
HAL Id: lirmm-03777151
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03777151

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash

Memory
Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati,
Rakesh Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, Onur Mutlu

To cite this version:
Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh Nadig, et al..
Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability of NAND
Flash Memory. MICRO 2022 - 55th IEEE/ACM International Symposium on Microarchitecture, Oct
2022, Chicago, IL, United States. pp.937-955, �10.1109/MICRO56248.2022.00069�. �lirmm-03777151�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03777151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory

Jisung Park§∇ Roknoddin Azizi§ Geraldo F. Oliveira§ Mohammad Sadrosadati§

Rakesh Nadig§ David Novo† Juan Gómez-Luna§ Myungsuk Kim‡ Onur Mutlu§

§ETH Zürich ∇POSTECH †LIRMM, Univ. Montpellier, CNRS ‡Kyungpook National University

Bulk bitwise operations, i.e., bitwise operations on large bit
vectors, are prevalent in a wide range of important applica-
tion domains, including databases, graph processing, genome
analysis, cryptography, and hyper-dimensional computing. In
conventional systems, the performance and energy efficiency
of bulk bitwise operations are bottlenecked by data movement
between the compute units (e.g., CPUs and GPUs) and the
memory hierarchy. In-flash processing (i.e., processing data
inside NAND flash chips) has a high potential to accelerate
bulk bitwise operations by fundamentally reducing data move-
ment through the entire memory hierarchy, especially when the
processed data does not fit into main memory.

We identify two key limitations of the state-of-the-art in-
flash processing technique for bulk bitwise operations; (i) it
falls short of maximally exploiting the bit-level parallelism of
bulk bitwise operations that could be enabled by leveraging
the unique cell-array architecture and operating principles of
NAND flash memory; (ii) it is unreliable because it is not de-
signed to take into account the highly error-prone nature of
NAND flash memory.

We propose Flash-Cosmos (Flash Computation with One-
Shot Multi-Operand Sensing), a new in-flash processing tech-
nique that significantly increases the performance and energy
efficiency of bulk bitwise operations while providing high re-
liability. Flash-Cosmos introduces two key mechanisms that
can be easily supported in modern NAND flash chips: (i) Multi-
Wordline Sensing (MWS), which enables bulk bitwise oper-
ations on a large number of operands (tens of operands)
with a single sensing operation, and (ii) Enhanced SLC-mode
Programming (ESP), which enables reliable computation in-
side NAND flash memory. We demonstrate the feasibility of
performing bulk bitwise operations with high reliability in
Flash-Cosmos by testing 160 real 3D NAND flash chips. Our
evaluation shows that Flash-Cosmos improves average per-
formance and energy efficiency by 3.5×/32× and 3.3×/95×,
respectively, over the state-of-the-art in-flash/outside-storage
processing techniques across three real-world applications.

1. Introduction
Many data-intensive applications rely on bulk bitwise opera-
tions, i.e., bitwise operations on large bit vectors. As such, it
is important for modern computing systems to support high-
performance and energy-efficient bulk bitwise operations. In

databases and web search, prior works (e.g., [1-9]) propose
various techniques that heavily use bulk bitwise operations
to accelerate queries. Bulk bitwise operations are also preva-
lent in various other important application domains, includ-
ing databases and web search [1-13], data analytics [7, 14-17],
graph processing [9, 18-21], genome analysis [22-29], cryptog-
raphy [30-32], set operations [7, 19], and hyper-dimensional
computing [33-36].

In conventional systems, the performance and energy ef-
ficiency of bulk bitwise operations are bottlenecked by data
movement between the compute units (e.g., CPUs or GPUs) and
the memory hierarchy [7, 8, 20, 21, 37-39]. To perform a bulk
bitwise operation, a conventional system must first move every
operand to the compute unit and eventually write the results
back into the memory hierarchy. Due to the simple nature of bit-
wise operations, such data movement dominates the execution
time and energy consumption in bulk bitwise operations.

Processing data inside NAND flash chips, i.e., in-flash pro-
cessing (IFP), can fundamentally reduce the data movement that
bottlenecks the execution of bulk bitwise operations. IFP is an
instance of near-data processing (NDP), a computing paradigm
that moves computation closer to where the data resides (e.g., [7-
9, 20, 21, 37, 40-54]). When processing large amounts of data
that do not fit in main memory, IFP significantly reduces data
movement across the entire memory hierarchy by performing
computation within the underlying storage media (i.e., NAND
flash chips) and transferring only the result (when needed, to
main memory and CPUs/GPUs). As we discuss in Section 3,
IFP can significantly outperform in-storage processing (ISP) ap-
proaches that leverage hardware accelerators inside the NAND
flash-based solid-state drive (SSD) (e.g., [49-52, 55, 56]), by
reducing data movement to/from NAND flash chips.

To our knowledge, only one recent work, ParaBit [21], pro-
poses an in-flash processing technique for bulk bitwise oper-
ations.1 We identify that ParaBit has two major limitations.
First, ParaBit falls greatly short of exploiting the full potential
of NAND flash memory to significantly improve the perfor-

1There are many prior works (e.g., [57-63]) that leverage analog current
sensing to perform accumulative computation (e.g., multiply-accumulate opera-
tion) inside NAND flash chips. However, these proposals 1) use NAND flash
memory solely as an accelerator but not as a storage medium, and 2) require
significant changes (e.g., adding a precise analog-to-digital converter to each
bitline) to commodity NAND flash chips, which increases cost. See Section 9
for more detail.

1

ar
X

iv
:2

20
9.

05
56

6v
1

 [
cs

.A
R

]
 1

2
Se

p
20

22

mance and energy efficiency of bulk bitwise operations. To
perform bulk bitwise operations for more than two operands
(e.g., A • B • C), which frequently happens in many data-intensive
applications such as data analytics [7, 14-17], databases [10-13]
and graph processing [9, 19-21], ParaBit must serially perform
multiple two-operand bitwise operations (e.g., (A • B) • C). Doing
so requires multiple long-latency sensing operations in series,
which become a new performance and energy efficiency bot-
tleneck. In this work, we observe that NAND flash memory
has inherent capability to perform bitwise operations on a large
number (e.g., tens) of operands at once (i.e., with a single sens-
ing operation) due to its unique cell-array structures that are
similar to digital logic circuits for NAND and NOR gates.

Second, ParaBit is applicable only to highly error-tolerant
applications because it is not designed to take into account the
highly error-prone nature of NAND flash memory. To ensure
data reliability, modern NAND flash-based SSDs commonly
use (i) error-correcting codes (ECC) and (ii) data randomiza-
tion [64-67]. Unfortunately, ParaBit cannot leverage any of
the widely-used ECC and data-randomization techniques, as it
performs bitwise operations while sensing the cells that store
the data. Performing bitwise AND and OR operations on ECC-
encoded or randomized data using ParaBit can lead to incorrect
results during ECC decoding and/or de-randomization. Al-
though storing a smaller number of bits in a cell would reduce
the raw bit error rate (RBER) of NAND flash memory, our
characterization using 160 real 3D NAND flash chips shows
that even storing a single bit per cell cannot provide sufficiently-
low RBER for ParaBit to be adopted across a wide range of
applications.

Our goal is to improve both the performance and energy effi-
ciency of in-flash bulk bitwise operations while ensuring high re-
liability (i.e., zero bit errors) in computation results. To this end,
we propose Flash-Cosmos (Flash Computation with One-Shot
Multi-Operand Sensing), a novel in-flash processing technique
for bulk bitwise operations that achieves our goal by exploiting
two key ideas: (i) Multi-Wordline Sensing (MWS), which en-
ables in-flash bulk bitwise operations on multiple (e.g., tens)
operands with a single sensing operation, and (ii) Enhanced
SLC-mode Programming (ESP), which effectively achieves zero
bit errors in the results of in-flash bulk bitwise operations.

