
HAL Id: lirmm-03775613
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03775613v2

Submitted on 28 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Demystifying the TensorFlow Eager Execution of Deep
Learning Inference on a CPU-GPU Tandem

Paul Delestrac, Lionel Torres, David Novo

To cite this version:
Paul Delestrac, Lionel Torres, David Novo. Demystifying the TensorFlow Eager Execution of Deep
Learning Inference on a CPU-GPU Tandem. DSD 2022 - 25th Euromicro Conference on Digital
System Design, Aug 2022, Maspalomas, Spain. pp.446-455, �10.1109/DSD57027.2022.00066�. �lirmm-
03775613v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03775613v2
https://hal.archives-ouvertes.fr

Demystifying the TensorFlow Eager Execution
of Deep Learning Inference on a CPU-GPU Tandem

Paul Delestrac, Lionel Torres, and David Novo
LIRMM, University of Montpellier, CNRS

Montpellier, France
Email: {firstname}.{lastname}@lirmm.fr

Abstract—Machine Learning (ML) frameworks are tools that
facilitate the development and deployment of ML models. These
tools are major catalysts of the recent explosion in ML models
and hardware accelerators thanks to their high programming ab-
straction. However, such an abstraction also obfuscates the run-
time execution of the model and complicates the understanding
and identification of performance bottlenecks. In this paper, we
demystify how a modern ML framework manages code execution
from a high-level programming language. We focus our work on
the TensorFlow eager execution, which remains obscure to many
users despite being the simplest mode of execution in TensorFlow.
We describe in detail the process followed by the runtime to
run code on a CPU-GPU tandem. We propose new metrics to
analyze the framework’s runtime performance overhead. We use
our metrics to conduct in-depth analysis of the inference process
of two Convolutional Neural Networks (CNNs) (LeNet-5 and
ResNet-50) and a transformer (BERT) for different batch sizes.
Our results show that GPU kernels execution need to be long
enough to exploit thread parallelism, and effectively hide the
runtime overhead of the ML framework.

Index Terms—ML frameworks, TensorFlow eager execution,
profiling, CPU-GPU tandem

I. INTRODUCTION

Deep Learning (DL) has gained massive popularity in many
Machine Learning (ML) application domains such as com-
puter vision (e.g., image classification), or natural language
processing (e.g., language models). As a result, recent years
have seen an explosion of new DL models (e.g., Convolutional
Neural Networks (CNNs) [1] [2], transformers [3], etc.) and
accelerator architectures (e.g., GPUs, TPUs [4], neural pro-
cessing engines [5] [6], etc.). Open-source ML frameworks,
such as TensorFlow [7], PyTorch [8] or MXNet [9], are major
catalysts of such an explosion. An ML framework is a tool that
facilitates the development and deployment of ML models.
It provides a high-level interface (typically in Python) to
describe the ML model and orchestrates its execution. Modern
ML frameworks automatically distribute the model execution
across CPUs and available accelerators, such as GPUs.

The high abstraction of ML frameworks greatly enables
application developers to focus on the functionality of ML
models without worrying about low-level implementation de-
tails. But on the flip side, a big disparity in performance can be
observed between the different frameworks [10]. Additionally,
such an abstraction obfuscates the run-time execution of the
model and complicates the understanding and identification of
performance bottlenecks. For example, TensorFlow, one of the

most popular ML frameworks, offers two different modes of
execution: eager and graph execution. Eager execution [11] is
an imperative interface that executes operations immediately
as they are called from Python. This enables fast debugging
with immediate run-time errors. Therefore, eager execution is
useful in the development phase of ML models. However, it
is restricted to operation-level optimizations, which limits its
performance. Graph execution extends the optimization scope
by transforming the Python code into a graph of operations,
which it optimizes before execution [12]. Therefore, graph ex-
ecution is useful in the deployment phase as it achieves higher
performance at the expense of debuggability. TensorFlow also
supports different hardware backends, including CPU, GPU,
TPU, etc. Due to this complexity, the TensorFlow codebase has
grown to more than 3 million lines of code, which is practically
inaccessible to most users despite being open source [13]. As
a result, users often operate TensorFlow as a black box and
cannot harness the full power of the framework. We believe
this to be a common trend in the community with regard to
modern ML frameworks.

Our main goal is to demystify how a modern ML frame-
work manages code execution from a high-level programming
language. To this end, we focus on the TensorFlow eager
execution, which remains somewhat of a mystery to many
users despite being the simplest mode of execution in Tensor-
Flow. We analyze and describe how TensorFlow transforms
high-level Python code into execution kernel calls to the GPU
and CPU, when memory is allocated and what triggers data
transfers between CPU and GPU. Furthermore, we leverage
the insights gathered during the analysis to profile the overhead
of the framework in the execution of representative ML
inference models. To this end, we develop TensorFlow eager
runtime profiler, a tool that extends the profiling tools provided
by TensorFlow. We open source this tool in our GitLab
repository [14].

In summary, this work makes the following contributions:
• We provide a detailed description of the main steps followed

by the TensorFlow eager execution runtime to run high-level
Python code on a CPU-GPU tandem.

• We propose new metrics, such as the scheduling queue
occupation, to expose and analyze the ML framework’s
runtime performance overhead.

• We conduct in-depth profiling of the inference process of
two CNNs (LeNet-5 [1] and ResNet-50 [2]) and a trans-

former (BERT [3]) for different batch sizes. Our results
show that GPU kernels execution need to be long enough to
exploit thread parallelism, and effectively hide the runtime
overhead of the ML framework.

II. BACKGROUND ON GPU EXECUTION

NVIDIA GPU architecture [15] is designed to execute
thousands of threads at the same time, sacrificing single-
thread performance and execution latency to achieve high
compute throughput on data-parallel workloads. A GPU needs
a CPU managing the computing tasks. Together they form a
host/device pair (CPU-GPU tandem). To execute code on GPU
devices, NVIDIA exposes a programming platform and model
called CUDA [16]. CUDA provides a programming language
that extends C++ to program several software abstractions
that allow the concurrent execution of GPU functions called
kernels in multiple streams.

