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Abstract
The Contraction(vc) problem takes as input a graph G on n vertices and two integers k and d,
and asks whether one can contract at most k edges to reduce the size of a minimum vertex cover
of G by at least d. Recently, Lima et al. [MFCS 2020, JCSS 2021] proved, among other results,
that unlike most of the so-called blocker problems, Contraction(vc) admits an XP algorithm
running in time f(d) · nO(d). They left open the question of whether this problem is FPT under this
parameterization. In this article, we continue this line of research and prove the following results:

Contraction(vc) is W[1]-hard parameterized by k + d. Moreover, unless the ETH fails, the
problem does not admit an algorithm running in time f(k + d) · no(k+d) for any function f . In
particular, this answers the open question stated in Lima et al. [MFCS 2020] in the negative.
It is NP-hard to decide whether an instance (G, k, d) of Contraction(vc) is a Yes-instance
even when k = d, hence enhancing our understanding of the classical complexity of the problem.
Contraction(vc) can be solved in time 2O(d) · nk−d+O(1). This XP algorithm improves the
one of Lima et al. [MFCS 2020], which uses Courcelle’s theorem as a subroutine and hence, the
f(d)-factor in the running time is non-explicit and probably very large. On the other hand, this
shows that when k = d, the problem is FPT parameterized by d (or by k).
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1 Introduction

Graph modification problems have been extensively studied in theoretical computer science,
in particular for their vast expressive power and their applicability in a number of scenarios.
Such problems can be generically defined as follows. For a fixed graph class F and a fixed
set M of allowed graph modification operations, such as vertex deletion, edge deletion, edge
addition, edge editing or edge contraction, the F -M-Modification problem takes as input
a graph G and a positive integer k, and the goal is to decide whether at most k operations
from M can be applied to G so that the resulting graph belongs to the class F . For most
natural graph classes F and modification operations M, the F-M-Modification problem
is NP-hard [15,16]. To cope up with this hardness, these problems have been examined via
the lens of parameterized complexity [1,3]. With an appropriate choice of F and the allowed
modification operations M, F-M-Modification can encapsulate well-studied problems
like Vertex Cover, Feedback Vertex Set (FVS), Odd Cycle Transversal (OCT),
Chordal Completion, or Cluster Editing, to name just a few.

The most natural and well-studied modification operations are, probably in this order,
vertex deletion, edge deletion, and edge addition. In recent years, the edge contraction
operation has begun to attract significant scientific attention. (When contracting an edge uv

in a graph G, we delete u and v from G, add a new vertex and make it adjacent to vertices
that were adjacent to u or v.) In parameterized complexity, F-Contraction problems,
i.e., F-M-Modification problems where the only modification operation in M is edge
contraction, are usually studied with the number of edges allowed to contract, k, as the
parameter. A series of more than 15 recent papers studied the parameterized complexity of
F -Contraction for various graph classes F (see [14] and the references therein, as well as
the full version of this article, for the precise list of these classes F).

For all the F-M-Modification problems mentioned above, a typical definition of the
problem contains a description of the target graph class F . For example, Vertex Cover,
FVS, and OCT are F-M-Modification problems where F is the collection of edgeless
graphs, forests, and bipartite graphs, respectively, and M contains only vertex deletion.
Recently, a different formulation of these graph modification problems, called blocker problems,
has been considered. In this formulation, the target graph class is defined in a parametric
way from the input graph. To make the statement of such problems precise, consider an
invariant π : G 7→ N, where G is the collection of all graphs. For a fixed invariant π, a
typical input of a blocker problem consists of a graph G, a budget k, and a threshold value
d, and the question is whether G can be converted into a graph G′ using at most k allowed
modifications such that π(G′) ≤ π(G) − d. This is the same as determining whether (G, k, d)
is a Yes-instance of Fπ

G,d-M-Modification where Fπ
G,d = {G′ ∈ G | π(G′) ≤ π(G) − d}.

Consider the following examples of this formulation. For the invariant π(G) = |E(G)|,
threshold d = |E(G)|, and vertex deletion as the modification operation in M, Fπ

G,d-M-
Modification is the same as Vertex Cover. Setting the threshold d to a fixed integer p

leads to Partial Vertex Cover. In a typical definition of this problem, the input is a
graph G and two integers k, p, and the objective is to decide whether there is a set of vertices
of size at most k that has at least p edges incident on it. Consider another example when
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π(G) = vc(G), the size of a minimum vertex cover of G, the threshold value d = vc(G) − 1,
and the allowed modification operation is edge contraction. To reduce the size of a minimum
vertex cover from vc(G) to 1 by k edge contractions, we need to find a connected vertex
cover of size k + 1. Hence, in this case Fπ

G,d-M-Modification is the same as Connected
Vertex Cover. In all these cases, we can think of the set of vertices or edges involved in
the modifications as ‘blocking’ the invariant π, that is, preventing π from being smaller.

With ‘vertex deletion’ or ‘edge deletion’ as the allowed graph modification operation,
blocker problems have been investigated for numerous graph invariants (see the full version
of this article for an exhaustive list of these invariants, along with the appropriate references).
Blocker problems for edge contraction have already been studied with respect to the chromatic
number, clique number, independence number [6,13], the domination number [8,10], total
domination number [9], and the semitotal domination number [7].