MWS leverages the two fundamental cell-array structures
of NAND flash memory to perform in-flash bulk bitwise op-
erations on a large number of operands with a single sensing
operation: (i) a number of flash cells (e.g., 24–176 cells) are
serially connected to form a NAND string (similar to digital
NAND logic); (ii) thousands of NAND strings are connected to
the same bitline (similar to digital NOR logic). Under these cell-
array structures, simultaneously sensing multiple wordlines2

automatically results in (i) bitwise AND of all the sensed word-
lines if they are in the same NAND string or (ii) bitwise OR of
all the wordlines if they are in different NAND strings.

2NAND flash memory concurrently reads a large number of (> 105) cells
whose control gates are connected to the same wordline. See Section 2.1 for
more background on NAND flash memory operation.

ESP effectively avoids raw bit errors in stored data via more
precise programming-voltage control. A flash cell stores bit
data as a function of the level of its threshold-voltage (VTH).
Reading a cell incurs an error if the cell’s VTH level moves
to another VTH range that corresponds to a different bit value
than the stored value, due to various reasons [67], such as pro-
gram interference [68-70], data retention loss [71-74], read
disturbance [75, 76], and cell-to-cell interference [69]. ESP
maximizes the margin between different VTH ranges by care-
fully leveraging two existing approaches. First, to store data
for in-flash processing, it uses the single-level cell (SLC)-mode
programming scheme [77, 78]. Doing so guarantees a large
VTH margin by forming only two VTH ranges (for encoding ‘1’
and ‘0’) within the fixed VTH window. Second, ESP enhances
the SLC-mode programming scheme by using (i) a higher pro-
gramming voltage to increase the distance between the two VTH
ranges and (ii) more programming steps to narrow the high VTH
range. While many prior works also leverage precise program-
ming to enhance the reliability of NAND flash memory [79-84],
we aim to achieve zero bit errors in computation results and
demonstrate that doing so is possible in modern NAND flash
memory by combining the two approaches that comprise ESP.

In this paper, we enhance our basic MWS mechanism in two
ways to make it more general purpose. First, we support bitwise
NAND/NOR/XOR/XNOR by using MWS along with (i) the inverse
sensing mechanism [85, 86] and (ii) internal XOR logic [87, 88],
both of which are already supported in most NAND flash chips.
Second, we relax the data location constraints of the basic MWS
mechanism (e.g., bitwise OR/NOR operations are possible only
for wordlines in different NAND strings) by (i) storing each
operand’s inverse data and (ii) leveraging De Morgan’s laws.
For example, if the user stores the inverse of A, B, and C (i.e., A,
B, and C) in the same NAND string, Flash-Cosmos can perform
bitwise OR of three wordlines by performing bitwise NAND of A,
B, and C because (A OR B OR C)=NOT (A AND B AND C).

Flash-Cosmos requires only small changes to the control
logic of a NAND flash chip, but no changes to its cell array and
sensing circuitry. For efficient post-fabrication tests and opti-
mizations, most modern NAND flash chips are already capable
of (i) simultaneously sensing multiple wordlines [89] and (ii) ad-
justing programming step and voltage at fine granularity [67, 79,
81, 90]. Hence, integrating Flash-Cosmos into existing NAND
flash chips requires changes only to the command latching cir-
cuitry and the firmware of the microcontroller in the flash chip
(see Section 6).

We evaluate Flash-Cosmos in two ways. First, we vali-
date Flash-Cosmos using 160 real 48-layer 3D NAND flash
chips. Our results show that Flash-Cosmos enables commod-
ity NAND flash chips to perform bitwise AND/OR/NAND/NOR of
up to 48 operands via a single sensing operation (25 µs). In
our validation of computation results across more than 1011

flash cells, we observe zero bit errors. Second, we compare
Flash-Cosmos to two different computing platforms, a state-
of-the-art multi-core CPU (which we call outside-storage pro-
cessing or OSP) [91] and ParaBit [21]. Our evaluation using

2

three real-world workloads shows that Flash-Cosmos improves
performance by 32×/3.5× and reduces energy consumption by
95×/3.3× on average compared to OSP/ParaBit.

This work makes the following key contributions:
• To our knowledge, this work is the first to enable NAND flash

memory to perform bulk bitwise operations on multiple (i.e.,
tens) operands via a single sensing operation.

• We introduce Flash-Cosmos, a new in-flash processing tech-
nique to significantly improve both performance and energy
efficiency of bulk bitwise operations while achieving zero bit
errors in computation results.

• We demonstrate the feasibility and reliability of Flash-
Cosmos using 160 real state-of-the-art 3D NAND flash chips.

• We evaluate the effectiveness of Flash-Cosmos using real-
world workloads, showing large performance and energy
benefits over a state-of-the-art multi-core processor and the
state-of-the-art in-flash processing technique.

2. Background
We provide a brief background on NAND flash memory that is
useful to understand the rest of the paper.

2.1. Basics of NAND Flash Memory
NAND Flash Organization. Figure 1 shows the organization
of 3D NAND flash memory. A number of vertically-stacked
flash cells (e.g., 24 to 176 cells) are serially connected, which
is called a NAND string. A NAND string is connected to a
bitline (BL), and NAND strings at different BLs compose a sub-
block. The control gates of all cells that are at the same vertical
location in a sub-block are connected to the same wordline
(WL), which makes all such cells operate concurrently. A
NAND flash block consists of several (e.g., 4 or 8) sub-blocks,
and thousands of blocks comprise a plane. The blocks in a
plane share all the BLs in that plane, which implies that a
single BL is shared by thousands of NAND strings. In the
rest of the paper, unless specified otherwise, we refer to a sub-
block as a block for simplicity. A NAND flash chip (or a die)
contains multiple (e.g., 2 or 4) planes. Multiple chips in a
NAND flash package can operate independently of each other
but share the package’s command/data buses (i.e., channel) in a
time-interleaved manner.

Figure 1: NAND flash organization.

Program and Erase Operations. A flash cell stores data using
its threshold voltage (VTH) level that highly depends on the
amount of charge in the cell’s charge trap. A program operation

injects electrons into a cell, which increases the cell’s VTH level.
As multiple flash cells are connected to a single WL, NAND
flash memory writes data at page (e.g., 16 KiB) granularity
such that each cell in a WL stores one bit of the page. To
decrease a programmed cell’s VTH level, NAND flash memory
performs an erase operation that ejects electrons from the cell.
The granularity of an erase operation is a block, which causes
the erase latency tBERS to be much longer (e.g., 3–5 ms) than
the program latency tPROG (e.g., 200–700 µs).

Read Operation. NAND flash memory determines a cell’s
VTH level (i.e., the cell’s bit data) by sensing the conductance
of the corresponding NAND string. Figure 2 shows the read
mechanism of NAND flash memory, which consists of three
steps: (i) precharge, (ii) evaluation, and (iii) discharge [64, 92].
In the precharge step (P in the left part of Figure 2), a NAND
flash chip charges all target BLs and their sense-out (SO) ca-
pacitors (CSO) to the precharge voltage VPRE by enabling the
precharge transistor MPRE 1 . At the same time, the chip ap-
plies the read-reference voltage VREF to the target WL while
applying a much larger pass voltage VPASS to the other WLs
in the same block 2 . Doing so makes each target cell’s VTH
level dictate the corresponding NAND string’s conductance; the
target cell would operate as either a resistor, if VTH≤VREF (a
in Figure 2, left part), or an open switch, if VTH>VREF (b);
all non-target cells in the same NAND string would always
operate as resistors since VPASS is high enough (>6 V) to turn
on any flash cell regardless of its VTH level [75]. The chip
then starts the evaluation of the target cells (E in the middle
part of Figure 2) by disconnecting the BLs from VPRE 3 and
enabling the latching circuit 4 . If the target cell’s VTH level is
lower than VREF, the charge in CSO quickly flows through the
NAND string (c), which is sensed as a ‘1’. If VTH>VREF, the
capacitance of CSO hardly changes (d) as the target cell blocks
the BL discharge current, which is sensed as a ‘0’. Finally, the
chip discharges the BLs (D in the right part of Figure 2) to
return the NAND string to its initial stable state (i.e., the state
before precharge can take place) for future operations.