A kernel is a function callable from the CPU that runs on the
GPU. The programmer specifies the execution configuration of
a kernel in the source code. This configuration specifies the
number of threads running concurrently on the GPU as well
as the memory allocation and data transfer operations (i.e.,
MemCpyH2D to transfer from host to device and MemcpyD2H
for the reverse operation) needed to run the kernel. It is also
possible to specify the stream on which to run the kernel.

Stream 1
Stream 2
Stream 3

H2D copy D2H copy
H2D copy
Kernel exec.

time

Kernel exec. D2H copy
H2D copy Kernel exec. D2H copy

concurrency

Fig. 1: CUDA Streams

Streams are a CUDA programming model feature where
different work can be submitted to multiple queues and pro-
cessed independently by the GPU. As illustrated in Fig. 1, the
use of streams enables concurrency between data transfer and
kernel execution. CUDA defines a stream as a a sequence of
operations executing sequentially in the order as issued from
the host CPU. However, operations issued in separate streams
can be executed concurrently and can overlap. In concrete,
CUDA exposes the following operations as independent tasks
that can operate concurrently with one another:
• Computation on the host
• Computation on the device (i.e., kernel execution)
• Memory transfers from the host to the device (H2D copy)
• Memory transfers from the device to the host (D2H copy)
• Memory transfers within the memory of a given device
• Memory transfers among devices

TensorFlow has a very specific design for using CUDA
streams. There is a main compute stream, a main pair of
host to device and device to host streams, as well as a vector
of device to device streams (used when computations are
distributed over multiple devices). The main compute stream

can handle transfers and computations. Secondary compute
streams can be used, however, they cannot perform computa-
tions concurrently with the main stream.

III. TENSORFLOW EAGER EXECUTION

TensorFlow runtime is responsible for executing a user-
defined model on a selected device, such as a CPU or a
GPU. For the user to be able to build ML models, TensorFlow
provides several APIs (e.g., JavaScript, C++, Java, etc.). The
most complete, best documented, and most popular of them
is the TensorFlow Python API. As discussed previously, the
TensorFlow runtime can follow two execution modes: eager
execution and graph execution. We will focus on TensorFlow
eager execution runtime.

TensorFlow eager execution is the default mode of execution
of TensorFlow. It executes operations immediately as they
are called from the user-defined model. This behavior enables
line-by-line debugging, which is not as straightforward when
operations are buried in an optimized graph (i.e., when using
graph execution). TensorFlow eager execution follows the
same specific steps to execute each operation. We group the
steps in three different phases: enqueuing, dequeuing and
kernel execution (illustrated as 1 , 2 , and 3 in Fig. 2,
respectively). TensorFlow eager execution can execute syn-
chronously (SYNC) or asynchronously (ASYNC). In the case
of SYNC execution, the enqueuing and dequeuing phases are
merged into a single thread which is synchronized with the
device kernel execution. This single main thread starts with the
call of an operation in Python, launches the execution on the
device and waits for the return value before executing the next
operation. In the case of ASYNC execution, the enqueuing
and dequeuing phases are performed by separate threads. The
enqueuing phase starts with the call of an operation in Python
and pushes one or several computation nodes in the scheduling
queue. Asynchronously, the dequeuing phase pops the nodes
from the queue and manages their execution. A computation
node is a software object gathering all the information needed
to call kernel execution on the target device.

In this section, we provide a detailed description of the main
steps that the eager execution runtime follows to execute an
ML model on a CPU-GPU tandem.

A. TensorFlow operations

To compose a TensorFlow model in Python, the user uses
the available TensorFlow operations (e.g., matmul, relu, etc.)
as defined in the Python API [17]. TensorFlow operations are
linked to optimized kernels: CPU kernels for every operation,
and GPU kernels for GPU-compatible operations. These ker-
nels are accessible from the Python API via wrapper functions,
which are automatically generated for every registered opera-
tion when building TensorFlow from source.

TensorFlow includes a very complete set of already reg-
istered operations, but still allows developers to add custom
operations [18]. To register a new operation in TensorFlow,
developers must (1) define its interface by specifying its inputs,
outputs, and attributes types and shapes in a C++ module, (2)

implement a CPU OpKernel for the operation, (3) implement
a CUDA kernel if GPU compatibility is intended, and (4) link
the previously defined kernel(s) with the specific operation.

B. Enqueuing: Python host program

When starting to execute the Python wrapper function of the
operation, the runtime has to know which mode of execution
has to be used to run. This user-configurable parameter is
stored into the execution context. The context is a collection
of configuration parameters used by the runtime to execute the
Python wrapper functions, such as execution mode (i.e., eager
mode or graph mode), device placement policy, policy to use
when running an operation on a device with inputs which are
not on that device, etc. The context is initialized at the start of
the Python program execution and is referred to whenever the
runtime needs these configuration parameters to make choices
during the execution. Most of the data stored in the context is
thread-local (which is important for the runtime to be thread-
agnostic), so that multiple TensorFlow programs can safely
run in parallel.

Fig. 2 shows the main steps in the enqueuing thread. The
eager execution of an operation starts with the canonicaliza-
tion a of its inputs to the Tensor data type. At this point,
memory is allocated on the host to store the inputs after
the conversion to tensors. A Tensor is a multi-dimensional
array defined by three parameters: a data type, a shape, and
the actual values. However, the TensorFlow runtime does not
directly manipulate the Tensor data type, but interacts with
it through a TensorHandle b . A TensorHandle represents a
tensor (or a not-yet-computed FutureTensor) which lives (or
will live) on a device. A TensorHandle is able to provide the
shape and type of the tensor even if the actual value is yet
to be computed. This mechanism allows the runtime to race
ahead and continue parsing Python operations without having
to wait for the results of the computations. As a result, the main
Python thread can run in parallel with an execution thread (i.e.,
ASYNC execution) instead of stalling while the operation is
being executed (i.e., SYNC execution). If the executed kernels
are sufficiently heavy to run, the Python thread can race ahead
of the device execution and keep the device utilization high
by hiding its own latency. However, when the runtime needs a
tensor value to take a decision (e.g., a data-dependent if-then-
else statement), it will stall until the required value becomes
available (see Section III-D for an example).