This article is strongly motivated by the results in [12]. They proved, in particular, that
it is coNP-hard to test whether we can reduce the size of a minimum feedback vertex set
or of a minimum odd cycle transversal of a graph by one, i.e., d = 1, by performing one
edge contraction, i.e., k = 1. This is consistent with earlier results, as blocker problems are
generally very hard, and become polynomial-time solvable only restricted to specific graph
classes. However, the notable exception is when the invariant is the size of a minimum vertex
cover of the input graph. We define the problem before mentioning existing results and our
contribution (G/F denotes the graph obtained from G by contracting the edges in F ).

Contraction(vc)
Input: An undirected graph G and two non-negative integers k and d.
Question: Does there exist a set F ⊆ E(G) such that |F | ≤ k and vc(G/F ) ≤ vc(G)−d?

Our results. A simple reduction, briefly mentioned in [12], shows that the above problem
is NP-hard for some k in {d, d + 1, . . . , 2d}. In our first result, we enhance our understanding
of the classical complexity of the problem and prove that the problem is NP-hard even when
k = d. As any edge contraction can decrease vc(G) by at most one, if k < d then the input
instance is a trivial No-instance. To state our first result, we introduce the notation of
rank(G), which is the number of vertices of G minus its number of connected components
(or equivalently, the number of edges of a set of spanning trees of each of the connected
components of G). Note that it is sufficient to consider values of k that are at most rank(G),
as otherwise it is possible to transform G to an edgeless graph with at most k contractions,
and therefore in this case G is a yes-instance for Contraction(vc) if and only if vc(G) ≥ d.

▶ Theorem 1. To decide whether an instance (G, k, d) of Contraction(vc) is a Yes-
instance is

coNP-hard if k = rank(G),
coNP-hard if k < rank(G) and 2d ≤ k, and
NP-hard if k < rank(G) and k = d + ℓ−1

ℓ+3 · d for any integer ℓ ≥ 1 such that k is an integer.

As one needs to contract at least d edges to reduce the size of a minimum vertex cover by d,
the above theorem, for ℓ = 1, implies that the problem is para-NP-hard when parameterized
by the ‘excess over the lower bound’, i.e., by k − d. Since we can assume that d ≤ k,
d is a ‘stronger’ parameter than k. One of the main results of [12] is an XP algorithm for
Contraction(vc) with running time f(d) · nO(d). Here, and in the rest of the article, we
denote by n the number of vertices of the input graph. The authors explicitly asked whether
the problem admits an FPT algorithm parameterized by d. As our next result, we answer
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20:4 Reducing the Vertex Cover Number via Edge Contractions

this question in the negative by proving that such an algorithm is highly unlikely, even when
parameterized by the larger parameter d + k (or equivalently, just k, as discussed above).

▶ Theorem 2. Contraction(vc) is W[1]-hard parameterized by k + d. Moreover, unless
the ETH fails1, it does not admit an algorithm running in time f(k + d) · no(k+d) for any
computable function f : N 7→ N. The result holds even if we assume that the input (G, k, d) is
such that k < rank(G) and d ≤ k < 2d, and G is a bipartite graph with a bipartition ⟨X, Y ⟩
such that X is a minimum vertex cover of G.

For the XP algorithm in [12], the authors did not explicitly mention an upper bound on
the corresponding function f , but it is expected to be quite large since it uses Courcelle’s
theorem [2] as a subroutine. Our next result provides a concrete upper bound on the running
time, and distinguishes in a precise way the contribution of k and d.

▶ Theorem 3. There exists an algorithm that solves Contraction(vc) in time 2O(d) ·
nk−d+O(1). Moreover, for an input (G, k, d), the algorithm runs in time 2O(d) · nO(1) unless
k < rank(G) and d ≤ k < 2d.

Note that the above result implies, in particular, that the problem is FPT parameterized
by d when k − d is a constant.

Our methods. A central tool in both our negative and positive results is Lemma 6, which
allows us to reformulate the problem as follows. As discussed later, by applying appropriate
FPT reductions to the input graph G, it is possible to assume that we have at hand a
minimum vertex cover X of G. We say that a set of edges F is a solution of (G, k, d) if
|F | ≤ k and vc(G/F ) ≤ vc(G) − d. Lemma 6 implies that there exists such a solution (i.e.,
an edge set) if and only if there exist vertex subsets Xs ⊆ X and Ys ⊆ V (G) \ X such that
the pair ⟨Xs, Ys⟩, which we call a solution pair, satisfies the technical conditions mentioned in
its statement (and which we prefer to omit here). This reformulation allows us to convert the
problem of finding a subset F of edges to the problem of modifying the given minimum vertex
cover X to obtain another vertex cover Xel = (X \ Xs) ∪ Ys such that |Xel| ≤ |X| + (k − d)
and rank(Xel) ≥ k. Here, we define rank(Xel) := rank(G[Xel]). See the full version for an
illustration.