Figure 2: NAND flash read mechanism.

Figure 3 depicts how NAND flash memory senses a BL’s
conductance with its latching circuit. Figures 3(a) and 3(b)
describe the operation of the latching circuit when the threshold
voltage VTH of a flash cell is lower and higher than the read
reference voltage VREF, respectively. We show the transition in
voltage state at each of the three nodes (SO/OUT/OUT) when
going from the precharge step (P in Figure 2) to the evaluation

3

OUTOUT

M1 M2

BL
SO

MPRE

VPRE

VOUT :	1à 1VOUT	:	0à 0

VSO : 1à 0

(a)	VTH ≤	VREF (b)	VTH	>	VREF

OUTOUT

M1 M2

BL
SO

MPRE

VPRE

VOUT :	1à 0VOUT	:	0à 1

VSO : 1à 1

OUTOUT

M1 M2

BL
SO

MPRE

VPRE

VOUT :	1à 1IOUT :	0à 0

ISO : 1à 0

(a)	VTH ≤	VREF (b)	VTH	>	VREF

OUTOUT

M1 M2

BL
SO

MPRE

VPRE

IOUT :	1à 0IOUT :	0à 1

ISO : 1à 1

Figure 3: Latching circuit showing the voltage states at SO, OUT
and OUT in the precharge P and evaluation E steps during a
read operation (see Figure 2).

step (E in Figure 2). During precharge, the NAND flash chip
charges the BL, making VSO=1. Before the evaluation step, the
chip initializes the latching circuit by activating only transistor
M1, resulting in VOUT=0 and thus VOUT=1. The evaluation
step disables MPRE and M1 while enabling M2. In Figure 3(a),
the evaluation step makes VSO=0 as the charge in CSO quickly
flows through the NAND string (because VTH≤VREF), which
leads to VOUT=1 (E in Figure 2). The bit value of the flash
cell is immediately stored in the latching circuit because of the
low charge retention of CSO [92]. In Figure 3(b), the evaluation
step leads to VSO=1 and VOUT=0 as the flash cell operates as
an open switch when VTH>VREF.
Inverse Read. Modern NAND flash chips commonly support
the inverse-read mode [85] to read the inverse of the stored
data.3 Supporting inverse reads requires no hardware changes
to the latching circuit shown in Figure 4. We denote the voltage
states at the three nodes (SO/OUT/OUT) during an inverse read
operation using ISO, IOUT and IOUT. The chip performs an
inverse read by simply changing the activation sequence of M1
and M2. Unlike a read operation, the inverse read activates M2
to initialize the latching circuit before the evaluation step. This
leads to IOUT=0 and thus IOUT=1. During the evaluation step,
M1 is activated while MPRE and M2 are disabled. This causes
the values stored in the latching circuit after the evaluation step
to be the inverse of the values stored in a normal read.

OUTOUT

M1 M2

BL
SO

MPRE

VPRE

VOUT :	1à 1VOUT	:	0à 0

VSO : 1à 0

(a)	VTH ≤	VREF (b)	VTH	>	VREF

OUTOUT

M1 M2

BL
SO

MPRE

VPRE

VOUT :	1à 0VOUT	:	0à 1

VSO : 1à 1

OUTOUT

M1 M2

BL
SO

MPRE

VPRE

VOUT :	1à 1IOUT :	0à 0

ISO : 1à 0

(a)	VTH ≤	VREF (b)	VTH	>	VREF

OUTOUT

M1 M2

BL
SO

MPRE

VPRE

IOUT :	1à 0IOUT :	0à 1

ISO : 1à 1

Figure 4: Latching circuit showing the voltage states at SO, OUT
and OUT in the precharge P and evaluation E steps during an
inverse read operation (see Figure 2).

2.2. Reliability of NAND Flash Memory
Modern NAND flash memory is highly error-prone due to var-
ious error sources [67] such as program interference [68-70],
data retention loss [71-74], read disturbance [75, 76], and cell-
to-cell interference [69]. Figure 5 shows the VTH distribution

3Supporting inverse reads is essential to the copyback operation [85] that
moves a page’s data to another page in the same plane without off-chip data
transfer and thus can improve SSD garbage-collection performance [93, 94].

(a) SLC–mode programming

#
 o

f
ce

ll
s

margin VTH

Prog.
1

VTH

(b) MLC–mode programming

#
 o

f
ce

ll
s

E
11 VTHP1

01
P2
00

P3
10

MSB

Retention

VREF

loss
Interference/
disturbance VREF1

LSB
VREF2 VREF3

margin VTH

Erased
0

Figure 5: VTH distribution of a programmed wordline.

of a WL, when the WL is programmed in (a) single-level cell
(SLC) mode and (b) multi-level cell (MLC) mode to store one
and two bits per cell, respectively. Reading or programming
a WL affects the VTH distribution of other WLs in the same
block by increasing the VTH level of other cells (i.e., interfer-
ence and disturbance as shown in Figure 5(a)). A flash cell also
leaks its charge over time, which decreases its VTH level (i.e.,
retention loss as shown in Figure 5(a)). If a cell’s VTH level
moves beyond VREF (i.e., to a VTH range corresponding to a
different value), sensing the cell results in a different value from
the original stored data, introducing a bit error.

Two major factors significantly increase the raw (i.e., pre-
correction) bit-error rate (RBER) of NAND flash memory. First,
a flash cell becomes more error-prone as it experiences more
program and erase (P/E) cycles [95], due to the high voltage
used in program and erase operations which damages the cell
to more easily leak its charge. Second, storing more bits per
cell increases RBER because it reduces the margin between
adjacent VTH ranges in order to pack more VTH states within
the same voltage window, as shown in Figure 5(b).
Error-Correcting Codes (ECC). To ensure the integrity of
stored data, modern SSDs commonly employ ECC. ECC can
detect and correct bit errors by storing redundant information.
To cope with the high RBER of modern NAND flash mem-
ory, it is necessary to use sophisticated ECC (e.g., low-density
parity-check (LDPC) codes [67, 96-101]), which increases the
performance and the area overheads of an ECC engine.
Data Randomization. It is common practice to randomize the
values of stored data in modern SSDs to reduce the probabil-
ity of worst-case data patterns that would exacerbate program
disturbance [66, 87, 102]. For example, when a NAND string
has many consecutive erased cells, programming the next cell
of the same NAND string significantly increases the VTH level
of the consecutive cells, which could introduce bit errors. Data
randomization reduces the probability of such cases to a small
value by randomly distributing VTH states across a NAND string
regardless of the original data values to store.4 The stored data
is de-randomized during a read operation to correctly read the
originally stored values before they were randomized.

3. Motivation
We describe the benefits of in-flash processing and the main
limitations of the state-of-the-art in-flash processing technique
for bulk bitwise operations (i.e., bitwise operations on large bit
vectors) [21].

4In fact, randomization is the reason why the VTH distribution of NAND
flash memory is commonly described by using VTH states with the same shape,
as in Figure 5.

