ∈ [k], let Qi be the collection of paths formed by the subpaths of Pi
intersecting S′. Thus, D(Qi) consists of the union of subpaths of Pi. Let qi be the number of
weak components of D(Qi). Since S′ is Z-guarded, each subpath of Pi linking two distinct
weak components of D(Qi) must intersect Z. Thus, |V (Pi) ∩ Z| ≥ qi − 1 and qi ≤ w + 1
since a vertex of Z can be in all paths of P. We conclude that

∑
i∈[k] qi ≤ (w + 1) · k, as

desired. J

We now formally define an itinerary for DEDP. From this point forward, we say that a
request set R in a digraph D is contained in A if every vertex occurring in R is contained in
A.

I Definition 13 (Itinerary). Let Γ be an instance of DEDP with Γ = (D,R, k, c, s), A ⊆ V (D),
and RA be the set of all request sets on D which are contained in A. For an integer w, a
(Γ, w)-itinerary for A is a function fA : RA ×N→ {0, 1} such that fA(R′, c′) = 1 if and only
if
(i) k′ ≤ (w + 1) · k, for k′ = |R′|;
(ii) c′ ≤ c; and
(iii) the instance (D[A], R′, k′, c′, s) of DEDP is positive.

With this notation, an instance (D,R, k, c, s) is positive if and only if fV (D)(R, c′) = 1
for some c′ ≤ c. We now provide algorithms satisfying Conditions 7 and 8 for the given
definition of an itinerary for DEDP. By Lemma 12, we need to consider only request sets of
size at most (w + 1) · k whenever the input digraph has directed tree-width at most w in the
following lemmas. We follow the proofs given by Johnson et al. [20], adapting them to our
case. For every t ∈ [n], the authors show how to compute a solution containing at most t
vertices for a given instance of the Directed Disjoint Paths problem, if one exists, or
to decide that no such solution exists. We drop this demand in our algorithm, and instead
include the restriction on the congestion c.

I Lemma 14. Let Γ be an instance of DEDP with Γ = (D,R, k, c, s) and A,B be disjoint
subsets of V (D) such that there are no edges in D with head in A and tail in B. Then a (Γ, w)-
itinerary for A ∪B can be computed from itineraries for A and B in time O(n4(w+1)·k+3).

Proof. Let fA and fB be (Γ, w)-itineraries for A and B, respectively. Given a request set
L contained in A ∪ B, with L = {(s1, t1), . . . , (s`, t`)} and ` ≤ (w + 1) · k, and an integer
c′ ∈ [c], we show how to correctly define fA∪B(L, c′) by looking at fA, fB , and the edges in
D from A to B.

If L is contained in A we set fA∪B(L, c′) = fA(L, c′) as there are no edges from B to A
in D, and set fA∪B(L, c′) = fB(L, c′) if L is contained in B. If there is a pair (s, t) ∈ L such
that s ∈ B and t ∈ A, we set fA∪B(L, c′) = 0. Assume now that no such pairs exist in L
and that L is not contained in A nor in B.

Define LA = LB = ∅. For i ∈ [`], do the following:
1. If si ∈ A and ti ∈ A, define sAi = si, tAi = ti and include the pair (sAi , tAi) in LA.
2. If si ∈ B and ti ∈ B, define sBi = si, tBi = ti and include the pair (sBi , tBi) in LB .
3. If si ∈ A and ti ∈ B, define sAi = si, tBi = ti, choose tAi ∈ A and sBi ∈ B arbitrarily in

such way that there is an edge from tAi to sBi in D, include (sAi , tAi) in LA and (sBi , tBi)
in LB .

Figure 5 illustrates this construction. Now, for c′ ∈ [c], if fA(LA, c1) = fB(LB , c2) = 1
for some c1, c2 with c1 + c2 ≤ c′, then we set fA∪B(L, c′) = 1. Otherwise, we repeat the
procedure used to construct LA and LB with a different choice for tAi and/or sBi in the

14 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

sA
1 tA

1

sA
2 tA

2 sB
2 tB

2

sB
3 tB

3

A B

Figure 5 Example of the construction from Lemma 14.

third step. If all possible choices of LA, LB , c1, and c2 have been considered this way, we set
fA∪B(L, c′) = 0. We now show that this definition of fA∪B(L, c′) is correct.

Consider the instance (D[A∪B], L, `, c′, s) of DEDP, let k1 = |LA|, and k2 = |LB |. If it is
positive, then for some choice of LA, LB , c1, and c2, there are collections of paths PA and PB
and integers c1 and c2 such that PA and PB are solutions for the instances (D[A], LA, k1, c1, s)
and (D[B], LB , k2, c2, s) of DEDP, respectively. Thus, fA(LA, c1) = fB(LB , c2) = 1 since
LA and LB are at most as large as L. Conversely, if the above equation holds for some choice
of LA, LB , c1, and c2 such that c1 + c2 ≤ c′, we can construct a solution for the instance on
D[A ∪B] by considering the union of a solution for (D[A], LA, k1, c1, s) with a solution for
(D[B], LB , k2, c2, s), together with edges from targets of LA to sources of LB which where
considered in step 3 described above. We conclude that the instance (D[A ∪B], L, `, c′, s) is
positive if and only if there are integers c1, c2 and request sets LA, LB such that c1 + c2 ≤ c
and

fA(LA, c1) = fB(LB , c2) = 1.