After securing the inputs, the runtime gathers all the remain-
ing information needed for the operation to execute in an Op
object c . The Op object includes the name of the operation to
run (as a string), pointers to the input data (i.e., encapsulated
in a TensorHandle), and operation-dependent attributes (e.g., if
one of the inputs needs to be transposed before the operation).
Then, the runtime selects a device to execute the operation
according to the execution context (if a device is specified by
the user) or following an internal heuristic to find the fastest
available device. Based on the name of the operation, the type
and shape of its inputs, and the target device, the runtime also
selects the kernel (i.e., OpKernel) to execute d .

At this point, the runtime validates the placement of the
inputs of the operation e . If the inputs are not placed in the
device targeted to execute the operation, the runtime schedules
the necessary data-transfer operations. In the case of ASYNC
execution, the runtime creates a specific node to handle data
transfer that can be stored in a scheduling queue. In the case
of a host to device data transfer action, which is automatically
inserted by the runtime, the input data corresponds to the
input data of the original operation (i.e., TensorHandle), the
target device is the same as in the operation, and the prompted
OpKernel links to a CUDA MemcpyH2D call.

Once the input placement is verified and scheduled, the
runtime schedules the operation itself f . First, it creates
a TensorHandle for the output of the operation, which is
a FutureTensor. This allows the runtime to schedule future
operations taking this output as an input without having to
wait for the actual Tensor value. Then, the runtime creates a
second node object gathering the Op object, a pointer to the
selected device, and the selected OpKernel.

In the case of SYNC execution, the runtime runs a node
immediately and stalls while waiting for a return value. In the
case of ASYNC execution, the runtime will insert the node in
a scheduling queue and directly return control of the thread.
This architecture enables a layer of parallelism between the
enqueuing and dequeuing processes, which TensorFlow uses
to try to hide the latency of the Python thread behind the
executor thread.

C. Dequeuing: Executor thread

The nodes in the scheduling queue are dequeued by a
separate executor thread following the enqueuing order. The
executor thread stalls or executes a queued node depending on
whether the targeted device is busy or not.

The execution of a node consists of two main steps: the
memory allocation of the operation outputs g , and the call
for kernel execution on the targeted device h . A kernel
describes the computations to perform and can also allocate
memory for intermediate results when needed. TensorFlow
includes a rich set of optimized kernels implemented using
external libraries such as Eigen [19] and cuDNN [20]. Eigen
is a C++ template library for linear algebra that can generate
kernels for multiple input data types and target devices using
the same codebase. This library is particularly useful for
complicated linear algebra operations, as it eliminates the need
to write optimized code for every supported data type, shape,
and device. cuDNN is a library developed by NVIDIA that
provides GPU-accelerated primitives for deep learning such
as convolution, pooling, normalization, activation layers, and
tensor transformation.

D. Illustration example

In this section, we provide a simple example (see Listing 1)
to illustrate the most important concepts described previously
in the section. We consider the example to run in asynchronous
(ASYNC) mode on a system with a local CPU host and a local
CUDA-compatible GPU device.

Canonicalization to a Tensor Scheduling of the execution

Allocate host
memory

Copy
data

Conversion
to Tensor

Link to a
TensorHandle

Creation of
the Op object

Kernel and Device
selection

Device
selection

Kernel
selection

Validate inputs
type and placement

CopyToDevice
Node

Operation node
scheduling

Create an output
TensorHandle

Operation
Node

Run Node

Allocate
device memory

Call device
kernel execution

SCHEDULING
QUEUE

GPU KERNEL EXECUTION

a b c ed f

hg
DEVICE QUEUES

...

DEQUEUING THREAD
from nodes to kernels & data transfers

ENQUEUING THREAD
from Python to execution nodes

TF OP
PYTHON CALL

CPU KERNEL EXECUTION

Fig. 2: Block diagram of the TensorFlow eager execution of a GPU-compatible operation in the ASYNC mode

1 import tensorflow as tf
2 import numpy as np
3
4 with tf.device("/GPU:0"):
5 x = np.random.randn(64, 64)
6 y = tf.constant(np.random.randn(64, 64))
7
8 z = tf.matmul(x, y, transpose_b=True)
9
10 output = tf.nn.relu(z)
11
12 print(output)

Listing 1: Illustration example including a sequence of
operations using the TensorFlow Python API

The gist of our illustration example is a sequence of Python
and TensorFlow operations which: creates a random matrix of
size 64×64, creates a second random matrix of the same size
which is explicitly converted to a constant Tensor, performs
matrix multiplication on the two matrices, performs a ReLU
activation on the matrix multiplication’s output, and prints the
result.

We now describe in detail how TensorFlow executes the
code. Line 1 imports the TensorFlow package into the Python
program. This import has the side effect of initializing the
execution context which stores the configuration information
needed by the runtime. By default, the execution mode spec-
ified in the context is eager execution. Line 2 imports the
package NumPy, which is a popular Python package that offers
mathematical functions to work with multidimensional arrays
and matrices. In the example, it is used to create random inputs
to feed the operations. Line 4 defines a TensorFlow scope
(delimited by the with statement) that we use to specify the
device on which we want to execute the operations. Then, this
information is stored in the execution context and is referred
to during the subsequent steps of the process. Line 5 uses

the NumPy package to initialize a Python variable, storing a
random matrix of shape 64× 64 and of a data type defaulting
to float64. This operation is independent of TensorFlow and
does not invoke any TensorFlow runtime functionality.

Line 6 executes in multiple steps. The first step executes
the same operation as Line 5: it creates a random matrix
of shape 64 × 64 and of type float64. The second step is a
call to the TensorFlow operation tf.constant. The execution
of this operation is then taken up by the TensorFlow eager
execution runtime. The runtime starts with the canonicalization
of the input to a Tensor a : it allocates host memory to
store the resulting Tensor and copies the actual data of the
matrix to the Tensor. The type and shape of the Tensor data
follows the shape and type of the NumPy matrix: 64 × 64
and float64. Then, the Tensor is linked to a TensorHandle b
that lives in the CPU. The runtime creates an Op object c
which gathers: the operation name (i.e., EagerConst is the
tf.constant operation name), the newly created TensorHandle,
and no attributes (the operation does not have any). Next, the
runtime selects the target device (GPU as specified in Line
4) and the kernel to run (IdentityOp for executing tf.constant
in the GPU) d . The runtime validates the placement of
the input e , which should also be in the GPU. However,
the input TensorHandle currently lives in the CPU, so the
runtime creates a CopyToDevice node to execute the required
data transfer, and inserts it in the scheduling queue. Then,
the runtime moves to the node scheduling of the tf.constant
operation f : creating a TensorHandle for the output (which
lives on the GPU device) and the corresponding node object.
Finally, the runtime inserts the node in the queue before
returning the control to Python.