4

3.1. In-Flash Bulk Bitwise Operations
Many prior studies [7-9, 20, 37, 38, 48] investigate near-data
processing (NDP) solutions for bulk bitwise operations due to
two main reasons. First, bulk bitwise operations are used in
a wide variety of important applications, including databases
and web search [1-13], data analytics [7, 14-17], graph process-
ing [9, 18-21], genome analysis [22-29], cryptography [30-32],
set operations [7, 19], and hyper-dimensional computing [33-
36]. Second, bulk bitwise operations can significantly benefit
from NDP. Due to the simple nature of bitwise operations, the
performance and energy efficiency of bulk bitwise operations
are bottlenecked by data movement between the computation
units and the memory hierarchy in conventional systems [7-9,
21, 37, 38]. NDP can effectively mitigate such data movement
at low cost by supporting simple bulk bitwise operations at very
high levels of concurrency near or inside memory devices (e.g.,
in all memory banks or subarrays [7, 9, 103]).

Among many existing NDP solutions, only one recent work,
ParaBit [21], proposes an in-flash processing technique for bulk
bitwise operations inside a NAND flash chip. ParaBit leverages
the latching circuits that are commonly employed in modern
NAND flash chips [92, 104-108] (see Section 2.1). Existing
NAND flash chips support a command called cache read [104-
108] whose purpose is to improve the performance of a read
operation by enabling the transfer of data from the NAND flash
chip to the flash controller in parallel with the sensing of a
subsequent read operation. To enable cache read, existing chips
include a cache latch in addition to the sensing latch (4 in
Figure 2). We describe the operation and implementation of
this cache latch since it is important for and used in Parabit.

Figure 6(a) illustrates the common latching circuit of a mod-
ern NAND flash chip equipped with a cache latch (right part)
in addition to the sensing latch (left part) described in Figure 3.
A NAND flash chip initializes the cache latch in the precharge
step by activating M4, which pulls down node OUTL and thus
makes OUTL=1. Until enabling M3, the sensing latch (i.e., the
value at node OUTS) cannot affect the data stored in the cache
latch. This feature enables the chip to read new data (into the
sensing latch) while transferring the previously-read data in the
cache latch to the flash controller.

Figures 6(b) and 6(c) describe how ParaBit performs in-
flash bitwise AND and OR operations, respectively, by intelli-
gently controlling the latching circuit shown in Figure 6(a).5

Bitwise AND in ParaBit. To perform a bitwise AND operation,
ParaBit serially reads operands sharing the same bitline (lines
3 and 4 in Figure 6(b)) while neither enabling M3 nor re-
initializing the sensing latch. Doing so allows ParaBit to keep
the result of the bitwise AND of the serially read operands in
the sensing latch (node OUTS). If the read cell stores ‘0’ (i.e.,
if the value at SO is ‘1’), enabling only M2 causes OUTS=0
regardless of the current value at node OUTS. When the cell

5ParaBit also introduces several mechanisms to support other bitwise op-
erations (e.g., bitwise XOR) and different approaches that exploit the common
bit-encoding scheme for MLC NAND flash memory, but we discuss only AND
and OR since the others have key drawbacks, such as costly additional inverter
logic at each BL to support bitwise XOR operations.

Figure 6: Bitwise computation techniques employed in the state-
of-the-art in-flash processing technique [21].

stores ‘1’ (i.e., when SO=0), sensing the cell does not change
the value at node OUTS. In other words, sensing new data N
leads to OUTS=1 only if both the new data N and the current
value at node OUTS are ‘1’, which is equivalent to OUTS=(N
AND OUTS). After serially reading all the operands sharing the
same bitline (which results in bitwise AND of all the operands at
node OUTS), ParaBit enables M3 to move the result from the
sensing latch to the cache latch (line 5).
Bitwise OR in ParaBit. To perform a bitwise OR operation,
ParaBit also serially reads the operands sharing the same bitline
(lines 2 to 5 in Figure 6(c)) as in bitwise AND, but it reinitializes
the sensing latch (line 3) before sensing each read and activates
M3 (line 5, i.e., moves the result from the sensing latch to the
cache latch) after sensing each operand. Doing so keeps the
result of the bitwise OR of the read operands sharing the same
bitline in the cache latch (node OUTL). If newly read data N in
the sensing latch (i.e., OUTS=N) is ‘1’, enabling M3 results in
OUTL=1 regardless of the current value of node OUTL. When
N=OUTS=‘0’, activating M3 does not change the value at node
OUTL. Hence, latching new data N to the cache latch causes
OUTL=0 only if both the new data N and the current value of
OUTL are ‘0’, which is equivalent to OUTL=(N OR OUTL).
Benefits of In-Flash Processing. Figure 7 shows an example
where ParaBit-like in-flash processing (IFP) can provide ben-
efits over conventional outside-storage processing (OSP) and
in-storage processing (ISP) that process data using compute
units in the host CPU/GPU and inside the SSD, respectively.
Figure 7(a) depicts the target SSD considered in this example.
The SSD has eight channels, each of which is shared by four
2-plane dies (i.e., 64 planes in total) with 16-KiB pages. We
assume a page-read latency (tR) of 60 µs, a channel bandwidth
of 1.2 GB/s between a channel and the SSD controller [109],
and an external I/O bandwidth of 8 GB/s (4-lane PCIe Gen4)
between the host and the SSD. Figures 7(b), 7(c) and 7(d) show
the execution timeline for a channel when an application uses

5

External	BW:	8	GB/s
tR:	60	μs tDMA:	27	μs

tEXT:	4	μs	× 8

Die#1 D#4
⋯

D#1 D#4
⋯⋯

Channel#1 Channel#8

Channels Internal	BW:
9.6	(1.2×8) GB/s

SSD	Controller

NAND	Flash	Array

Plane

Bit-Vectors

A:
B:
C:

(a) SSD organization (b) Channel#1 timeline in OSP

A B C

#	channels

(c) Channel#1 timeline in ISP (d) Channel#1 timeline in IFP

A:
B:
C:

A:
B:
C:

Bottleneck:	External	I/O
Execution	time:	471	μs

Bottleneck:	Internal	I/O
Execution	time:	431	μs

Start	computation	&
result	transfer	to	host

Start	computation	&
result	transfer	to	controller

Bottleneck:	Sensing
Execution	time:	335 μs

Figure 7: (a) SSD organization, and comparison of execution time-
lines of a channel in (b) outside-storage processing (OSP), (c) in-
storage processing (ISP), and (d) in-flash processing (IFP) during
bulk bitwise operations.

one of OSP, ISP, and IFP, respectively, to perform bulk bitwise
OR operations on three 1-MiB bit vectors A, B, and C (i.e., A OR
B OR C). We assume that each bit-vector is distributed across all
the 64 planes in the SSD as shown in Figure 7(a).

Figure 7(b) shows the execution timeline of bulk bitwise
operations for one of the eight channels in OSP. To achieve the
highest possible performance using OSP, the host must perform
concurrent multi-plane reads across the NAND flash dies for
each operand. The operands themselves are read sequentially
(tR for operands A, B and C in Figure 7(b)). Once an operand
is read to the sensing latch, it can be transferred to the SSD
controller (tDMA) and subsequently to the host (tEXT) while a
read is simultaneously being performed on the next operand.
Given the flash channel and external I/O bandwidth, each die
requires tDMA=27 µs and tEXT=4 µs to transfer 32-KiB data
(2 planes×16-KiB page) to the SSD controller and to the host,
respectively. While tEXT per die is lower than tR and tDMA, the
data movement between the host and the SSD (called External
I/O in Figure 7(b)) bottlenecks performance, as the SSD serially
transfers all the bit vectors from the eight channels through the
external I/O interface for computation in the host CPU.