By definition, to compute a (Γ, w)-itinerary for A ∪B we need to consider every request
set of size at most (w + 1) · k contained A ∪B. Thus there are n2(w+1)·k choices of L. By
construction, there are at most n2(w+1·k) choices for LA and LB in total since we need to
choose only the vertices tAi and sBi in step 3 of the construction of those requests sets. Finally,
since c′ ∈ [c] and c < n, the bound on the running time follows. J

I Lemma 15. Let Γ be an instance of DEDP with Γ = (D,R, k, c, s) and A,B ⊆ V (D) such
that A is w-guarded and |B| ≤ w. Then a (Γ, w)-itinerary for A ∪B can be computed from
(Γ, w)-itineraries for A and B in time O(n4(w+1)·k+2).

Proof. Let fA be a (Γ, w)-itinerary for A, L be a request set contained in A ∪ B with
L = {(s1, t1), . . . , (s`, t`)} and ` ≤ (w + 1) · k, and Γc′ be the instance (D[A ∪B], L, `, c′, s)
of DEDP, for c′ ∈ [c].

For each pair (s, t) ∈ L, a path from s to t in D[A ∪ B] in a solution for Γc′ may be
entirely contained in A, entirely contained in B, or it may intersect both A and B. We can
test if there is a solution for Γc′ whose paths are all contained in A by verifying the value
of fA(L, c′), and in time O(2w·`) we can test if there is a solution for Γc′ that is entirely
contained in B, since |B| ≤ w. We now consider the case where all solutions for Γc′ contain
a path intersecting both A and B.

Suppose that P is a path from s to t in a solution P for Γc′ . Let PA be the set of subpaths
of P which are contained in A, with PA = {PA1 , . . . , PAa }, and, for i ∈ [a], let ui and vi be
the first and last vertices occurring in PAi , respectively. Furthermore, let PB be the collection
of subpaths of P contained in B ∪ (

⋃
i∈[a]{ui, vi}). Then PB is a collection of disjoint paths

Raul Lopes and Ignasi Sau 15

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

s t

Figure 6 Collections PA and PB . A continuous line represents a piece of P contained in A and a
dashed line represents a piece of P contained in B.

satisfying the request set {(v1, u2), . . . , (va−1, ua)}, together with (s, u1) if s ∈ B and (va, t)
if t ∈ B, such that each path of PB has its extremities in B ∪ {u1, v1, . . . , ua, va} and all
internal vertices in B. Figure 6 illustrates this case.

The number of such collections is a function depending on a and w only and, by Lemma 12
and our assumption that A is w-guarded, we can assume that a ≤ (w + 1) · k. We show
how we can test whether there is a solution for Γc′ using an itinerary for A and, for each
(s, t) ∈ L, searching for a collection PB as described above. Intuitively, we want to guess how
the paths in a solution for Γc′ intersect A and how those pieces can be connected through B.

For i ∈ [`], let Li = {(ui1, vi1), . . . , (ui`i
, vi`i

)} and LA = L1 ∪ L2 ∪ · · · ∪ L` (keeping each
copy of duplicated entries) such that
1. ui1 = si and vi`i

= ti, for i ∈ [`];
2. all vertices occuring in Li are in A except possibly ui1 and vi`i

(which may occur in A∪B);
and

3. |LA| ≤ (w + 1) · k.

By Lemma 12, we only need to consider request sets of size at most (w + 1) · k in A ∪B
since every solution for Γ has at most (w + 1) · k weak components in A. Let B+ be the set
formed by the union of B with all vertices occurring in LA and in

LB =
⋃
i∈[`]

{(vij , uij+1) | j ∈ [`i − 1]}.

That is, for each pair (uij , vij) ∈ LA that we want to satisfy in A, we want to link this subpath
in a (possible) solution for Γc′ to the next one through a path in B+ satisfying the pair
(vij , uij+1) ∈ LB. We claim that there is a solution for Γc′ if and only if, for some choice
of LA, c1, and LB, we have fA(LA, c1) = 1 and a collection of paths PB satisfying LB in
D[B+] such that
(a) every path of PB starts and ends in B+ −B and has all of its internal vertices in B; and
(b) at most c− c1 vertices of B occur in more than s paths of PB .

For the necessity, we can choose LA and LB as described above in this proof. For the
sufficiency, let `A =

∑
i∈[`] `i and PA be a solution for the instance (D[A], LA, `A, c1, s) of

DEDP, with PA = {P1, . . . , P`A
}. Now, since the paths in this collection are not necessarily

disjoint, we are guaranteed to find only a directed walk from si to ti for each pair (si, ti) ∈ L
by linking (through the paths in B+) the endpoints of the paths in the collection satisfying
Li, with i ∈ [`]. However, every such directed walk contains a path from si to ti whose set of
vertices is contained in the set of vertices of the walk. Thus by following those directed walks
and choosing the paths appropriately, we can construct a solution for Γc′ , since shortening
the walks can only decrease the number of vertices occurring in s+ 1 or more paths of the
collection.

16 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

The number of collections PB for which (a) and (b) hold is O(2w·`) and thus depending
on k and w only, since ` ≤ (w + 1) · k. Since |A| ≤ n, c ≤ n, and the number of itineraries
contained in A ∪B is at most n4(w+1)·k, the bound on the running time follows. J

Finally, we obtain the XP algorithm combining Lemmas 14 and 15 together with The-
orem 9.