Line 8 follows a very similar process as Line 6 but with
four key differences. First, the tf.matmul operation takes x
and y as inputs. While y is already a Tensor, x is still a
NumPy array. Hence, when converting the inputs to Tensors

a , the runtime prompts a tf.constant operation scheduling to
ensure the conversion of x and its placement on the GPU. This
tf.constant operation also triggers the creation of a TensorHan-
dle b which lives on the GPU device. Second, the tf.matmul
Op object c includes the transpose_b attribute, which is
passed as an argument to the device kernel when executing
the node. Third, the runtime selects the GPU as the execution
device and chooses an OpKernel d that is linked to a
CUDA kernel named volta_dgemm_128x64_tn. Fourth,
no CopyToDevice node is needed as the two TensorHandles
linked to the inputs already live in the GPU device.

Line 10 launches the execution of the tf.nn.relu opera-
tion, which follows the same process as the previous op-
eration but with some simplifications. As its input is al-
ready a Tensor and lives on the GPU device, the run-
time skips the conversion to Tensor a and the Copy-
ToDevice node when validating the placement of the in-
put e . This operation is linked to a GPU kernel named
Relu_GPU_DT_DOUBLE_DT_DOUBLE_kernel.

Line 12 calls the Python print function on the Tensor z.
This function is overloaded by TensorFlow: when the print
function is called on a Tensor, the runtime uses the correspond-
ing TensorHandle to know where the data is located. In this
case, the data is a FutureTensor in the GPU. Accordingly, the
runtime needs to copy the value of the Tensor z from the GPU
to the CPU and convert it to a Python printable data type (i.e.,
NumPy array), which is then printed by Python. However, to
execute this operation TensorFlow needs the actual value of
the Tensor, which is only produced after the execution of the
tf.nn.relu operation. As a result, the enqueuing thread stalls
and waits for the value of the Tensor z to be produced.

In parallel with the enqueuing thread, the executor thread
(i.e., dequeuing thread) has been processing the nodes in the
scheduling queue. For each node, the executor thread allocates
GPU memory for the output g and calls the corresponding
GPU kernels f . Once all nodes have been dequeued and
executed on the GPU device, the numerical value of the Tensor
z is stored in the GPU memory. Thus, the enqueuing thread is
notified that the value of z is available and resumes processing
Line 12. It sends a Memcpy command to copy the data from
the GPU to the host, storing it as a printable data type (i.e.,
NumPy array). Finally, the Python interpreter prints the value
of z in the user’s console.

IV. ANALYSIS

In this section, we present our approach to estimating the
runtime performance overhead of TensorFlow eager execution
using a target CPU-GPU tandem. We leverage TensorFlow
profiling capabilities to analyze TensorFlow eager execution
on a particular workload. From our analysis, we extract three
key metrics: the share of the execution time spent in CPU
or GPU kernel execution, the distribution of the execution
time across the different phases of eager execution for each
operation, and the scheduling queue utilization over time.

A. TensorFlow profiling capabilities

TensorFlow offers a profiling tool, the TensorFlow Pro-
filer [21], to analyze the performance of an executed model.
This profiler collects performance data to help understanding
hardware resource utilization and identifying performance
bottlenecks in the model. It collects profiling data sent by the
TensorFlow runtime (e.g., the execution time of operations
and functions of the runtime) and device metrics (e.g., kernel
execution times, memory usage) recovered using the NVIDIA
CUDA Profiling Tools Interface (CUPTI) [22]. Based on
the collected data, TensorFlow offers different visualization
tools (i.e., TensorBoard [23]) to gain insight into the input
pipeline of the executed model, the distribution of TensorFlow
operations between host and device, statistics about GPU and
CPU kernels, memory profiling, and training statistics.

These tools provided by the profiler help to debug the model
performance for inference and training. However, some of
the information provided by these tools is often too low-
level and difficult to interpret by the average user. As a
result, it does not offer an accessible analysis of some of the
inner mechanisms of the framework. Thus, in this section, we
propose to extend the profiler with new analysis metrics to
gain further understanding on how the framework optimizes
and schedules the execution of operations. Fortunately, the data
gathered by the profiler are saved in local JSON files during
execution. Therefore, we can repurpose these data to provide
new metrics and analysis to highlight how the framework
optimizes and schedules the execution of operations. We open
source these extensions [14] and hope to help average users
harnessing the full power of the TensorFlow eager runtime.

B. Time spent in kernel execution

For a TensorFlow program to achieve high performance, the
time spent executing CPU and GPU kernels, which correspond
to the real operations in the ML model, should dominate the
total execution time. In practice, however, an ML runtime
also needs to execute other enabling tasks such as parsing
the Python code, copying data between CPU and GPU, etc.

Our first analysis goal is to provide insight into how
execution time is divided between kernel execution and the
rest, which we consider to be the overhead of the runtime.
To this end, we evaluate the distribution of execution time by
parsing the data gathered by the TensorFlow profiling tool.
We distribute the profiled events between three categories:
CPU kernel execution, GPU kernel execution, and the rest of
the execution. Additionally, when executing on a CPU-GPU
tandem, the CPU and GPU kernel execution times can overlap,
which is the best case scenario regarding computing resource
utilization. Thus, we also track how often this happens.

C. Time distribution across eager execution phases

The TensorFlow eager execution of an operation (described
in Section III) can be divided into three major phases as shown
in Fig. 2: enqueuing, dequeuing, and kernel execution. Fig. 3
illustrates the phases for two different scenarios: (a) CPU-only
execution, and (b) CPU-GPU tandem execution.

Executor Thread

Host program
Thread

time

Enqueuing

Kernel exec. Kernel exec.