Figure 7(c) shows the execution timeline of a channel in the
ISP approach. ISP can use per-channel accelerators (e.g., [16,
50, 55, 56, 110]) to reduce external data movement by perform-
ing computation in the SSD controller and transferring only
the computation result to the host system. However, the SSD-
internal data movement between the SSD controller and NAND
flash dies (called Internal I/O in Figure 7(c)) becomes the new
performance and energy bottleneck in ISP. This is because the
internal data movement must be serialized through the channel
shared by the NAND flash dies, while the dies connected to the
channel can concurrently perform page reads.

Figure 7(d) shows the execution timeline of a channel for the
state-of-the-art IFP approach, ParaBit. ParaBit can effectively
reduce both internal and external data movement by performing
the computation as the operands are read within the NAND

flash chips and transferring only the computation result to the
SSD controller and the host, thereby significantly improving
performance and energy efficiency. In state-of-the-art IFP, inter-
nal data movement between the SSD controller and the NAND
flash dies is not a bottleneck, but sensing the data becomes a
bottleneck, as Figure 7(d) shows.

3.2. Limitations of State-of-the-Art
We identify two key limitations of ParaBit, the state-of-the-art
IFP technique for bulk bitwise operations.
Unexploited Potential of IFP Capabilities. Despite ParaBit’s
benefits over other processing approaches, we identify that Para-
Bit still misses a large potential of exploiting IFP to significantly
improve the performance and energy efficiency of bulk bitwise
operations. As explained in Section 3.1, ParaBit serially reads
every operand from a bitline (tR in Figure 7(d)). Each read of an
operand requires a costly (i.e., slow) sensing operation in Para-
Bit. Such serial reading of every operand poses a big bottleneck
when operations need to be performed across more than two
operands. We identify that NAND flash memory has inherent
capability to perform bulk bitwise operations on a large number
of operands (i.e., tens) at once (i.e., using only a single sensing
operation) due to (i) its unique cell-array structure and (ii) flash
cells’ operation principles. First, as explained in Section 2.1, in
NAND flash memory, several tens or more than a hundred of
flash cells are serially connected (as in digital NAND gates), and
thousands of NAND strings are connected to a single BL (as
in digital NOR gates). Second, a flash cell is similar to a normal
MOS transistor, a basic component for digital logic gates, in its
structure and operation principles. These observations lead us
to develop a new IFP technique (described in Section 4) that
does not have the sensing bottleneck that the state-of-the-art
has: our new technique performs bulk bitwise operations on
multiple operands with only a single sensing operation.
Limited Applicability. ParaBit’s applicability is limited to
highly error-tolerant applications because it is not designed
to take into account the highly error-prone nature of NAND
flash memory. As explained in Section 2.2, due to the error-
prone nature of NAND flash memory, using ECC and data
randomization is essential to guaranteeing the reliability of
stored data. However, ParaBit cannot leverage any of the widely-
used ECC and randomization techniques, as it performs bulk
bitwise operations while reading the operands. Bitwise AND
or OR operations on ECC-encoded or randomized data lead
can easily lead to incorrect results during ECC decoding or
de-randomization. While storing fewer bits per cell can reduce
RBER compared to advanced MLC techniques (e.g., triple-level
cell (TLC) or quad-level cell (QLC) techniques), ParaBit can
be used only when the application can tolerate the NAND flash
chips’ RBER (pre-correction error rate), which is still very large
as reported in prior works [67, 69, 71, 73].

To better understand the impact of NAND flash reliability on
the applicability of IFP, we perform real-device characterization
using 160 TLC NAND flash chips (see Section 5.1 for more
detail on our methodology). Figure 8 shows the average RBER
across 3,686,400 WLs randomly selected from 160 NAND

6

A
v

g
. R

B
E

R
 [

×
1

0
–

3
]

w/ data randomization

w/o data randomization

w/o data randomization

0 1 2 3 6 12
Retention age [months]

A
v

g
. R

B
E

R
 [

×
1

0
–

3
]

0

2

4

6

0 1 2 3 6 12
Retention age [months]

A
v

g
. R

B
E

R
 [

×
1

0
–

3
]

0

2

4

6

0 1 2 3 6 12
Retention age [months]

A
v

g
. R

B
E

R
 [

×
1

0
–

3
]

0

5

10

15

20

(a) SLC–mode programming

(b) MLC–mode programming

w/ data randomization

0 1 2 3 6 12
Retention age [months]

0

2

4

6

10K6K3K 2K1K0KPEC:

Figure 8: Raw Bit Error Rate (RBER) impact of (a) SLC-mode
and (b) MLC-mode programming schemes at different P/E cycles
and retention ages, with and without data randomization.

flash chips we analyze. We measure each WL’s RBER (without
applying ECC) when (i) programming it in (a) SLC mode and
(b) MLC mode and (ii) enabling (left) and disabling (right)
data randomization under different P/E-cycle counts (PEC) and
retention ages.

We make three key observations. First, even when using
SLC-mode programming with data randomization (left plot in
Figure 8(a)), the average RBER is significantly (i.e., around
12 orders of magnitude) higher than the uncorrectable bit-error
rate (UBER) requirement of an SSD (e.g., <10−15 to 10−16 [67,
69, 71, 73, 111, 112]). Second, disabling data randomization
(right plots in Figures 8(a) and 8(b)) significantly increases
the RBER of stored data by 1.91× and 4.92× in SLC mode
and MLC mode, respectively. Third, as expected, using MLC-
mode programming (plots in Figure 8(b)) significantly degrades
the reliability of stored data, leading to up to 4× the RBER
of SLC-mode programming. Based on our observations, we
conclude that the state-of-the-art IFP technique is hard to adopt
for applications that cannot tolerate a bit error rate range of
8.6×10−4 to 1.6×10−2 (the RBER range across the two plots
in Figure 8(b)), which is very large.

Our goal in this work is to develop a new in-flash process-
ing technique that (i) maximizes performance and energy effi-
ciency by fully exploiting the inherent computation capability
of NAND flash memory to enable many-operand computation
with a single sensing operation and (ii) provides high data reli-
ability (i.e., zero bit errors in computation results) so that it is
applicable to a wide range of error-intolerant applications.

4. Flash-Cosmos: Key Mechanisms
We present the two key ideas of Flash-Cosmos (Flash
Computation with One-Shot Multi-Operand Sensing) that over-
come the limitations of the state-of-the-art.

4.1. Multi-Wordline Sensing (MWS)
Key Idea. MWS is based on our key observation that simul-
taneously reading multiple WLs in NAND flash memory re-

sults in bitwise AND or OR of the WLs. Figure 9 shows how
MWS enables a NAND flash chip to perform bulk bitwise
(a) AND and (b) OR operations on two operands with a sin-
gle sensing operation. While Figure 9 shows bulk bitwise
operations on only two operands, Flash-Cosmos can support
multi-operand bulk bitwise operations (on tens of operands).
For bitwise AND, the NAND flash chip simultaneously applies
VREF to multiple target WLs that contain the source operands of
the bulk bitwise operation (WLx and WLz in Figure 9(a)) within
a block, which we call intra-block MWS.6 If the chip applies
VPASS to all non-target WLs (e.g., WLy and WLw) as in a reg-
ular read, a BL can be sensed as discharged only when all the
target cells in the corresponding NAND string are erased (i.e.,
VTH<VREF). In other words, the sensing circuitry would read a
BL as ‘1’ only if all the target cells store ‘1’ (BL1 in Figure 9(a))
and it would read a BL as ‘0’ if any of the target cells stores ‘0’
(BL2, BL3, BL4 in Figure 9(a)), which is equivalent to the bit-
wise AND operation. The intra-block MWS operation can easily
be generalized to more than two operands by applying VREF to
more than two wordlines, leading to the computation of the bit-
wise AND of all such wordlines with a single sensing operation.
For bitwise OR, we introduce inter-block MWS, where the chip
simultaneously applies VREF to multiple WLs (WLi and WLk
in Figure 9(b)) of different blocks while applying VPASS to all
non-target WLs in those blocks. Doing so causes a BL to be
discharged if at least one of the target cells in the corresponding
NAND string is erased. In other words, the sensing circuitry
would read a BL as ‘0’ only if all the target cells in the BL
store ‘0’ (BL4 in Figure 9(b)) and it would read a BL as ‘1’ if
any of the target cells stores ‘1’(BL1, BL2, BL3 in Figure 9(b)),
which is equivalent to the bitwise OR operation. The inter-block
MWS operation can easily be generalized to more than two
operands by applying VREF to more than two wordlines, each
in a different block, leading to the computation of the bitwise
OR of all such wordlines across different blocks with a single
sensing operation.