In our hardness reductions, another simple, yet critical, tool is Lemma 7, which states
that if there is a vertex which is adjacent to a pendant vertex (i.e., a vertex of degree one),
then there is a solution pair that does not contain this vertex. We present overviews of the
reductions in Section 3 and in the full version to demonstrate the usefulness of these two
lemmas in the respective hardness results. The reduction that we use to prove the third
item in the statement of Theorem 1 (which is the most interesting case) is from a variant of
Multicolored Independent Set, while the one in the proof of Theorem 2 is from Edge
Induced Forest, a problem that we define and that we prove to be W[1]-hard in Theorem 8,
by a parameter preserving reduction from, again, Multicolored Independent Set. It
is worth mentioning that the W[1]-hardness in Theorem 8 holds even if we assume that the
input graph G is a bipartite graph with a bipartition ⟨X, Y ⟩ such that X is a minimum
vertex cover of G, and such that k < rank(G) and d ≤ k < 2d. This case is the crux of the
difficulty of the problem. This becomes clear in the XP algorithm of Theorem 3 that we
proceed to discuss.

1 The Exponential Time Hypothesis (ETH) is a conjecture stating that N -variable 3-SAT cannot be solved
in time 2o(N). We refer the reader to [4, Chapter 14] for the formal definition and related literature.
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Instance (G, k, d)
of Contr.(vc)

Solve in O⋆(2O(d))
using Lemma 12

Solve in O⋆(2O(d))
using Lemma 13

Lemma 15
O⋆(2O(k))

(G, k, d) is a
Yes-instance

Min. vertex cover
X of G with
rank(X) < d

2O(d) instances
of Annotated

Contr.(vc)

G is bipartite
with bipartition
⟨X, Y ⟩ and X is

min. vertex cover

Instance
((G, k, d), ·)

of Constrained
MaxCut

Create 2O(d) ·nk−d

many instances
such that k = d

using Lemma 19

Simplify using
Lemma 20 to
get |X| = |Y |

Instance of
Constrained

Directed
MaxCut

Solve in O⋆(2O(k))
using Lemma 22

k = rank(G)

k < rank(G)

2d ≤ k

d ≤ k < 2d

Lemma 16

Lemma 17Lemma 18

k > d

k = d

k = d Lemma 21

Figure 1 Diagram of the algorithm for Contraction(vc) given by Theorem 3. Recall that
we can assume that d ≤ k ≤ rank(G), hence the case distinction considered in the beginning is
exhaustive. Note also that, in the case where d ≤ k < 2d, it holds that O⋆(2O(k)) = O⋆(2O(d)).

The algorithm for Contraction(vc), which is our main technical contribution, is
provided in Section 4 and summarized in the diagram of Figure 1. By a standard Knapsack-
type dynamic programming, mentioned in [12], we can assume that the input graph G is
connected. We distinguish three cases depending on the relation between k, d, and rank(G).
The first two cases are easy, and can be solved in time 2O(d) · nO(1), by essentially running
an FPT algorithm to determine whether vc(G) < d; see Lemma 12 and Lemma 13. We now
present an overview of the algorithm for the third case, namely when its input (G, k, d) is
with guarantees that k < rank(G) and d ≤ k < 2d (cf. Lemma 14). Inspired by Lemma 6, we
introduce an annotated version of the problem called Annotated Contraction(vc). We
first argue (cf. Lemma 15) that there is a 2O(k) ·nO(1) algorithm that either correctly concludes
that (G, k, d) is a Yes-instance of Contraction(vc) or finds a minimum vertex cover X of
G such that rank(X) < d. Using X, we can construct 2O(d) many instances of Annotated
Contraction(vc) such that (G, k, d) is a Yes-instance of Contraction(vc) if and only if
at least one of these new instances is a Yes-instance of Annotated Contraction(vc) (cf.
Lemma 16). Hence, it suffices to design an algorithm to solve Annotated Contraction(vc).
We show that we can apply a simple reduction rule (cf. Lemma 17) that allows us to assume
that the input graph G of Annotated Contraction(vc) is bipartite with bipartition
⟨X, Y ⟩ such that X is a minimum vertex cover of G, as mentioned above.

A solution of an instance of Annotated Contraction(vc) is a solution pair ⟨Xs, Ys⟩
as stated in Lemma 6. We find convenient to present an algorithm that finds a partition

MFCS 2022



20:6 Reducing the Vertex Cover Number via Edge Contractions

⟨VL, VR⟩ of V (G) instead of a solution pair ⟨Xs, Ys⟩. To formalize this, we introduce the
problem called Constrained MaxCut and we show it to be equivalent to Annotated
Contraction(vc) (cf. Lemma 18). We partition the input instances of Constrained
MaxCut into the following two types: (1) k = d, and (2) k > d. For the instances of the
second type, we construct 2O(d) · nk−d many instances of the first type such that the input
instance is a Yes-instance if and only if at least one of these newly created instances is a
Yes-instance (cf. Lemma 19). We remark that this is the only step in the whole algorithm
where an nk−d-factor appears (note that this is unavoidable by Theorem 8).