Dequeuing

(a) CPU only execution

GPU
Thread

Executor Thread
(CPU)

Host program
Thread (CPU)

time

Enqueuing

Kernel exec.

Kernel exec.Stream 1
Stream 2
Stream 3 H2D copy

Dequeuing

(b) CPU-GPU tandem execution

Fig. 3: Phases of TensorFlow eager execution (ASYNC)

First, the TensorFlow runtime handles the groundwork of
execution: collecting the input data and attributes of the
operation, selecting a device on which to execute and a corre-
sponding kernel, and packaging everything into a node. This
node will be either executed directly by the same enqueuing
thread (SYNC mode) or queued for later execution by a
distinct executor thread (ASYNC mode). These two threads
are both threads running on host. We define this first part of
the execution as the enqueuing time (1 in Fig. 3).

Second, the executor thread runs once there is a node in the
scheduling queue and handles the last steps before the kernel
execution: allocating memory for the output, instantiating the
kernel to execute, and calling the kernel execution on the
targeted device. We define this second phase of the operation
execution as the dequeuing time (2 in Fig. 3). In the case
of CPU kernel execution, both dequeuing and CPU kernel
execution are performed by the executor thread. However, we
separate CPU kernel execution time (3a in Fig. 3a) from the
rest of the dequeuing (2 in Fig. 3a).

Finally, the executor thread issues the corresponding ker-
nel(s) to the targeted device for execution (3a and 3b in
Fig. 3a and 3b, respectively). As our host/device execution
target is a CPU-GPU tandem, this third phase of the execu-
tion corresponds to GPU kernel execution, for most of the
operations. However, some operations have only a CPU kernel
(see Section III-A). In such case, the execution corresponds to
CPU kernel execution time. Thanks to the stream mechanism
(described in Section II), data transfers between CPU and GPU
can occur while a GPU kernel is executed.

The time spent enqueuing and dequeuing has to be shorter
than the kernel execution to take advantage of the latency
hiding mechanisms described in Section III. Thus, we also
analyze the distribution of the execution times of each phase.

D. Utilization of the scheduling queue

TensorFlow eager execution includes a mechanism to hide
node execution scheduling time: the scheduling queue. The last
part of our analysis focuses on the scheduling queue utiliza-
tion. To this end, we study the dequeuing phase and the kernel
execution phase with two different metrics: scheduling queue
utilization over time, and the distributions of the execution
time between phases, when the scheduling queue is empty or
not-empty (i.e., loaded with a node or more).

To profile the utilization of the scheduling queue over time,
we use the rest of the profiling events (not sorted as kernel
execution) at our disposal and distribute them in two new
categories: enqueuing events and dequeuing events. We use
these two categories to deduce the utilization of the scheduling
queue over time. We assume that a node is in the queue from
the end of the enqueuing phase until the beginning of the
dequeuing phase. With this assumption, we are able to recreate
the scheduling queue utilization over time. The role of the
scheduling queue is to hide the node execution scheduling
time. Thus, we cross-analyze this queue utilization with kernel
execution timings and dequeuing timings. We consider three
scenarios:
1) When CPU or GPU kernels are executing, the scheduling

time is masked regardless of the utilization of the schedul-
ing queue.

2) When the executor thread is active (i.e., is dequeuing a
node from the scheduling queue), the scheduling time is
masked regardless of the scheduling queue utilization.

3) When the executor thread is stalling, waiting for the en-
queuing thread to insert a node in the queue, the scheduling
queue is underutilized.

In the case of an empty scheduling queue, the main reason
for the executor thread to be stalling would be that the host
program (enqueuing thread) is waiting for some data to be
computed by a kernel execution before scheduling a new node.
For example, the dimensions of an operation n[t] could depend
on the result value of an operation n[t − 1], forcing the host
program to wait for the value to be computed to be able to
schedule the operation n[t]. To verify this hypothesis, we add
the time when the enqueuing thread is stalling (i.e., waiting
for a value) to our profiling of the scheduling queue utilization
over time. In the case of a loaded scheduling queue (i.e., with
one or more node), the main reason for the executor thread to
be stalling would be that a data transfer is occuring. Hence, the
executor thread is stalling for data to issue the next kernel call.
To verify this hypothesis, we add the data transfers timings to
our profiling of the scheduling queue utilization over time.

V. RESULTS

In this section, we follow the approach described in Sec-
tion IV to analyze TensorFlow eager execution on three differ-
ent inference workloads: two Convolutional Neural Networks
(CNN) (i.e., LeNet-5 and ResNet-50) and one transformer
network (i.e., BERT).

0%

25%

50%

75%

100%

(a)

GPU kernel execution CPU kernel execution Other

CPU CPU-GPU CPU CPU-GPU CPU CPU-GPU

Batch Size

10 2

10 1

100

101

Ex
ec

ut
io

n
tim

e
pe

r i
m

ag
e

(m
s)

12.9 14

0.102

0.0142
0.085

0.0024

(b)

 1 1024 8192

Fig. 4: LeNet-5 inference using three batch sizes on CPU-only
and CPU-GPU tandem targets: (a) Execution time distribution;
(b) Execution time per image

A. Experimental setup

To perform our analysis of the TensorFlow eager execution
runtime, we performed inference with our three models (i.e.,
LeNet-5, ResNet-50 and BERT) on a CPU-GPU tandem (i.e.,
two Intel Cascade Lake 6248 with a total of 40 cores and
192GB of RAM, paired with an NVIDIA V100 with 32GB of
dedicated RAM). We use TensorFlow [7] v2.8.0 as the target
framework for our experiments.

The LeNet-5 model is recreated using TensorFlow, fol-
lowing the 1989 paper from LeCun et al. [1]. We use the
ResNet-50 pre-trained model from the TensorFlow API Keras
Applications [24], which follows the architecture described
by He et al. [2]. The BERT pre-trained model is retrieved
from the HuggingFace library [25] and follows the architecture
described by Devlin et al. [3]. We execute the inference in the
pre-trained models on TensorFlow with three representative
batch sizes (one, medium, and high) chosen experimentally for
each model. For each experiment, we run the inference once
with the same batch size before profiling the execution. This
enables us to compare our workloads with already cached Op-
Kernels, avoiding irregularities (e.g., red_zone_checker
kernel checks) in the execution time due to kernel instantia-
tions.