As mentioned above, both types of MWS are capable of
single-sensing bulk bitwise operations even for more than two

Figure 9: Overview of (a) intra-block MWS (leading to bitwise
AND) and (b) inter-block MWS (leading to bitwise OR).

6Intra-block MWS, which applies VREF to two or more WLs, differs from a
regular read operation that applies VREF only to a single WL. ParaBit [21], the
prior state-of-the-art IFP technique, uses regular read operations.

7

operands. This property enables MWS to be more powerful
than prior NDP proposals that leverage multi-wordline (or multi-
row) activation for in-memory computation in two aspects. First,
although prior works also propose to activate multiple word-
lines to perform bulk bitwise operations inside various memory
devices [7, 8, 20, 37, 57], the number of source operands that
can be computed on at the same time is limited (usually to only
two), thereby requiring sequential sensing of more operands
like ParaBit.7 Second, there exist several proposals that leverage
multi-wordline activation to perform accumulative computation
(e.g., multiply-accumulate operations) inside NAND flash mem-
ory [57-63], but they rely on analog current sensing, which
requires significant changes to regular flash chips (for instance,
in a system with multiple memristor-based crossbar arrays, the
addition of a precise analog-to-digital converter (ADC) to each
array is costly (e.g., each ADC accounts for 58% of the chip
power and 31% of the chip area even when each ADC is shared
across 128 output columns [113])).

Intra- and inter-block MWS can be combined to perform
complex bitwise AND and OR operations.8 Suppose that blocks
Blkl and Blkn in Figure 9(b) have N pages (WLs), each of
which stores bit vectors Ai and Bi (1≤i≤N), respectively. If we
simultaneously apply VREF to all the WLs in the two blocks,
the chip would read a BL j as ‘1’, only when at least one of
Blkl and Blkn has a NAND string in which every cell stores ‘1’,
which is equivalent to:

(A1, j • ... • AN, j) + (B1, j • ... • BN, j) (1)

Feasibility & Overhead. Applying MWS to commodity
NAND flash chips is highly feasible at low cost. In fact, existing
chips already use/support both inter- and intra-block MWS for
other purposes. For example, after erasing a block, a NAND
flash chip needs to check if all the cells in the block are com-
pletely erased (called erase verify) by simultaneously applying
VREF to all the cells [92], i.e., the chip performs intra-block
MWS for all WLs in the block. Also, manufacturers commonly
design a chip to support the activation of multiple WLs (i.e.,
intra-block MWS) and multiple blocks (i.e., inter-block MWS),
to perform multi-page reads/writes and multi-block erases that
are critical for rapid testing of the chip [92].

The MWS scheme has two potential drawbacks. First, an
inter-block MWS would consume more power compared to a
regular page read since it needs to activate more blocks, which
requires charging of all the WLs in multiple blocks. Note that
an intra-block MWS operation’s power consumption is lower
compared to a regular read because it applies VREF to addi-
tional target WLs, to which a regular read would apply VPASS
(which is several times larger than VREF). Second, the latency
for a reliable MWS operation may be longer than the default
read latency tR since the target data of an MWS operation is

7Exceptionally, Pinatubo [20] can perform the bitwise OR operation on a
large number of rows with a single sensing operation. However, Pinatubo
cannot support the bitwise AND operation for more than two operands.

8Section 6.1 explains how Flash-Cosmos supports other common bitwise
operations (e.g., NOT, NAND, NOR, XOR, and XNOR).

programmed without randomization using the ESP scheme (ex-
plained in Section 4.2). Without randomization, a NAND string
can have low resistance (e.g., when all the cells are in the erased
state) compared to with randomization (where around 50% of
the cells are always erased), which may increase the precharge
latency and the evaluation latency (see Figure 2) for reliable
operation. We evaluate the potential drawbacks in Section 5.

4.2. Enhanced SLC-Mode Programming (ESP)
Key Idea. ESP enhances existing SLC-mode programming by
maximizing the margin between the two VTH states. Figure 10
shows how ESP improves reliability compared to regular SLC-
mode programming. NAND flash memory commonly uses the
incremental step pulse programming (ISPP) scheme [79, 114]
to precisely control the threshold voltage (VTH) of a NAND
flash cell and to narrow the width of VTH state distributions.
As depicted in Figure 10(a), the ISPP scheme gradually in-
creases the program voltage from VPGM1 with a certain step
voltage (∆VISPP), until the VTH level of every cell in the WL
reaches its target voltage VTGT. At the end of each ISPP step,
the chip checks if each cell’s VTH level has reached its VTGT
(i.e., Verify in Figure 10(a)), and excludes such cells from the
next ISPP step. The key idea of ESP is to perform additional
ISPP steps (after performing regular SLC-mode programming),
using (i) an increased VTGT value (for each cell), which fur-
ther moves the programmed VTH state to a higher voltage level,
and (ii) a decreased ∆VISPP value, which narrows the width
of the programmed VTH state distribution. Doing so signifi-
cantly increases the margins from the new read-reference volt-
age (VREF’) to both the erased and the programmed VTH states,
as shown in Figure 10(b), which makes the cells less vulnerable
to many error sources present in NAND flash memory [67].

(b) VTH distribution

#
 o

f
ce

ll
s

Erased
0

Prog.
1

VTH

0
Prog.

Regular SLC-mode ESP

VPGM1

V
o

lt
a

g
e

Time

⋯ ⋯

(a) ISPP timeline

tPROG

Only in ESP

VPGMN VPGM(N+M)

Program Verify

margin VTH

V ’REF

Figure 10: Overview of Enhanced SLC-mode Programming.

Feasibility & Overhead. Applying ESP to commodity NAND
flash chips is highly feasible at low cost due to two reasons.
First, modern MLC NAND flash memory commonly sup-
ports SLC-mode programming for several reasons, e.g., stor-
ing reliability-sensitive data [78], managing an SLC write
buffer [77] or using unreliable cells for data storage in case
they cannot be used in MLC mode [115]. Second, commod-
ity NAND flash chips can tune ISPP parameters [79-84] us-
ing the SET FEATURE command [64, 116], which is essential
to post-fabrication optimization of NAND flash chips. The
SET FEATURE command is also used to dynamically adapt to
changes in P/E cycles [65, 67] and reliability characteristics of
NAND flash cells [65, 67].

ESP has two drawbacks. First, it increases the program la-
tency by performing additional ISPP steps. Second, because
it uses SLC-mode programming, it requires double the WLs
to store the same amount of data compared to MLC-mode pro-

8

gramming. We provide a detailed analysis of the performance
and capacity overheads of ESP in Section 8.3.

5. Real Device Characterization
This section presents our characterization of 160 real 3D NAND
flash chips to validate the feasibility, performance, and reliabil-
ity of the two key mechanisms of Flash-Cosmos.