Finally, to handle the instances of the first type (i.e., with k = d), we apply a simplification
based on the existence of a matching saturating X (cf. Lemma 20), we introduce a directed
variation of the problem called Constrained Directed MaxCut, and we prove it to
be equivalent to its undirected version (cf. Lemma 21). We then present a dynamic
programming algorithm, with running time 2O(k) · nO(1), that critically uses the fact that
k = d (cf. Lemma 22), in particular to “merge” appropriately some directed cycles in order
to obtain a directed acyclic graph, whose topological ordering gives a natural way to process
the vertices of the input graph in a dynamic programming fashion. At the end of Section 4
we present an overview of this algorithm.

Organization. Due to space limitations, in this extended abstract most of the technical
contents of the paper can only be found in the full version, in particular the proofs of the
statements marked with ‘(⋆)’. In Section 2 we present some notations and preliminary results
about Contraction(vc). The proof of Theorem 1 can be found in the full version. In
Section 3 we present the proof of Theorem 2. Section 4 is the most technical part of the
paper, and contains the description of the algorithm to solve Contraction(vc) mentioned
in Theorem 3. We conclude the article in Section 5 with some open problems.

2 Preliminaries

We use standard graph-theoretic notation, and we refer the reader to [5] for any undefined
notation. Similarly, we use standard terminology of parameterized complexity, and we
refer the reader to [4]. For completeness, we present in the full version the required basic
preliminaries about graph theory and parameterized complexity, and we provide here some
non-standard definitions and useful properties of the Contraction(vc) problem.

For a positive integer q, we denote the set {1, 2, . . . , q} by [q]. We use N to denote the
collection of all non-negative integers. A spanning forest of a graph is a collection of spanning
trees of its connected components. As already mentioned in Section 1, the rank of a graph
G, denoted by rank(G), is the number of edges of a spanning forest of G. The rank of a set
X ⊆ V (G) of vertices, denoted by rank(X), is the rank of G[X]. The rank of a set F ⊆ V (G)
of edges, denoted by rank(F ), is the rank of V (F ). Note that an edge contraction decreases
the rank of a graph G by exactly one. We present a couple of observations regarding an
instance (G, k, d) of the Contraction(vc) problem. Later, we present a lemma that helps
us to characterize the problem as finding a vertex cover with special properties.

▶ Observation 4 (⋆). Consider an instance (G, k, d) of Contraction(vc) such that k =
rank(G). Then, (G, k, d) is a Yes-instance if and only if d ≤ vc(G).

▶ Observation 5 (⋆). Consider an instance (G, k, d) of Contraction(vc) such that G is a
connected graph, k < rank(G), and 2d ≤ k. Then, (G, k, d) is a Yes-instance if and only if
d < vc(G).
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Suppose that (G, k, d) is a Yes-instance of Contraction(vc). We say that a set
F ⊆ E(G) is a solution of (G, k, d) if |F | ≤ k and vc(G/F ) ≤ vc(G) − d. Fix a minimum
vertex cover X of G. As X is a vertex cover, for every edge in F , at least one of its endpoints
is in X. We argue that one can construct an enlarged vertex cover Xel of G such that for
every edge in F , both of its endpoints are in Xel. Also, Xel is not much larger than X. In
order to construct Xel from X, one needs to remove and add some vertices to X. We denote
the removed and added vertices by Xs and Ys, respectively, and call ⟨Xs, Ys⟩ a solution pair.
See the corresponding figure in the full version for an illustration. The following lemma
relates a solution (a set of edges) to a solution pair (a tuple of disjoint vertex sets).

▶ Lemma 6 (⋆). Consider a connected graph G, a minimum vertex cover X of G, a proper
subset F of edges of a spanning forest of G (i.e., |F | < rank(G)), and a non-negative integer d.
Then, vc(G/F ) ≤ vc(G) − d if and only if there exists subsets Xs ⊆ X and Ys ⊆ V (G) \ X

such that (i) Xel := (X \ Xs) ∪ Ys is a vertex cover of G, (ii) rank((X \ Xs) ∪ Ys) ≥ |F |, and
(iii) |Ys| − |Xs| ≤ |F | − d, i.e., |Xel| ≤ |X| + |F | − d.

In the following lemma, we argue that there exists a solution pair ⟨Xs, Ys⟩ such that Xs

does not contain any vertex in X which is adjacent to a pendant vertex. For example, in
the aforementioned figure in the full version, there exists a solution pair ⟨Xs, Ys⟩ such that
x1 ̸∈ Xs.

▶ Lemma 7 (⋆). Consider a connected graph G, a minimum vertex cover X of G, and two
integers ℓ and d. Suppose that there exists a vertex x◦ in X which is adjacent to a pendant
vertex. Suppose that there are subsets Xs ⊆ X and Ys ⊆ V (G)\X such that (i) (X \Xs)∪Ys

is a vertex cover of G, (ii) rank((X \ Xs) ∪ Ys) ≥ ℓ, and (iii) |Ys| − |Xs| ≤ ℓ − d. Then, there
are subsets X ′

s ⊆ X and Y ′
s ⊆ V (G) \ X that satisfy these three conditions and x◦ ̸∈ X ′

s.