B. Kernel execution time

We evaluate the share of the execution time dedicated to
CPU and GPU kernel execution running on both our CPU-
only target and our CPU-GPU tandem. We also evaluate the
execution time per item (i.e., execution time divided by batch
size) using the same workloads on the same platforms.

Fig. 4a, 5a, and 6a show the execution time distribution
(between CPU kernel execution, GPU kernel execution and
the rest) for LeNet-5, ResNet-50, and BERT, respectively. We
make three observations. First, all the workloads show an
increase in kernel execution share when increasing the batch

0%

25%

50%

75%

100%

(a)

GPU kernel execution CPU kernel execution Other

CPU CPU-GPU CPU CPU-GPU CPU CPU-GPU

Batch Size

100

101

102

Ex
ec

ut
io

n
tim

e
pe

r i
m

ag
e

(m
s)

209
65.8 100

2.21

99

0.653

(b)

 1 32 128

Fig. 5: ResNet-50 inference using three batch sizes on CPU-
only and CPU-GPU tandem targets: (a) Execution time distri-
bution; (b) Execution time per image

0%

25%

50%

75%

100%

(a)

GPU kernel execution CPU kernel execution Other

CPU CPU-GPU CPU CPU-GPU CPU CPU-GPU

Batch Size

100

101

102

103

Ex
ec

ut
io

n
tim

e
pe

r s
en

te
nc

e
(m

s)

961 620

42.8

4.83

26.6

0.307

(b)

 1 128 2048

Fig. 6: BERT inference using three batch sizes on CPU-only
and CPU-GPU tandem targets: (a) Execution time distribution,
and (b) Execution time per sentence

size, both when executing on CPU-only and on CPU-GPU
tandem. For example, on a CPU-GPU tandem, the LeNet-5
kernel execution time increases from 5% to 24% for a batch
size of 1 and 8192 images, respectively; the ResNet-50 kernel
execution time increases from 7% to 75% for a batch size of 1
and 128 images, respectively; and the BERT kernel execution
time increases from 5% to 22% for a batch size of 1 and 2048
sentences, respectively. Second, the execution time of the
CPU kernels becomes negligible when running on a CPU-GPU
tandem. We observe that 3% of the execution time is spent in
CPU kernel execution in average. In addition, the concurrent
execution time between CPU and GPU kernel executions,
which we include as part of the GPU kernel execution time in
the figure, represents less than 1% of the total execution time.
This shows that TensorFlow manages to use the GPU for most

of the kernel execution when computing on large batch sizes.
However, for small batch sizes, we can see that CPU kernel
execution time can be higher than GPU kernel execution time.
Finally, the overhead of the framework is considerable across
all the workloads. It represents 95% of the execution time
when running LeNet-5 on a CPU-GPU tandem with a single
image. For the remaining workloads executing on a CPU-GPU
tandem, it represents more than half of the execution time. The
only exception being the ResNet-50 with a batch size of 128
images, where the framework overhead is reduced to 23% of
the total execution time. Eager execution has to schedule every
operation one-by-one. Hence, for the latency of the framework
to be negligible for one operation, its enqueuing time has to
be significantly shorter than the execution time of its kernel.

Fig. 4b, 5b, and 6b show the execution time per item, for
LeNet-5, ResNet-50, and BERT, respectively. We observe that
the execution time per item drastically reduces as the batch
size increases. For example, the execution time per sentence
of BERT becomes 37× and 2019× faster when increasing
the batch size from 1 to 2048, running on a CPU-only and
CPU-GPU tandem, respectively.

C. Time distribution between eager execution phases

We evaluate the distribution of the execution times of the
different execution phases in the eager execution of all the
operations of each workload.

Fig. 7a, 7b, and 7c show the distribution of the operations
execution time between enqueuing time, dequeuing time, GPU
execution time and CPU execution time for LeNet-5, ResNet-
50, and BERT, respectively. Each distribution includes a
marker to indicate the minimum, mean, and maximum values.
We make three observations. First, the enqueuing, dequeuing
and CPU execution times are largely independent from the
batch size. We observe that the average enqueuing latency is
around 0.1ms for each of our workloads. Although increasing
the batch size induces larger kernels to run, this does not have
an effect on the time needed to enqueue and dequeue the
operations to and from the scheduling queue. Moreover, this
batch size increase does not affect CPU kernel execution time.
GPUs are more optimized to run highly dimensional computa-
tions. Hence, TensorFlow seems to map to GPU kernels most
of the operations whose computational complexity is affected
by the batch size. Second, the GPU execution time increases
with the batch size. LeNet-5 goes from an average of 6µs
to 180µs of GPU execution time when increasing the batch
size from 1 to 8192 images. The average GPU execution time
of ResNet-50 goes from 12µs to 500µs when increasing the
batch size from 1 to 128 images. Finally, BERT goes from an
average of 6µs to 200µs when increasing the batch size from
1 to 2048 sentences. This supports our previous observations,
as larger batch sizes induce larger kernels runs, which results
in relatively more GPU execution time. Third, the enqueuing
time is shorter than the dequeuing time, independently from
the batch size. Throughout all the workloads, the average
dequeuing time is around 2× the average enqueuing time.

1 1024 8192
Batch size

10 2

10 1

100

Du
ra

tio
n

(m
s)

Enqueuing Dequeuing CPU exec. GPU exec.

(a) LeNet-5

1 32 128
Batch size

10 3

10 2

10 1

100

Du
ra

tio
n

(m
s)

Enqueuing Dequeuing CPU exec. GPU exec.

(b) ResNet-50

1 128 2048
Batch size

10 3

10 2

10 1

100
Du

ra
tio

n
(m

s)

Enqueuing Dequeuing CPU exec. GPU exec.

(c) BERT

Fig. 7: Inference on CPU-GPU tandem: distribution of TF
eager execution time grouped by execution phase

D. Utilization of the scheduling queue

We study the utilization of the scheduling queue and the
corresponding execution time distribution across five cate-
gories: GPU kernel execution time, CPU kernel execution
time, dequeuing time, memory transfer time, and waiting
time (i.e., the rest of the execution). When several categories
apply simultaneously, we select the category with the highest
priority following the order of this list above. For example, we
classify the concurrent time between GPU kernel execution
and dequeuing as GPU kernel execution time.