5.1. Characterization Methodology
Infrastructure. We use an FPGA-based testing platform that
contains a custom NAND flash controller and a temperature
controller. The flash controller supports all the commands im-
plemented in our NAND flash chips, including not only basic
read/program/erase commands but also various test-mode com-
mands necessary to dynamically change operating parameters
(e.g., the ISPP step voltage and other timing parameters) and
simultaneously activate multiple WLs. The temperature con-
troller maintains a NAND flash chip within ±1◦C of the target
temperature. This feature allows us to (i) test all the chips un-
der the same operating temperature (85◦C) and (ii) accelerate
retention loss based on Arrhenius’s Law [117], which is essen-
tial to real device characterization under long retention ages
(e.g., 1 year) while maintaining reasonable testing time. We
characterize 160 48-layer 3D TLC NAND flash chips, where a
NAND string consists of 48 flash cells and the page size is 16
KiB. Under regular SLC-mode programming, the chips have a
read latency tR=22.5 µs and a program latency tPROG=200 µs.
Methodology. To minimize the potential inaccuracies in our
characterization results, we carefully design our experiments
following the JEDEC standards [118, 119] that specify the
test methodology recommended for evaluating the reliability
of commercial-grade NAND flash products. To ensure high-
confidence reliability tests, JEDEC recommends testing more
than 39 flash chips from three different wafers. Our 160 flash
chips are fabricated from five different wafers, and we select
120 blocks (not sub-blocks) from each of the 160 chips at ran-
dom locations. We test every page in each selected block (a total
of 3,686,400 WLs) to obtain statistically significant results.

To evaluate Flash-Cosmos’ reliability under the worst-case
operating conditions, we measure each WL’s RBER under a
1-year retention age at 30◦C [112] and 10K P/E cycles.9 We
increase a block’s P/E-cycle count by repeating the cycle of
programming every page in the block (in TLC mode) and eras-
ing the entire block. Unless specified otherwise, we program
each page using the checkered data pattern, the worst-case data
pattern for NAND flash reliability where any two adjacent cells
(both horizontally and vertically) are programmed either to the
highest VTH state (e.g., the P7 state in TLC mode) or to the
lowest VTH state (i.e., the Erased state).

9In our RBER measurements, we exclude faulty cells that introduce perma-
nent (non-transient) errors due to defects in fabrication since (i) faulty cells can
be profiled and excluded for the purpose of Flash-Cosmos, and (ii) manufactur-
ers can significantly reduce the faulty-cell fraction by specially designing chips
for Flash-Cosmos at the cost of yield and/or technology node size.

5.2. Characterization Results
ESP Latency & Reliability. We first study the trade-off be-
tween the reliability and program latency of the ESP scheme.
Figure 11 shows the average RBER per 1-KiB data when we
program the WLs while increasing the ESP latency tESP for
more precise ISPP control. We plot the RBER of the worst, me-
dian, and best block out of all the tested blocks and normalize
the increased tESP values to the default program latency tPROG
for regular SLC-mode programming.

We make two key observations from Figure 11. First, it is
possible to avoid raw bit errors without data randomization
by enhancing SLC-mode programming, at the cost of an in-
crease in program latency.10 When we increase tESP by more
than 90% compared to tPROG, we observe zero bit errors in
our tested pages that contain more than 4.83×1011 bits in total,
which means that the statistical RBER of ESP is lower than
2.07×10−12.11 Second, the ESP scheme’s reliability improve-
ment significantly increases with tESP. For the median block,
increasing tESP by 60% achieves an order of magnitude RBER
reduction. We conclude that the ESP scheme is essential for
achieving effectively zero bit errors in the computation results
of in-flash processing and thus ESP can increase applicability
of in-flash processing to a much wider range of applications.
MWS Latency & Reliability. We measure tMWS, the minimum
latency for an MWS operation to achieve zero bit errors in all
the tested blocks. First, we perform intra-block MWS oper-
ations while changing the number of read WLs from 1 to 48
(the number of WLs in a NAND string). Second, we perform
inter-block MWS operations on all WLs in the target blocks
while changing the number of activated (target) blocks from 1
to 32. In both experiments, we first increase a target block’s
P/E cycle count using a checkered data pattern. Next, we check
the correctness of intra-block MWS under high disturbance
and noise, induced by programming the block using a different
data pattern. This new data pattern maximizes the resistance
of NAND strings in the block by programming the block to
meet two conditions; (i) the number of cells that store bit value
‘1’ (i.e., ‘1’ cells) must be less than two; (ii) if a NAND string
has a ‘1’ cell, the cell must be in one of the MWS operations’
target wordlines. As explained in Section 4.1, bypassing data
randomization can affect the read latency (both tR and tMWS)
for reliable operation by decreasing a NAND string’s resistance
compared to the typical read of randomized data. We validate
the correctness of MWS by comparing the result of MWS oper-
ations that we obtain from the real chips to the correct results
of the bitwise operations on the stored data.

Figures 12 and 13 show the tMWS value (as a multiple of tR)
for intra- and inter-block MWS operations, respectively. We

10We also tried to achieve the same level of RBER by enhancing MLC-mode
programming, but the RBER of MLC-mode programming does not decrease
below 10−4 even when we increase the program latency to 5 ms.

11The result is not enough to guarantee the JEDEC-specified UBER require-
ments (see Section 5.1), but we carefully select the evaluated blocks to avoid
any potential inaccuracy in our results. Given the limitations in academia, it
is challenging to experimentally guarantee the UBER requirements, which
requires around 1,000× samples and 1,000× longer testing time than our ex-
periments using our experimental testing infrastructure.

9

5

0
1
2
3
4

1 1.2 1.4 2.01.6 1.8

RB
ER
	[×
10

–3
] Worst

Med.
Best

tESP [×tPROG]
4840322416841

1.05

1
1.01
1.02
1.03
1.04

t
M
W
S
[×
t
R]

Number	of	read	WLs
32

1.4

1
1.1
1.2
1.3

t
M
W
S
[×
t
R]

168421
Number	of	activated	blocks Number	of	activated	blocks

4 5321

2

1

1.5

Erase

Prog.

ReadN
or
m
.	p
ow
er

Figure 11: RBER vs. tESP. Figure 12: Intra-block MWS latency. Figure 13: Inter-block MWS latency. Figure 14: MWS power.

make three key observations from the results. First, bypassing
data randomization does not increase a regular read operation’s
latency. As shown in Figure 12, using the default read latency
introduces no error when we read only a single WL in a block.
Second, intra-block MWS does not significantly increase the
read latency. Even when we simultaneously read all the 48
WLs in a block, tMWS is only 3.3% higher than tR. When we
perform intra-block MWS on eight (or fewer) WLs, tMWS is
less than 1% higher than tR. Third, although inter-block MWS
(shown in Figure 13) affects tMWS more significantly compared
to intra-block MWS, it can still provide significant benefits over
individual reads of the same WLs. As shown in Figure 13,
when simultaneously reading WLs in 32 different blocks, tMWS
is 36.3% higher than tR. This is because activating multiple
blocks significantly increases the number of WLs to precharge
at the same time. The increased WL-precharge time is mostly
hidden by the BL-precharge time until we activate eight blocks,
but it becomes larger than the BL-precharge time as the number
of activated blocks further increases, which causes the latency
of a reliable MWS operation to be longer than the latency of
a regular page read. However, the increased latency of MWS
on 32 WLs (1.363×tR) is much lower than the latency to
individually (serially) read 32 WLs (32×tR).