3 W[1]-hardness results

In this section we prove Theorem 2. To do so, we introduce the Edge Induced Forest
problem, defined below, and present a parameter preserving reduction from Multicolored
Independent Set to it. This reduction, along with known results about Multicolored
Independent Set (cf. the preliminaries in the full version), imply the corresponding result
for Edge Induced Forest. We then present a parameter preserving reduction from Edge
Induced Forest to Contraction(vc). This reduction, along with Theorem 8, yield
Theorem 2.

Edge Induced Forest
Input: A graph G and an integer ℓ.
Question: Is there a set F of at least ℓ edges in G such that G[V (F )] is a forest?

We note that a similar problem called Induced Forest has already been studied. In
this problem, the input is the same but the objective is to find a subset X of vertices of G of
size at least ℓ such that G[X] is a forest. The general result of Khot and Raman [11] implies
that Induced Forest is W[1]-hard when parameterized by the size of the solution ℓ. As
expected, we can prove a similar result for Edge Induced Forest.

▶ Theorem 8 (⋆). Edge Induced Forest, parameterized by the size of the solution ℓ, is
W[1]-hard. Moreover, unless the ETH fails, it does not admit an algorithm running in time
f(ℓ) · no(ℓ) for any computable function f : N 7→ N.

MFCS 2022
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Figure 2 The top-left figure illustrates an encoding of edge uv in G while reducing from an
instance of Edge Induced Forest to an instance of Contraction(vc). The remaining five figures
correspond to the partition of Ys mentioned in the proof of Lemma 11.

We now present a parameter preserving reduction from Edge Induced Forest to
Contraction(vc), which takes an instance (G, ℓ) of Edge Induced Forest and returns
an instance (G′, k, d) of Contraction(vc). It constructs a graph G′ from G as follows:

Initialize V (G′) = E(G′) = ∅.
For every vertex u in V (G), add two vertices zu, pu to V (G′) and the edge zupu to E(G′).
For every edge uv in E(G), add the vertex set {ya

uv, yb
uv, yc

uv, w1
uv, w2

uv, p1
uv, p2

uv} to
V (G′). Add edges {zuyc

uv, zvyc
uv} to E(G′). These edges encode adjacency relations in G.

Add also the edges {ya
uvyb

uv, ya
uvyc

uv, yb
uvw1

uv, yb
uvw2

uv, w1
uvp1

uv, w2
uvp2

uv} to E(G′). These
edges are part of a gadget which is private to edge uv.

This completes the construction of G′. The reduction sets k = 4 · ℓ, d = 3 · ℓ, and returns
(G′, k, d) as the constructed instance. Note that, indeed, k < rank(G′) and d ≤ k < 2d (more
precisely, k − d = d

3 ). See Figure 2 for an illustration. Before proving the correctness of the
reduction, we first note some properties of the graph G′. We define the following sets:

Z := {zu ∈ V (G′) | u ∈ V (G)},
Y abc := Y a∪Y b∪Y c where Y a := {ya

uv ∈ V (G′) | uv ∈ E(G)}, Y b := {yb
uv ∈ V (G′) | uv ∈

E(G)}, and Y c := {yc
uv ∈ V (G′) | uv ∈ E(G)},

W := {w1
uv, w2

uv ∈ V (G′) | uv ∈ E(G)}, and
P := {pu ∈ V (G′) | u ∈ V (G)} ∪ {p1

uv, p2
uv | uv ∈ E(G)}.

Note that ⟨Z, Y abc, W, P ⟩ is a partition of V (G′) where each vertex in P is a pendant vertex
and each vertex in Z ∪ W is adjacent to a pendant vertex in P . Moreover, rank(G′) > k.
Note that X := Z ∪ W ∪ Y a is an independent set in G′. In the next lemma, we argue that
it is also a minimum vertex cover of G′, which implies that, as claimed in the statement
of Theorem 2, G′ is a bipartite graph with a bipartition ⟨X, Y ⟩ such that X is a minimum
vertex cover of G′.

▶ Lemma 9 (⋆). The set X = Z ∪ W ∪ Y a is a minimum vertex cover of G′.

The following lemma corresponds to the “easy” direction of the reduction.
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▶ Lemma 10 (⋆). If (G, ℓ) is a Yes-instance of Edge Induced Forest, then (G′, k, d) is
a Yes-instance of Contraction(vc).