Fig. 8a, 8b and 8c show the execution time distribution
with respect to the utilization of the scheduling queue. We
make three observations. First, the utilization of the scheduling
queue of the CNN workloads increases when increasing the
batch size. The ResNet-50 goes from 8ms of queue utilization
time to around 25ms (3.1×) when increasing the batch size
from 1 to 128. The LeNet-5 queue utilization also grows 3×
when increasing the batch size from 1 to 8192. In contrast,
the utilization of the queue is minimally affected by the batch
size in the case of BERT. Second, the scheduling queue is
empty during most of the execution time. BERT exhibits an

0 2 4 6 8 10
Total time (ms)

empty
loaded

empty
loaded

empty
loaded

Ba
tc

h
Si

ze
CPU kernel exec.
Memcpy

GPU kernel exec.
Waiting

Dequeuing
 1

Queue
State

 1
02

4
Queue
State

 8
19

2
Queue
State

(a) LeNet-5

0 10 20 30 40 50 60
Total time (ms)

empty
loaded

empty
loaded

empty
loaded

Ba
tc

h
Si

ze

CPU kernel exec.
Memcpy

GPU kernel exec.
Waiting

Dequeuing

 1

Queue
State

 3
2

Queue
State

 1
28

Queue
State

(b) ResNet-50

0 100 200 300 400 500
Total time (ms)

empty
loaded

empty
loaded

empty
loaded

Ba
tc

h
Si

ze

CPU kernel exec.
Memcpy

GPU kernel exec.
Waiting

Dequeuing

 1

Queue
State

 1
28

Queue
State

 2
04

8

Queue
State

(c) BERT

Fig. 8: Execution time distribution with respect to the utiliza-
tion of the scheduling queue

empty queue for 72% of its execution time in all batch sizes.
ResNet-50 has an empty queue for 86% (58%) of the time
for a batch size of 1 (128) images. Third, the waiting time
represents a lower portion of the total execution time when
increasing the batch size. BERT and ResNet-50 spend 10%
and 31% less time waiting when increasing their batch sizes
from 1 to 2048 and 128, respectively. However, we observe an
exception with LeNet-5: when the queue is loaded, the time
spent waiting for a node to be enqueued represents 64% for a
batch size of 1 and 82% for a batch size of 8192 images.

To further understand the observed behaviors, we study
the utilization of the scheduling queue over time. Fig. 9, 10
and 11 show the scheduling queue utilization for LeNet-5,
ResNet-50 and BERT inference, respectively. We add anno-
tations in the figures to indicate when the enqueuing thread
is waiting for values to be computed and to show the data
transfer timings. We make two additional observations. First,
the LeNet-5 execution spends a considerable amount of time
on data transfers, which can explain the previously described
behavior of spending a lot of time waiting when the queue is
loaded. Indeed, when subtracting the data transfer time from
the waiting time, the remaining waiting time represents 64%
with a batch size of 1 and only 28% with a batch size of 8192
images. Second, our workloads spend most of the time waiting
for values to be computed. This limits the opportunities

0.0

0.5

1.0

1.5

2.0

No
de

 q
ue

ue
 u

til
iza

tio
n Node occupation

Waiting for value
Data transfers
(H2D & D2H)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

0.0

0.5

1.0

1.5

2.0

No
de

 q
ue

ue
 u

til
iza

tio
n

(a)

(b)

Fig. 9: LeNet-5 inference on a CPU-GPU tandem: utilization
of the scheduling queue over time (a) with a single image, and
(b) with batches of 8192 images

0.0

0.5

1.0

1.5

2.0

No
de

 q
ue

ue
 u

til
iza

tio
n Node occupation
Waiting for value
Data transfers
(H2D & D2H)

0 20 40 60 80
Time (ms)

0.0

0.5

1.0

1.5

2.0

No
de

 q
ue

ue
 u

til
iza

tio
n

(a)

(b)

Fig. 10: ResNet-50 inference on a CPU-GPU tandem: utiliza-
tion of the scheduling queue over time with a single image (a)
and with batches of 128 images (b)

for the host program to advance enqueuing in parallel with
kernel executions, limiting the amount of nodes enqueued.
The zoomed part on Fig. 11 shows that the dequeuing thread
empties the queue while the enqueuing thread waits for a value
to be computed.

VI. RELATED WORKS

To the best of our knowledge, this is the first paper providing
a detailed description and analysis of the TensorFlow eager
execution runtime. In this section, we identify two areas of
related works that are relevant to our contributions.

On the one hand, there have been efforts around pro-
viding ML profiling platforms. However, these works are
either dedicated to specific workloads [26] or evaluate the
framework overhead without analyzing the execution of the

0

2

4

6

8
N

o
d
e
 q

u
e
u
e
 u

ti
liz

a
ti
o
n Node occupation

Waiting for value
Data transfers
(H2D & D2H)

0 100 200 300 400 500 600
Time (ms)

0

2

4

6

8

N
o
d
e
 q

u
e
u
e
 u

ti
liz

a
ti
o
n

0

2

4

6

8

0 5 10 15 20

0 5 10 15 20
0

2

4

6

8

(a)

(b)

Fig. 11: BERT inference on a CPU-GPU tandem: utilization
of the scheduling queue over time with a single sentence (a)
and with batches of 2048 sentences (b)

runtime in detail [27] [28]. Our work is complementary to
these contributions, as it provides a clear description of an
ML framework mechanism. The new insights can be used on
top of the one provided by current profiling platforms.

On the other hand, popular ML frameworks provide
framework-specific profiling tools for developers to profile the
performance of their model [21] [29] [30]. These profiling
tools are intended for developers to help their model optimiza-
tion. However, these tools combine application-level analysis
with low-level information, which is often difficult to interpret
by an average user. They do not include an accessible analysis
of the performance of the inner mechanism of their specific
frameworks. Our work aims to bridge this gap and provide new
accessible insights on the TensorFlow framework runtime.