I Theorem 16. The DEDP problem is solvable in time O(n4(w+1)·k+3) in digraphs of
directed tree-width at most w.

4.2 Algorithms for the dual parameterization
We now show our algorithmic results for stronger parameterizations of DEDP including d
as a parameter. The following definition is used in the description of the algorithms of this
section.

I Definition 17. Let D be a digraph, R be a request set with R = {(s1, t1), . . . , (sk, tk)}, and
s be an integer. We say that a set X ⊆ V (D) is s-viable for R if there is a collection of
paths P satisfying R such that each vertex of X occurs in at most s paths of P. We also say
that P is certifying X.

Thus an instance (D,R, k, c, s) of DEDP is positive if and only if D contains an s-viable
set X with |X| ≥ d. In other words, we want to find a set of vertices X of size at least d
such that there is a collection of paths P satisfying R that is “well-behaved” inside of X;
that is, the paths of P may intersect freely outside of X, but each vertex of X must be in at
most s paths of P. When s = 1, for instance, instead of asking for the paths to intersect
only inside a small set of vertices (size at most c), we ask for them to be disjoint inside a
large set of vertices (size at least d). Since we now consider d as a parameter instead of c,
from this point onwards we may refer to instances of DEDP as (D,R, k, d, s).

The following definition is needed in the next proof. For two positive integers a and b
with a ≥ b, the Stirling number of the second kind [6], denoted by Stirling(a, b), counts the
number of ways to partition a set of a objects into b non-empty subsets, and is bounded from
above by 1

2
(
a
b

)
· ba−b.

I Theorem 18. There is an algorithm running in time O(nd+2 · kd·s) for the Disjoint
Enough Directed Paths problem.

Proof. Let D be a graph on n vertices and (D,R, k, d, s) be an instance of DEDP. Notice
that if X is s-viable for R, then any proper subset of X is s-viable for R as well. Therefore,
we can restrict our attention to sets of size exactly d.

If s = 0, it is sufficient to test whether there is a d-sized set X ⊆ V (D) such that there is
a collection of paths satisfying R in D −X, and this can be done in time O(nd · k · n2).

Let now s = 1, and R = {(s1, t1), . . . , (sk, tk)}. We claim that a set X ⊆ V (D) is 1-viable
for R if and only if there is a partition X of X into sets X1, . . . , Xk such that X \Xi is not
an (si, ti)-separator, for i ∈ [k].

Let X be as stated in the claim. For each i ∈ [k], let Pi be a path from si to ti in
D − (X \ Xi). Now, {P1, . . . , Pk} is a collection satisfying R and no pair of paths in it
intersect inside X. Thus X is 1-viable for R as desired. For the necessity, since X is 1-viable
for R, there is a collection of paths P1, . . . , Pk satisfying R such that V (Pi)∩ V (Pj)∩X = ∅
for all i, j ∈ [k] with i 6= j. Thus we choose X = {X1, . . . , Xk} with Xi = V (Pi) ∩ X for
i ∈ [k − 1] and Xk = X \ (X1, . . . , Xk−1) and the claim follows.

Raul Lopes and Ignasi Sau 17

Assume now that X ⊆ V (D) with |X| = d. By the previous claim, we can check whether
X is 1-viable for R by testing whether X admits a partition into (possibly empty) sets
X1, . . . , Xk such that X \Xi is not an (si, ti)-separator. Since Stirling(d, k) = O(kd), this
yields an algorithm in time O(nd+2 · kd) for the DEDP problem when s = 1.

For s ≥ 2, let X = {v1, . . . , vd} and construct a graph D′ from D by making s copies
v1
i , . . . , v

s
i of each vertex vi ∈ X and adding one edge from each copy to each vertex in the

neighborhood of vi in D, respecting orientations.
For i ∈ [d], let Vi = {v1

i , . . . , v
s
i } and X ′ =

⋃
i∈[d] Vi. Now, there is a collection of paths

P satisfying R in D such that each vertex in X is in at most s paths of P if and only if there
is a collection of paths P ′ in D′ such that no vertex in X ′ occurs in more than one path of
P ′. To test whether a given X is s-viable for R with s ≥ 2, we can just test whether X ′ is
1-viable for R in D′. Since |X ′| = d · s, this yields an algorithm in time O(nd+2 · kd·s) for
DEDP. J

We now proceed to show that (k, d, s)-DEDP is FPT, by providing a kernel with at most
d · 2k−s ·

(
k
s

)
+ 2k vertices. We start with some definitions and technical lemmas. Notice that

any vertex in D whose deletion disconnects more than s pairs in the request set R cannot
be contained in any set X that is s-viable for R. Hence we make use of an operation to
eliminate all such vertices from the input digraph while maintaining connectivity. We remind
the reader that, for a request set R, we denote by S(R) the set of source vertices in R and
by T (R) the set of target vertices in R (cf. Definition 2).

I Definition 19 (Non-terminal vertices). Let (D,R, k, d, s) be an instance of DEDP. For a
digraph D′ such that V (D′) ⊆ V (D), we define V ∗(D′) = V (D′) \ (S(R) ∪ T (R)).

That is, V ∗(D) is the set of non-terminal (i.e., neither source nor target) vertices of D.