We now present a brief overview of the proof of the correctness in the backward direction,
corresponding to Lemma 11, whose full proof can be found in the full version. By Lemma 6,
there is a solution F of (G′, k, d) if and only if there exists a solution pair ⟨Xs, Ys⟩ such
that (i) Xel = (X \ Xs) ∪ Ys is a vertex cover of G′, (ii) rank(Xel) ≥ |F | = k = 4 · ℓ, and
(iii) |Ys| − |Xs| ≤ k − d = ℓ. Note that as X and Y = V (G′) \ X are independent sets
in G′, every edge in E(Xel) is incident on exactly one vertex in Ys. We can interpret the
second condition as a value function and the third condition as a cost function. In other
words, our objective is to find sets Xs, Ys such that their cost, i.e., |Ys| − |Xs|, is at most
ℓ whereas their value, i.e., the rank of edges in E(Xel) that are incident on Ys, is at least
4 · ℓ. Lemma 7 implies that the vertices of the form zu, w1

uv, and w2
uv are in Xel. The first

condition implies that only the five configurations shown in Figure 2 are possible (the top-left
is not a configuration). Starting from top-middle and moving row-wise, the individual value
and cost of these configurations are (4, 1), (3, 1), (3, 1), (6, 2), and (1, 1), respectively. To
meet both the value and budget constraints, every vertex in Xs, Ys needs to be the of first
type. This implies there are ℓ vertices in Xs that are of the form ya

uv, and Ys contains the
corresponding vertices of the form yb

uv and yc
uv. We argue that the edges corresponding to

vertices in Y c
uv form a solution of (G, ℓ) and formalize these ideas in the next lemma.

▶ Lemma 11 (⋆). If (G′, k, d) is a Yes-instance of Contraction(vc), then (G, ℓ) is a
Yes-instance of Edge Induced Forest.

We are ready to present the proof of Theorem 2.

Proof of Theorem 2. Consider the reduction presented in this subsection. Lemma 10 and
Lemma 11 imply that the reduction is safe. By the description of the reduction, it outputs the
constructed instance in polynomial time. The W[1]-hardness of Contraction(vc) follows
from Theorem 8. As k = 4 · ℓ and d = 3 · ℓ, if Contraction(vc) admits an algorithm with
running time f(k + d) · no(k+d), then Edge Induced Forest also admits an algorithm with
running time f(ℓ) · no(ℓ), which contradicts Theorem 8. ◀

4 Algorithm for Contraction(vc)

In this section we present the main ideas of the proof of Theorem 3, following the sketch
provided in Section 1 and summarized in Figure 1. Due to space limitations, most of the
technical content can be found in the full version Namely, we present an algorithm that
takes as input an instance (G, k, d) of Contraction(vc) and returns either Yes or No,
and whose high-level description is as follows (cf. Figure 1):

If k = rank(G), then it uses the algorithm mentioned in Lemma 12.
If k < rank(G) and 2d ≤ k, then it uses the algorithm mentioned in Lemma 13.
If k < rank(G) and d ≤ k < 2d, then it uses the algorithm mentioned in Lemma 14.

Note that, since we can safely assume that d ≤ k ≤ rank(G), the above three cases are
exhaustive. The first two cases turn out to be quite easy to handle.

▶ Lemma 12 (⋆). There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with a guarantee that k = rank(G), runs in time 1.2738d · nO(1), and
correctly determines whether it is a Yes-instance.

MFCS 2022
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▶ Lemma 13 (⋆). There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with guarantees that k < rank(G) and 2d ≤ k, runs in time 1.2738d ·nO(1),
and correctly determines whether it is a Yes-instance.

We may assume that G is a connected graph; we justify this assumption in the full version.
In order to deal with the third case above, our objective is to prove the following lemma.

▶ Lemma 14. There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with guarantees that k < rank(G) and d ≤ k < 2d, runs in time
2O(d) · nk−d+O(1), and correctly determines whether it is a Yes-instance.

We start with the following result, which will allow us to assume henceforth that we are
equipped with a minimum vertex cover of the input graph with small rank.

▶ Lemma 15 (⋆). There exists an algorithm that, given as input an instance (G, k, d)
of Contraction(vc) with guarantees that k < rank(G) and d ≤ k < 2d, runs in time
2.6181k · nO(1), and either correctly concludes that (G, k, d) is a Yes-instance, or computes a
minimum vertex cover X of G such that rank(X) < d.

Our next step is to provide an FPT-reduction from Contraction(vc) to the Annotated
Contraction(vc) problem, defined as follows.

Annotated Contraction(vc)
Input: An instance (G, k, d) of Contraction(vc), a minimum vertex cover X of G,
and a tuple ⟨XL, XR⟩ such that XL, XR are disjoint subsets of X.
Question: Do there exist sets Xs ⊆ X and Ys ⊆ Y (= V (G) \ X) such that (i)
(X \ Xs) ∪ Ys is a vertex cover of G, (ii) rank((X \ Xs) ∪ Ys) ≥ k, (iii) |Ys| − |Xs| ≤ k − d,
and (iv) XL ∩ Xs = ∅ and XR ⊆ Xs?

The first three conditions correspond to the three conditions mentioned in Lemma 6. We
remark that there is a small technical caveat while using Lemma 6. Consider an instance
(G, k, d) of Contraction(vc), and let F be a solution. Lemma 6 implies that there are
subsets Xs ⊆ X and Ys ⊆ V (G) \ X such that (i) (X \ Xs) ∪ Ys is a vertex cover of G,
(ii) rank((X \ Xs) ∪ Ys) ≥ |F |, and (iii) |Ys| − |Xs| ≤ |F | − d. However, the statement of
Annotated Contraction(vc) specifies the integer k and not the actual size of a minimum
solution F . For example, if there exists a solution F of size, say, k/2, then Lemma 6 ensures
that rank((X \ Xs) ∪ Ys) ≥ k/2, however rank((X \ Xs) ∪ Ys) can be smaller than k. To
overcome this, we assume that (G, k − 1, d) is a No-instance of Contraction(vc). This
implies that if there is a subset F of E(G) of size at most k such that vc(G/F ) ≤ vc(G) − d,
then F is of size exactly k. We summarize below all the assumptions on the input instance.