VII. CONCLUSION

We provide a detailed description of the main steps followed
by the TensorFlow eager execution runtime to run code on a
CPU-GPU tandem. We propose new metrics to analyze the
ML framework’s runtime performance overhead. We use our
described approach to conduct in-depth profiling of the in-
ference process of two CNNs (LeNet-5 and ResNet-50) and a
transformer (BERT) for different batch sizes. Our results show
that the runtime overhead of the ML framework is reduced
considerably when operating with larger CPU and GPU ker-
nels. However, we also show that the overhead could become
significant when GPU kernel execution is not long enough
to hide the framework’s runtime latency. We believe that this
work highlights the need to better understand ML framework’s
bottlenecks. Thus, we open source our profiler [14] and invite
the community to build on our findings.

VIII. ACKNOWLEDGEMENT

This work was performed using HPC/AI resources from
GENCI-IDRIS (Grant 2022-AD011012967) and has been par-
tially funded by the AdequatedDL (ANR-18-CE23-0012) and
the F3CAS (ANR-20-CE25-0010) projects.

REFERENCES

[1] Y. LeCun, B. Boser et al., “Backpropagation applied to handwritten ZIP
code recognition,” Neural Computation, 1989.

[2] K. He, X. Zhang et al., “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[3] J. Devlin, M.-W. Chang et al., “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2019.

[4] “An in-depth look at Google’s first tensor processing unit.” [Online].
Available: https://cloud.google.com/blog/products/ai-machine-learning/
an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

[5] Y. Chen, T. Luo et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the International Symposium on Microarchitecture,
2014.

[6] Y.-H. Chen, T.-J. Yang et al., “Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 2019.

[7] M. Abadi, P. Barham et al., “TensorFlow: A system for large-scale ma-
chine learning,” in Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, 2016.

[8] A. Paszke, S. Gross et al., “PyTorch: An imperative style, high-
performance deep learning library,” Advances in neural information
processing systems, 2019.

[9] T. Chen, M. Li et al., “MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[10] R. Elshawi, A. Wahab et al., “DLBench: a comprehensive experimental
evaluation of deep learning frameworks,” Cluster Computing, 2021.

[11] A. Agrawal, A. Modi et al., “TensorFlow eager: A multi-stage, python-
embedded dsl for machine learning,” in Proceedings of Machine Learn-
ing and Systems, 2019.

[12] R. M. Larsen and T. Shpeisman, “TensorFlow graph optimizations,”
2019.

[13] “TensorFlow, large-scale machine learning on heterogeneous systems.”
[Online]. Available: https://github.com/tensorflow/tensorflow

[14] “TensorFlow eager runtime profiler repository.” [Online]. Available:
https://gite.lirmm.fr/adac/tensorflow-eager-runtime-profiler

[15] D. Kirk, “NVIDIA CUDA software and GPU parallel computing ar-
chitecture,” in Proceedings of the International Symposium on Memory
Management, 2007.

[16] “Cuda, release: 10.2.89.” [Online]. Available: https://developer.nvidia.
com/cuda-toolkit

[17] “All symbols in TensorFlow 2.” [Online]. Available: https://www.
tensorflow.org/api docs/python/tf/all symbols

[18] “TensorFlow guide: Create an op.” [Online]. Available: https:
//www.tensorflow.org/guide/create op

[19] G. Guennebaud, B. Jacob et al., “Eigen v3,” 2010. [Online]. Available:
http://eigen.tuxfamily.org

[20] S. Chetlur, C. Woolley et al., “cuDNN: Efficient primitives for deep
learning,” arXiv preprint arXiv:1410.0759, 2014.

[21] “TensorFlow profiler: Profile model performance.” [Online]. Available:
https://www.tensorflow.org/tensorboard/tensorboard profiling keras

[22] “NVIDIA CUPTI.” [Online]. Available: https://docs.nvidia.com/cupti
[23] “Tensorboard.dev.” [Online]. Available: https://tensorboard.dev/
[24] “Tensorflow Keras applications: Resnet50.” [Online]. Available: https:

//www.tensorflow.org/api docs/python/tf/keras/applications/resnet50
[25] “BERT base model (uncased).” [Online]. Available: https://huggingface.

co/bert-base-uncased
[26] J. Gleeson, M. Gabel et al., “RL-Scope: Cross-stack profiling for deep

reinforcement learning workloads,” in Proceedings of Machine Learning
and Systems, 2021.

[27] C. Li, A. Dakkak et al., “XSP: Across-stack profiling and analysis of
machine learning models on GPUs,” in Proceedings of the International
Parallel and Distributed Processing Symposium, 2020.

[28] C. Li, A. Dakkak et al., “The design and implementation of a scalable
deep learning benchmarking platform,” in 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD), 2020.

[29] “PyTorch profiler.” [Online]. Available: https://pytorch.org/tutorials/
recipes/recipes/profiler recipe.html

[30] “MXNet documentation: Profiling MXNet models.” [Online]. Avail-
able: https://mxnet.apache.org/versions/master/api/python/docs/tutorials/
performance/backend/profiler.html

https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://github.com/tensorflow/tensorflow
https://gite.lirmm.fr/adac/tensorflow-eager-runtime-profiler
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.tensorflow.org/api_docs/python/tf/all_symbols
https://www.tensorflow.org/api_docs/python/tf/all_symbols
https://www.tensorflow.org/guide/create_op
https://www.tensorflow.org/guide/create_op
http://eigen.tuxfamily.org
https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
https://docs.nvidia.com/cupti
https://tensorboard.dev/
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://mxnet.apache.org/versions/master/api/python/docs/tutorials/performance/backend/profiler.html
https://mxnet.apache.org/versions/master/api/python/docs/tutorials/performance/backend/profiler.html

	Introduction
	Background on GPU execution
	TensorFlow eager execution
	TensorFlow operations
	Enqueuing: Python host program
	Dequeuing: Executor thread
	Illustration example

	Analysis
	TensorFlow profiling capabilities
	Time spent in kernel execution
	Time distribution across eager execution phases
	Utilization of the scheduling queue

	Results
	Experimental setup
	Kernel execution time
	Time distribution between eager execution phases
	Utilization of the scheduling queue

	Related works
	Conclusion
	Acknowledgement
	References