I Definition 20 (Congested vertex and blocking collection). Let (D,R, k, d, s) be an instance
of DEDP. For X ⊆ V ∗(D), we define RX as the subset of R that is blocked by X, that
is, there are no paths from s to t in D −X for every (si, ti) ∈ RX . We say that a vertex
v ∈ V ∗(D) is an (R, s)-congested vertex of D if |R{v}| ≥ s+ 1. The blocking collection of
R is the collection {B1, . . . , Bk} where Bi = {v ∈ V ∗(D) | (si, ti) ∈ R{v}}, for i ∈ [k]. We
say that D is clean for R and that (D,R, k, d, s) is a clean instance if there are no congested
vertices in V ∗(D). When R and s are clear from the context, we drop them from the notation.

We use the following operation to eliminate congested vertices of D while maintaining
connectivity. It is used, for instance, in [8] (as the torso operation) and in [24].

I Definition 21 (Bypassing vertices and sets). Let D be a graph and v ∈ V (D). We refer to
the following operation as bypassing v: delete v from D and, for each u ∈ N−(v) add one
edge from u to each vertex w ∈ N+(v). We denote by D/v the graph generated by bypassing
v in D. For a set of vertices B ⊆ V (D), we denote by D/B the graph generated by bypassing,
in D, all vertices of B in an arbitrary order.

Figure 7 illustrates the bypass operation.
We restrict our attention to vertices in V ∗(D) in Definition 20 because we want to

avoid bypassing source or target vertices, and work only with vertices inside V ∗(D). Since
|S(R) ∪ T (R)| ≤ 2k, we show later that this incurs an additive term of 2k in the size of the
constructed kernel.

In [24, Lemma 3.6] the authors remark that the ending result of bypassing a set of vertices
in a digraph does not depend on the order in which those vertices are bypassed. Furthermore,

18 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

v ⇒

Figure 7 Bypassing a vertex v.

bypassing a vertex of D cannot generate a new congested vertex: if u is a congested vertex
of D/v, then u is also a congested vertex of D, for any v ∈ V (D) \ {u}. Thus any instance
(D,R, k, d, s) of DEDP is equivalent to the instance (D/v,R, k, d, s), if v is a congested
vertex of D, and arbitrarily bypassing a vertex of D can only make the problem harder. We
formally state those observations below.

I Lemma 22. Let D be a digraph, R be a request set with R = {(s1, t1), . . . , (sk, tk)}, s be
an integer, B be the set of (R, s)-congested vertices of D, and D′ = D/B. Then, with respect
to R, X is s-viable in D if and only if X is s-viable in D′.

Proof. Let X be an s-viable set for R in D. If X ∩ B 6= ∅, then at least s + 1 paths of
any collection satisfying R must intersect in X, contradicting our choice for X, and hence
X ⊆ V (D′). Similarly, if X ⊆ V (D′) then X ∩B = ∅ and the sufficiency follows. J

Furthermore, from any solution for an instance resulting from bypassing a set of vertices
in V ∗(D), we can construct a solution for the original instance in polynomial time by undoing
the bypasses.
I Remark 23. Let (D,R, k, d, s) be an instance of DEDP and Y ⊆ V ∗(D). If P is a solution
for (D/Y,R, k, d, s), then (D,R, k, d, s) is positive and a solution can be constructed from P
in polynomial time.

The main ideas of the kernelization algorithm are the following. Let (D,R, k, d, s) be an
instance of DEDP and {B1, . . . , Bk} be the blocking collection of R. First, we show that, if
D is clean for R, there is an i ∈ [k] such that |V ∗(D)−Bi| ≥ |V ∗(D)|(k − s)/k (Lemma 24).
Then, we show that if D is clean and sufficiently large, and |R| = s+ 1, then the instance is
positive and a solution can be found in polynomial time (Lemma 25).

Lemma 25 is used as the base case for our iterative algorithm. We start with the first
instance, say (D,R, k, d, s), and proceed through k − s+ 1 iterations. At each iteration, we
will choose one path from some si to its destination ti such that a large part of the graph
remains unused by any of the pairs chosen so far (by Lemma 24) and consider the request set
containing only the remaining pairs for the next iteration. We repeat this procedure until we
arrive at an instance where the number of requests is exactly s+ 1, and show that if n is
large enough, then we can use Lemma 25 to output a solution for the last instance. From
this solution, we extract a solution for (D,R, k, d, s) in polynomial time.

I Lemma 24. Let (D,R, k, d, s) be an instance of DEDP, {B1, . . . , Bk} be the blocking
collection of R, and n∗ = |V ∗(D)|. If D is clean, then there is an i ∈ [k] such that
|V ∗(D/Bi)| ≥ n∗(k − s)/k and there is a path P in D/Bi from si to ti such that |V ∗(P)| ≤
|V ∗(D/Bi)|/2.

Proof. First, notice that∑
v∈V ∗(D)

|Rv| =
∑

v∈V ∗(D)

|{Bi | v ∈ Bi}| =
∑
i∈[k]

|Bi|.

Raul Lopes and Ignasi Sau 19

Now, if |Bi| > n∗ ·s/k for every i ∈ [k], then there must be a vertex in v such that |Rv| ≥ s+1,
as in this case

∑
i∈[k] |Bi| > n∗ ·s, contradicting our assumption that D is clean. We conclude

that there is an i ∈ [k] such that |Bi| ≤ n∗ ·s/k and thus V ∗(D/Bi) = n∗−|Bi| ≥ n∗(k−s)/k,
as desired.