▶ Guarantee 4.1. Consider an instance (G, k, d) of Contraction(vc) that satisfies the
following conditions.

G is a connected graph, k < rank(G), and d ≤ k.
A minimum vertex cover X of G is provided as an additional part of the input.
rank(X) < d.
(G, k − 1, d) is a No-instance of Contraction(vc).

Unless stated otherwise, we denote the independent set V (G) \ X by Y .
Consider an instance (G, k, d) of Contraction(vc) with Guarantee 4.1. Using Lemma 6,

we construct 2O(d) many instances of Annotated Contraction(vc) such that (G, k, d) is
a Yes-instance if and only if at least one of these newly created instances is a Yes-instance.
Informally, let F be the set of edges in a spanning forest of G[X]. As rank(X) < d, we have
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|F | < d. We iterate over all ‘valid’ partitions ⟨XL, XR⟩ of V (F ). We construct an instance
of Annotated Contraction(vc) for each such a partition. We formalize this intuition
and prove its correctness in the following lemma.

▶ Lemma 16 (⋆). Suppose that there is an algorithm that solves Annotated Contrac-
tion(vc) in time f(n, k, d). Then, there exists an algorithm that given as input an instance
(G, k, d) of Contraction(vc) with Guarantee 4.1, runs in time 3d · nO(1) · f(n, k, d), and
correctly determines whether it is a Yes-instance.

To solve an instance of Annotated Contraction(vc), we reduce it to an equivalent
instance of the Constrained MaxCut problem. To present such a reduction, it is convenient
to work with an instance ((G, k, d), X, ⟨XL, XR⟩) of Annotated Contraction(vc) where
X is an independent set. This is guaranteed by the following reduction rule.

▶ Reduction Rule 4.1. Let ((G, k, d), X, ⟨XL, XR⟩) be an instance of Annotated Con-
traction(vc), F1 = E(XL, XR), and F2 be the set of edges in a spanning forest of G[XL].

Delete the edges in F1.
Contract the edges in F2 and reduce both k and d by |F2|.

Return the instance ((G′, k′, d′), X ′, ⟨X ′
L, XR⟩) where G′ = (G − F1)/F2, k′ = k − |F2|,

d′ = d − |F2|, X ′ = V (G[X]/F2), and X ′
L = V (G[XL]/F2).

▶ Lemma 17 (⋆). Reduction Rule 4.1 is safe. Therefore, it is safe to assume that we are
given an instance ((G, k, d), X, ⟨XL, XR⟩) of Annotated Contraction(vc) such that X

is an independent set and a minimum vertex cover of G.

We find the following reformulation of Annotated Contraction(vc) convenient to
present an algorithm to solve it.

Constrained MaxCut
Input: An instance (G, k, d) of Contraction(vc), a minimum vertex cover X of G,
and a tuple ⟨XL, XR⟩ such that XL, XR are disjoint subsets of X.
Question: Does there exist a partition ⟨VL, VR⟩ of V (G) such that (i) E(VL∩Y, VR∩X) =
∅, (ii) rank(E(VL ∩ X, VR ∩ Y )) ≥ k, (iii) |VR ∩ Y | − |VR ∩ X| ≤ k − d, and (iv) XL ⊆ VL

and XR ⊆ VR?
Note that in Annotated Contraction(vc) we are seeking for a pair of subsets, whereas

in Constrained MaxCut we are looking for a partition of V (G). Such a formulation
allows us to handle vertices that we have decided to keep out of a solution pair. Note that
the input instances for both of these problems are the same. Hence, due to Lemma 17, it is
safe to assume that X is a minimum vertex cover and an independent set in G. In the next
lemma we show that both problems are in fact equivalent.

▶ Lemma 18 (⋆). An instance ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance of Annotated
Contraction(vc) if and only if it is a Yes-instance of Constrained MaxCut.

Consider an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut. We consider
the following two cases: (1) k = d, and (2) d < k < 2d. (Recall that we are in the case
where k < 2d.) The first case, as we will see, allows us to impose additional restrictions on
the vertices that are in VR. It also helps us to set up some conditions such that, if they
are satisfied while running the algorithm, then it can terminate and safely conclude that
the input is a Yes-instance. In the second case, even for k = d + 1, we do not have these
privileges. We deal with each of the two cases separately. Namely, Lemma 19 states that if
an input instance is of the second type, then we can construct a collection of 2O(d) · nk−d
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many instances of the first type such that the input instance is a Yes-instance if and only
if at least one of these newly created instances is a Yes-instance. We remark that this is
the only place, in the whole algorithm, where an nk−d-factor appears in the running time.
Recall that Theorem 2 implies that this factor is unavoidable. After this lemma we present
an algorithm to solve the instances that are of the first type.