The result trivially follows if there is a path P from si to ti in D/Bi with V ∗(P) = ∅.
Thus we can assume that every path from si to ti in D/Bi intersects V ∗(D/Bi) (see Figure 8).
Let X = (S(R) ∪ T (R)) \ {si, ti}. By Menger’s Theorem and since no vertex in V ∗(D/Bi)

∈ S(R) ∪ T (R)

si ti

Figure 8 Three paths from si to ti in D/Bi. Square vertices are used to identify vertices in
S(R) ∪ T (R), which may not be bypassed.

intersects every path from si to ti, there are two internally disjoint paths P1 and P2 from si
to ti in (D/Bi)/X. Without loss of generality, assume that P1 is the shortest of those two
paths, breaking ties arbitrarily. Then |V ∗(P1)| ≤ |V ∗(D/Bi)|/2 since P1 and P2 are disjoint,
and the result follows. J

Figure 9 illustrates the procedure described in Lemma 24. We find a set Bi containing
at most n∗ · s/k vertices, and bypass all of its vertices in any order. Then we argue that a
shortest path from si to ti in D/Bi avoids a large set of vertices in D.

si

ti

D/(Bi ∪ V ∗(P))Bi

Figure 9 A path P from si to ti avoiding a large part of D.

I Lemma 25. Let (D,R, k, d, s) be an instance of DEDP, m = |E(D)|, and n∗ = V ∗(D).
If D is clean, n∗ ≥ 2d(s+ 1), and k = s+ 1, then (D,R, k, d, s) is positive and a solution
can be found in time O(k · n(n+m)).

Proof. Let {B1, . . . , Bk} be the blocking collection of R and D′i = D/Bi, for i ∈ [k]. By
Lemma 24, there is an i ∈ [k] such that |V ∗(D′i)| ≥ n∗/(s+ 1) and a path P from si to ti
such that V ∗(P) ≤ |V ∗(D′i)|/2. Let Di = D′i/V

∗(P). Now,

|V ∗(Di)| ≥
|V ∗(D′i)|

2 ≥ n∗

2(s+ 1)

and since |R\{(si, ti)}| = s, we are free to choose arbitrarily any collection of paths satisfying
R\{(si, ti)} in Di. Reversing the bypasses done in D, this collection together with Pi yields a

20 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

collection of paths satisfying R in D such that all vertices in V ∗(Di) are contained in at most
s of those paths. Since n∗ ≥ 2d(s+ 1) by hypothesis, we have that |V ∗(Di)| ≥ d as required.
We can generate the sets Bi in time O(n(n+m)) by deleting a vertex of D and testing for
connectivity between si and ti. Thus a solution can be found in time O(k · n(n+m)), as
desired. J

We are now ready to show the main ingredient of the algorithm: we provide a polynomial-time
algorithm to solve large clean instances of the Disjoint Enough Directed Paths problem.

I Theorem 26. Let (D,R, k, d, s) be a clean instance of DEDP with |V ∗(D)| = n∗ ≥
d·2k−s·

(
k
s

)
. Then (D,R, k, d, s) is positive and a solution can be found in time O(k·n2(n+m)).

Proof. Let B0 = {B1, . . . , Bk} be the blocking collection of R. We consider B0 to be sorted
in non-decreasing order by the size of its elements and, by rearranging R if needed, we
assume that this order agrees with R. For i ∈ [k − (s+ 1)], we construct a sequence of sets
{Di,Bi,Pi} where n∗i = |V ∗(Di)| and

(i) Bi = {Bi+1, . . . , Bk};
(ii) Pi is a collection of paths {P1, P2, . . . , Pi} such that Pj is a path from sj to tj in Dj , for

j ∈ [i]; and
(iii) n∗i−1 is large enough to guarantee that we can find a path from si to ti avoiding a large

part of Di−1. Formally, we want that

n∗i ≥ n∗0 ·
(k − s)(k − s− 1) · · · (k − s− i+ 1)

2i · k(k − 1) · · · (k − i+ 1) .

We begin with D0 = D, n∗0 = n∗, and P0 = ∅. Let D′1 = D0/B1. By applying Lemma 24
with input (D0, R, k, d, s), we conclude that |V ∗(D′1)| ≥ n∗(k − s)/k and there is a path
P1 from s1 to t1 in D′1 with |V ∗(P1)| ≤ |V ∗(D′1)|/2. Let D1 = D′1/V

∗(P1) and P1 = {P1}.
Now,

n∗1 ≥
|V ∗(D′1)|

2 ≥ n∗0(k − s)
2k

and conditions (i), (ii), and (iii) above hold for (D1,B1,P1). Assume that i− 1 triples have
been chosen in this way.

As before, we assume that Bi−1 is sorted in non-increasing order by the size of its elements,
and that this order agrees with R \Ri−1. Furthermore, as D0 is clean, so is Di−1.

Let D′i = Di−1/Bi. Applying Lemma 24 with input (Di−1, R \Ri−1, k − i+ 1, d, s), we
conclude that |V ∗(D′i)| ≥ n∗i (k− i+ 1− s)/(k− i+ 1) and there is a path Pi from si to ti in
D′i with |V ∗(Pi)| ≤ |V ∗(D′i)|/2. Let Pi = Pi−1 ∪ {Pi} and Di = D′i/Bi. Then

n∗i ≥ n∗i−1 ·
k − i+ 1− s
2(k − i+ 1)

and by our assumption that (iii) holds for ni−1 it follows that

n∗i ≥ n∗0 ·
(k − s)(k − s− 1) · · · (k − s− i+ 2)

2i−1k(k − 1) · · · (k − i+ 2) ·
(
k − s− i+ 1
2(k − i+ 1)

)
= n∗0 ·

(k − s)(k − s− 1) · · · (k − s− i+ 1)
2i · k(k − 1) · · · (k − i+ 1) ,

as desired and thus (i), (ii), and (iii) hold for (Di,Bi,Pi). The algorithm ends after
iteration k − (s + 1). Following this procedure, we construct the collection Pk−(s+1) =

Raul Lopes and Ignasi Sau 21

{P1, P2, . . . , Pk−(s+1)} satisfying (ii) and the graph Dk−(s+1) with nk−(s+i) satisfying (iii).
Noticing that |R−Rk−(s+1)| = s+ 1 (that is, only s+ 1 pairs in R are not accounted for in
Pk−(s+1)), it remains to show that our choice for n∗ is large enough so that we are able to
apply Lemma 25 on the instance (Dk−(s+1), R−Rk−(s+1), s+ 1, d, s) of DEDP. That is, we
want that n∗k−(s+1) ≥ 2d(s+ 1). By (iii) it is enough to show that

n∗k−(s+1) ≥ n∗0 ·
(k − s)(k − s− 1) · · · 3 · 2

2k−(s+1) · k(k − 1) · · · (s+ 3)(s+ 2)
≥ 2d · (s+ 1),

and rewriting both sides of the fraction as k! and k!/(s+ 1)!, respectively, we get

n0 ·
(k − s)!
2k−(s+1) ≥ 2d · (s+ 1) · k!

(s+ 1)! = 2d · k!
s! ,

which holds for

n0 ≥
(

2k−(s+1) · 2d · (s+ 1)
(s+ 1)!

)
·
(

k!
(k − s)!

)
= d · 2k−s ·

(
k

s

)
,

as desired.
Applying Lemma 25 with input (Dk−(s+1), R \Rk−(s+1), s+ 1, d, s) yields a collection P̂

satisfying R − Rk−(s+1) and a set X ⊆ V (D) of size d (since V (Dk−(s+1)) ⊆ V (D)) such
that X is disjoint from all paths in Pk−(s+1), since all vertices in V ∗(P) were bypassed in
Dk−(s+1) for every P ∈ Pk−(s+1), and all vertices in X occur in at most s paths of P̂ . We can
construct a collection of paths satisfying R from P̂ ∪ Pk−(s+1) by reversing all the bypasses
done in D and connecting appropriately the paths in the collections (see Remark 23). We
output this newly generated collection as a solution for (D,R, k, d, s).

For the running time, let m = |(E(D)|. We need time O(k log k) to order the elements of
B0, time O(k · n(n+m)) to find the sets Bi, for i ∈ [k], and O(n+m) to find each of the
paths {P1, . . . , Pk}. Hence the algorithm runs in time O(k · n2(n+m)). J

We acknowledge that it is possible to prove Theorem 26 without using Lemma 25 by
stopping the iteration at the digraph Dk−s instead of Dk−s−1. However we believe it is easier
to present the proof of Theorem 26 by having separate proofs for the iteration procedure
(Lemma 24) that aims to generate an instance of DEDP for which we can apply our base
case (Lemma 25).

Since any instance can be made clean in polynomial time, the kernelization algorithm
for (k, d, s)-DEDP follows easily. Given an instance (D,R, k, d, s), we bypass all congested
vertices of D to generate D′. If |V ∗(D′)| is large enough to apply Theorem 26, the instance is
positive and we can find a solution in polynomial time. Otherwise, we generated an equivalent
instance (D′, R, k, d, s) with |V (D′)| bounded from above by a function depending on k, d,
and s only. As we restrict |S(R)∪T (R)| ≤ 2k, if D is clean and V (D) ≥ d · 2k−s ·

(
k
s

)
+ 2k we

get the desired bound for |V ∗(D)|. Thus, the following is a direct corollary of Theorem 26.

I Theorem 27. There is a kernelization algorithm running in time O(k · n2(n+m)) that,
given an instance (D,R, k, d, s) of DEDP, outputs either a solution for the instance or an
equivalent instance (D′, R, k, d, s) with |V (D′)| ≤ d · 2k−s ·

(
k
s

)
+ 2k.

5 Concluding remarks

We introduced the Disjoint Enough Directed Paths problem and provided a number of
hardness and algorithmic results, summarized in Table 1. Several questions remain open.

22 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

We showed that DEDP is NP-complete for every fixed k ≥ 3 and s ≥ 1. We do not know
whether DEDP is NP-complete for k = 2 and s = 1.

We provided an algorithm running in time O(nd+2 · kd·s) to solve the problem. This
algorithm tests all partitions of a given X ⊆ V (D) in search for one that respects some
properties. Since there are at most

(
n
d

)
subsets of V (D) of size d, this yields an XP algorithm.

The second term on the time complexity comes from the number of partitions of X we need
to test. The problem may become easier if X is already given or, similarly, if d is a constant.
In other words, is the (s)-DEDP problem FPT for fixed d?