▶ Lemma 19 (⋆). Suppose that there is an algorithm that, given an instance ((G, k, d), X, ⟨XL, XR⟩)
of Constrained MaxCut with a guarantee that k = d, runs in time f(n, k, d) and cor-
rectly determines whether it is a Yes-instance. Then, there is an algorithm that solves
Constrained MaxCut in time f(n, k, d) · 2O(d) · nk−d+1.

We proceed to present an algorithm to solve an instance ((G, k, d), X, ⟨XL, XR⟩) of
Constrained MaxCut with a guarantee that k = d. We first present a reduction rule to
simplify these instances under the presence of a matching saturating X.

▶ Reduction Rule 4.2. Consider an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained
MaxCut such that k = d and X is an independent set in G. Let M be a matching in G

saturating X.
If there exists x ∈ X \ XL such that N(x) \ V (M) ̸= ∅, then add x to XL.
If there exists x ∈ XL such that N(x)\V (M) ̸= ∅, then delete all vertices in N(x)\V (M).

Return instance ((G′, k, d), X, ⟨X ′
L, XR⟩) where G′ = G−(N(x)\V (M)) and X ′

L = XL ∪{x}.

▶ Lemma 20 (⋆). Reduction Rule 4.2 is safe.

The full version contains an informal description of the algorithm for Constrained
MaxCut with a guarantee that k = d. We now briefly describe the algorithm formally.

We consider directed graphs that can have parallel arcs. We define the rank of a digraph,
and the rank of a subset of its vertices or arcs using its underlying undirected graph.

Constrained Digraph MaxCut
Input: A digraph D, a tuple ⟨XL, XR⟩ of disjoint subsets of X, and an integer k.
Question: Does there exist a partition (VL, VR) of V (G) such that (i) A(VR, VL) = ∅,
(ii) rank(A(VL, VR)) ≥ k, and (iii) XL ⊆ VL and XR ⊆ VR?

We say that a partition ⟨VL, VR⟩ is a solution of (D, ⟨XL, XR⟩, k) if it satisfies all
the three conditions in the statement of the problem. We present a reduction that,
given an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut, returns an instance
(D, ⟨XL, XR⟩, k) of Constrained Directed MaxCut. The reduction takes as input an
instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut on which Reduction Rule 4.2
is not applicable. It starts with a copy of the graph G and constructs a digraph D. The
reduction finds (in polynomial time) a matching M in G that saturates all vertices in X.
For every xy ∈ E(G), where x ∈ X and y ∈ Y , it deletes edge xy and adds arc (x, y)
(i.e., it directs edges from X to Y ). For every arc (x, y) in M , it adds arc (x1, x) for every
in-neighbour x1 of y, and then deletes vertex y. This completes the construction of D. The
reduction returns (D, ⟨XL, XR⟩, k) as the instance of Constrained Digraph MaxCut.

▶ Lemma 21 (⋆). ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance of Constrained MaxCut if
and only if (D, ⟨XL, XR⟩, k) is a Yes-instance of Constrained Digraph MaxCut.

We present a dynamic programming algorithm for Constrained Directed MaxCut.

▶ Lemma 22 (⋆). There is an algorithm that, given an instance (G, ⟨XL, XR⟩, k) of Con-
strained Directed MaxCut, runs in time 2O(k) · nO(1) and correctly determines whether
it is a Yes-instance.
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We finally have all the ingredients to prove Lemma 14, and consequently Theorem 3 as
well. The proofs are provided in the full version.

5 Conclusion

In this article we considered the problem of reducing the size of a minimum vertex cover of a
graph G by at least d using at most k edge contractions. Note that the problem is trivial
when k < d. A few simple observations prove that when d ≤ 2k, the problem is coNP-hard
and FPT when parameterized by k + d. Almost all of our technical work is to handle the
case when d ≤ k < 2d. We proved that the problem is NP-hard when k = d + ℓ−1

ℓ+3 · d for any
integer ℓ ≥ 1 such that k is an integer (in particular, ℓ = 1). This implies that the problem
is hard for various values of k − d in the set {0, 1, . . . , d − 1}. We were able to prove that if
(k − d) is a constant then the problem is FPT when parameterized by k + d. However, if no
such a condition is imposed, then the problem is W[1]-hard. More precisely, we presented an
algorithm with running time 2d · nk−d+O(1) and proved that the problem is W[1]-hard when
parameterized by k + d in the case where k − d = d

3 (see the proof of Theorem 2).
We believe that it should be possible to prove that the problem is NP-hard for every

value of k − d in the set {0, 1, . . . , d − 1}. Such a reduction has the potential to sharpen
the distinction between FPT and W[1]-hard cases as k − d varies in this range. It might
also simplify the analysis of our XP algorithm or lead to a simpler algorithm. It would be
interesting to analyze the parameterized complexity of the problem with respect to structural
parameters like the vertex cover number or the treewidth of the input graph. Note that the
problem is trivially FPT when parameterized by the vertex cover number. Finally, it is worth
mentioning that we did not focus on optimizing the degree of the polynomial term nO(1) in
our XP algorithm, although it is reasonably small.
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