Our main result is a kernel with at most d · 2k−s ·
(
k
s

)
+ 2k vertices. The natural question

is whether the problem admits a polynomial kernel with parameters k, d, and s, or even for
fixed s. Notice that if there is a constant ` such that k − s = `, then the size of the kernel is
d · 2` · k`, which is polynomial on d and k. The case s = 0 is also particularly interesting, as
DEDP with s = 0 is equivalent to the Steiner Network problem. In this case, we get a
kernel of size at most d · 2k + 2k.

While we do not know whether (k, d, s)-DEDP admits a polynomial kernel, at least we
are able to prove that a negative answer for s = 0 is enough to show that (k, d, s)-DEDP is
unlikely to admit a polynomial kernel for any value of s ≥ 1 when k is “far” from s, via the
following polynomial time and parameter reduction.

I Remark 28. For any instance (D,R, k, d, 0) of DEDP and integer s > 0, one can construct
in polynomial time an equivalent instance (D,R′, k′, d, s) of DEDP with k′ = k · (d · s+ 1).

Proof. For a request set R in D, let R′ be the request set in D formed by d · s+ 1 copies
of each pair in R and let k′ = k · (d · s + 1). We claim that an instance (D,R, k, d, 0) of
DEDP is positive if and only if the associated instance (D,R′, k′, d, s), also of DEDP, is
positive.

From any solution P for the first instance, we can construct a solution for the second by
taking d · s+ 1 copies of each path in P and thus the necessity holds. For the sufficiency, let
X be an s-viable set for (D,R′, k′, d, s) with certifying collection P ′. By the construction
of R′ and since at most d · s paths in P ′ can intersect X, we conclude that there is path
P ∈ P ′ from s to t in D−X for each pair (s, t) ∈ R. Choosing all such paths we construct a
collection P satisfying R in D −X, and the remark follows. J

In the undirected case, the Steiner Tree problem is unlikely to admit a polynomial
kernel parameterized by k and c, with c = n− d (in other words, the size of the solution); a
simple proof for this result can be found in [12, Chapter 15]. Even if we consider a stronger
parameter (that is, d instead of c), dealing with directed graphs may turn the problem much
harder. We also remark that the problem admits a polynomial kernel in the undirected case
if the input graph is planar [28]. It may also be the case for directed graphs.

Acknowledgement. We would like to thank the anonymous reviewers for helpful and
thorough comments that improved the presentation of the manuscript.

References
1 Isolde Adler. Directed tree-width examples. Journal of Combinatorial Theory, Series B,

97(5):718 – 725, 2007. doi:https://doi.org/10.1016/j.jctb.2006.12.006.
2 Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing

with congestion in acyclic digraphs. Information Processing Letters, 151, 2019. doi:10.1016/
j.ipl.2019.105836.

https://doi.org/https://doi.org/10.1016/j.jctb.2006.12.006
https://doi.org/10.1016/j.ipl.2019.105836
https://doi.org/10.1016/j.ipl.2019.105836

Raul Lopes and Ignasi Sau 23

3 Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos,
Ignasi Sau, and Ana Silva. Dual Parameterization of Weighted Coloring. In Proc. of the 13th
International Symposium on Parameterized and Exact Computation, (IPEC), volume 115 of
LIPIcs, pages 12:1–12:14, 2018. doi:10.4230/LIPIcs.IPEC.2018.12.

4 Jørgen Bang-Jensen and Gregory Gutin. Classes of Directed Graphs. Springer Monographs in
Mathematics, 2018.

5 Manu Basavaraju, Mathew C. Francis, M. S. Ramanujan, and Saket Saurabh. Partially
polynomial kernels for set cover and test cover. SIAM Journal on Discrete Mathematics,
30(3):1401–1423, 2016. doi:10.1137/15M1039584.

6 Khristo N. Boyadzhiev. Close Encounters with the Stirling Numbers of the Second Kind.
Mathematics Magazine, 85(4):252–266, 2012. doi:10.4169/math.mag.85.4.252.

7 Victor Campos, Raul Lopes, Ana Karolinna Maia, and Ignasi Sau. Adapting The Directed
Grid Theorem into an FPT Algorithm. In Proc. of the X Latin and American Algorithms,
Graphs and Optimization Symposium (LAGOS), volume 346 of ENTCS, pages 229–240, 2019.
doi:10.1016/j.entcs.2019.08.021.

8 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter
tractability of directed multiway cut parameterized by the size of the cutset. SIAM Journal
on Computing, 42(4):1674–1696, 2013. doi:10.1137/12086217X.

9 Benny Chor, Mike Fellows, and David W. Juedes. Linear Kernels in Linear Time, or How
to Save k Colors in O(n2) Steps. In Proc. of the 30th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 3353 of LNCS, pages 257–269, 2004.
doi:10.1007/978-3-540-30559-0_22.

10 William Cook and Paul Seymour. Tour merging via branch-decompositions. INFORMS
Journal on Computing, 15:233–248, 2003. doi:10.1287/ijoc.15.3.233.16078.

11 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Marek Cygan, Daniel Marx, Marcin Pilipczuk, and Michał Pilipczuk. The Planar Directed
k-Vertex-Disjoint Paths Problem Is Fixed-Parameter Tractable. In Proc. of the IEEE 54th
Annual Symposium on Foundations of Computer Science (FOCS), volume 1, pages 197–206,
2013. doi:10.1109/FOCS.2013.29.

14 Erik Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

15 Rod Downey and Michael. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

16 Rong-chii Duh and Martin Fürer. Approximation of k-Set Cover by Semi-Local Optimization.
In Proc. of the 29th Annual ACM Symposium on the Theory of Computing (STOC), pages
256–264, 1997. doi:10.1145/258533.258599.

17 Katherine Edwards, Irene Muzi, and Paul Wollan. Half-integral linkages in highly connected
directed graphs. In Proc. of the 25th Annual European Symposium on Algorithms (ESA), 2017,
pages 36:1–36:12, 2017. doi:10.4230/LIPIcs.ESA.2017.36.

18 Andreas Emil Feldmann and Dániel Marx. The complexity landscape of fixed-parameter
directed Steiner network problems. In Proc. of the 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), volume 55, pages 27:1–27:14, 2016. doi:10.4230/
LIPIcs.ICALP.2016.27.

19 Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111–121, 1980. doi:https://doi.org/10.1016/
0304-3975(80)90009-2.

https://doi.org/10.4230/LIPIcs.IPEC.2018.12
https://doi.org/10.1137/15M1039584
https://doi.org/10.4169/math.mag.85.4.252
https://doi.org/10.1016/j.entcs.2019.08.021
https://doi.org/10.1137/12086217X
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1287/ijoc.15.3.233.16078
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS.2013.29
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/258533.258599
https://doi.org/10.4230/LIPIcs.ESA.2017.36
https://doi.org/10.4230/LIPIcs.ICALP.2016.27
https://doi.org/10.4230/LIPIcs.ICALP.2016.27
https://doi.org/https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/https://doi.org/10.1016/0304-3975(80)90009-2

24 A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

20 Thor Johnson, Neil Robertson, Paul Seymour, and Robin Thomas. Directed tree-width. Journal
of Combinatorial Theory, Series B, 82(01):138–154, 2001. doi:10.1006/jctb.2000.2031.

21 Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Ondřej Suchý. Para-
meterized Complexity of Directed Steiner Tree on Sparse Graphs. SIAM Journal on Discrete
Mathematics, 31(2):1294–1327, 2017. doi:10.1137/15M103618X.

22 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Stephan Kreutzer. An excluded half-integral
grid theorem for digraphs and the directed disjoint paths problem. In Proc. of the 46th ACM
Symposium on Theory of Computing (STOC), pages 70–78, 2014. doi:10.1145/2591796.
2591876.

23 Ken-ichi Kawarabayashi and Stephan Kreutzer. The Directed Grid Theorem. In Proc. of
the 47th Annual ACM Symposium on Theory of Computing (STOC), pages 655–664, 2015.
doi:10.1145/2746539.2746586.

24 Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström. Fixed-parameter
tractability of multicut in directed acyclic graphs. SIAM Journal on Discrete Mathematics,
29(1):122–144, 2015. doi:10.1137/120904202.

25 James F. Lynch. The equivalence of theorem proving and the interconnection problem. ACM
SIGDA Newsletter, 5(3):31–36, 1975. doi:10.1145/1061425.1061430.

26 Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–115, 1927.
URL: http://eudml.org/doc/211191.

27 Daniel Mölle, Stefan Richter, and Peter Rossmanith. Enumerate and expand: improved
algorithms for connected vertex cover and tree cover. Theory of Computing Systems, 43(2):234–
253, 2008. doi:10.1007/s00224-007-9089-3.

28 Marcin Pilipczuk, Michał Pilipczuk, Piotr Sankowski, and Erik Jan Van Leeuwen. Network
Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs. ACM Transactions
on Algorithms, 14(4):53:1–53:73, 2018. doi:10.1145/3239560.

29 Bruce Reed. Introducing directed tree-width. Electronic Notes in Discrete Mathematics,
3:222–229, 1999. doi:10.1016/S1571-0653(05)80061-7.

30 Neil Robertson and Paul Seymour. Graph minors. V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(01):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

31 Neil Robertson and Paul Seymour. Graph minors. XIII. The disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:doi.org/10.1006/jctb.1995.1006.

32 Alexander Schrijver. Finding k disjoint paths in a directed planar graph. SIAM Journal on
Computing, 23(4):780–788, 1994. doi:10.1137/S0097539792224061.

33 Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic graphs.
SIAM Journal on Discrete Mathematics, 24(1):146–157, 2010. doi:10.1137/070697781.

34 Carsten Thomassen. Highly connected non-2-linked digraphs. Combinatorica, 11(4):393–395,
1991. doi:10.1007/BF01275674.

https://doi.org/10.1006/jctb.2000.2031
https://doi.org/10.1137/15M103618X
https://doi.org/10.1145/2591796.2591876
https://doi.org/10.1145/2591796.2591876
https://doi.org/10.1145/2746539.2746586
https://doi.org/10.1137/120904202
https://doi.org/10.1145/1061425.1061430
http://eudml.org/doc/211191
https://doi.org/10.1007/s00224-007-9089-3
https://doi.org/10.1145/3239560
https://doi.org/10.1016/S1571-0653(05)80061-7
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1137/S0097539792224061
https://doi.org/10.1137/070697781
https://doi.org/10.1007/BF01275674

	Introduction
	Preliminaries and definitions
	Parameterized complexity
	The Disjoint Enough Directed Paths problem

	Hardness results for DEDP
	Algorithms for DEDP
	An XP algorithm with parameters k and dtw(D)
	Algorithms for the dual parameterization

	Concluding remarks