Based on our observations, we draw three major conclusions.
First, we demonstrate that real commodity NAND flash chips
can reliably support both intra-block and inter-block MWS oper-
ations, so computer architects can build a system that leverages
Flash-Cosmos, as long as they have access to the command
interfaces used for our characterization. Second, both types of
MWS significantly accelerate in-flash bulk bitwise operations in
commodity NAND flash chips at low cost. Third, it is possible
to support both types of MWS with a small latency increase
over the default read latency. If we limit the maximum number
of simultaneously-activated blocks for inter-block MWS to 4,
we can support any MWS operation with a fixed latency (tMWS)
only 3.3% higher than tR.
Maximum Power Consumption of Inter-Block MWS. As ex-
plained in Section 4.1, inter-block MWS consumes more power
compared to a regular page read due to the higher number of
activated WLs at the same time. Understanding the impact of
MWS on power consumption is important because a NAND
flash-based SSD has a limited power budget (e.g., 75W for PCIe
Gen4 SSDs [120]). Figure 14 shows the average power con-
sumption of a NAND flash chip when we perform inter-block
MWS as a function of the number of simultaneously-activated
blocks. To measure the worst-case power consumption, we read
only one WL per each block (i.e., we apply VREF to only one
WL per block while applying VPASS (>VREF) to all non-target

WLs). We normalized all values in Figure 14 to the average
power consumption of a regular page-read operation.

We make three observations. First, the power consumption
of a NAND flash chip considerably increases with the num-
ber of activated blocks for inter-block MWS. Increasing the
number of activated blocks from one to two increases the av-
erage power consumption by about 34%. Second, despite the
non-trivial increase in power consumption, it is possible to sup-
port inter-block MWS within the SSD’s power budget. Until
we activate four blocks, the power consumption of inter-block
MWS remains lower than that of an erase operation. Third,
inter-block MWS is more energy efficient compared to serial
reads of the same WLs. For example, performing an inter-block
MWS operation on four different blocks would cause about
80% power increase compared a regular read, but due to its
negligible latency increase (3.3%), it significantly reduces the
energy consumption by 53% compared to individual reads of
the four WLs. We conclude that, with a proper limit on the
number of inter-block MWS, Flash-Cosmos would not require
an increase in the power budget of commodity SSDs.

6. Design of Flash-Cosmos
We present our design of Flash-Cosmos to support efficient
in-flash bulk bitwise operations.

6.1. Enhanced Computation Capability
We enhance the basic capability of Flash-Cosmos (beyond
the bitwise AND and bitwise OR operations introduced in Sec-
tion 3.1) in two ways.
Supporting Other Bitwise Operations. We design Flash-
Cosmos to also support bitwise NOT/NAND/NOR/XOR/XNOR op-
erations by leveraging two existing features that are widely
supported in real NAND flash memory chips. First, as ex-
plained in Section 2.1, modern NAND flash memory commonly
supports inverse reads [85], which enables Flash-Cosmos to per-
form not only bitwise NOT operations but also bitwise NAND and
NOR operations. Flash-Cosmos performs NOT of a WL by simply
reading the WL in inverse-read mode. If we perform intra-block
(inter-block) MWS while controlling the sensing latch circuit in
inverse-read mode, the sensed data would be the inverse value
of the bitwise AND (OR) of all the WLs simultaneously read, i.e.,
bitwise NAND (NOR) by definition.

Second, many modern NAND flash chips (including the 160
chips used in our real-device characterization, Section 5) sup-
port a bitwise XOR operation between the data in different latches
(i.e., two/three additional latches available in a NAND flash
chip for MLC/TLC program operation) [87, 88]. This feature

10

is essential for supporting on-chip randomization [87] and im-
proving testability (e.g., it significantly reduces a NAND flash
chip’s test time by enabling comparison of programmed data
to a golden value without reading the data out of the chip [121,
122]). By using this feature along with inverse reads, Flash-
Cosmos can also support bitwise XNOR operations since

A XNOR B≡ A XOR B≡ A XOR B (2)

To be specific, Flash-Cosmos uses the existing XOR logic while
performing an inverse read for either of the two operands.
Improving the Performance of the Bitwise OR Operation.
The performance of bitwise OR using inter-block MWS is lim-
ited compared to that achieved by bitwise AND using intra-block
MWS. As demonstrated in Section 5.2, commodity NAND flash
chips can perform bitwise AND of all the WLs in a block via
a single intra-block MWS operation. However, the maximum
number of operands in inter-block MWS is limited due to high
power consumption.

We can remove this restriction on the maximum number of
activated blocks by performing bitwise OR using 1) intra-block
MWS along with 2) inverse reads and 3) taking advantage of De
Morgan’s laws. If we store operands in a block with their inverse
data (instead of the original data), we can perform bitwise OR
of the operands with a single intra-block MWS operation by
leveraging the inverse read mode and De Morgan’s laws:

(A1 + ... + AN)≡ (A1 • ... • AN) (3)

Note that (i) Flash-Cosmos can return the original data of such
operands via inverse reads (∵A≡NOT A), and (ii) inter-block
MWS is still useful for combined bitwise AND/OR operations as
explained in Section 4.1 (Equation 1).
Increasing Maximum Number of Operands for IFP. Flash-
Cosmos alone cannot completely avoid off-chip data transfer for
bitwise AND/OR/NAND/NOR operations if the number of operands
exceeds the number of WLs in a block. This is because intra-
block MWS involves a single sensing operation to read all
WLs within a block, thereby limiting the maximum number of
operands to the number of WLs in a block. Inter-block MWS
has a stronger constraint on the maximum number of operands
due to the limited power budget as explained in Section 5.2.

Fortunately, Flash-Cosmos can accumulate the results of mul-
tiple intra-block MWS operations by leveraging ParaBit, which
has fewer constraints on the maximum number of operands. For
example, suppose that (i) a block has N WLs, and (ii) Flash-
Cosmos needs to perform bitwise AND of all WLs of M different
blocks (i.e., the number of total operands is M×N). We can ac-
cumulate the results in two steps. First, Flash-Cosmos performs
bitwise AND on each block for N operands at a time. Second,
Flash-Cosmos performs bitwise AND on the results from the M
blocks.

6.2. Flash-Cosmos Command Set
Although we demonstrate that our NAND flash chips already
support all necessary features to perform the ESP and MWS
operations in their test-mode command set, efficient design

of Flash-Cosmos commands is important due to two reasons.
First, NAND flash vendors consider their test-mode command
set design to be proprietary and do not reveal any details in
publicly-accessible documentation. Second, efficient command
set design can significantly reduce the necessary changes to the
NAND flash chip’s control logic and communication overheads
with a flash controller.

Figure 15 shows three new NAND flash commands that we
design for Flash-Cosmos: (a) MWS, (b) ESP, and (c) XOR. We
design the MWS command to be used for all three necessary
features in Flash-Cosmos except for bitwise XOR: (i) intra- and
inter-block MWS, (ii) inverse read, and (iii) accumulation of
the results of all reads as described in Section 6.1. To this end,
we extend the regular read command that contains the operation
code and target page address in three aspects. First, we add
the ISCM command slot before the address slot to allow a flash
controller to turn on/off four features by setting the dedicated
flags: (i) inverse-read mode, (ii) sensing-latch (S-latch) initial-
ization, (iii) cache-latch (C-latch) initialization, and (iv) data
transfer from S-latch to C-latch. Second, we enable the flash
controller to efficiently specify the WLs to activate for MWS op-
erations by sending the page bitmap (PBM) instead of the page
index in the address slot. Third, we design an MWS command to
have up to four address slots for inter-block MWS by sending
the additional block address and PBM after a CONT (continue)
slot.12 The ESP command has the same command interface as
the regular program command, and the XOR command performs
bitwise XOR between two (sensing and cache) latches and stores
the result in the C-latch.

Figure 15: Three new NAND flash commands for Flash-Cosmos:
(a) MWS, (b) ESP, and XOR.

Figure 16 shows how a flash controller can use Flash-Cosmos
to perform bulk bitwise operations using an example that makes
two assumptions: (i) a Flash-Cosmos-enabled chip stores four
sets of four bit vectors, Ai, Bi, Ci, and Di, in four blocks Blki
(1≤i≤4), each of which has four pages; (ii) bit vectors Ci and Di
are programmed using their inverse data with the knowledge that
they would be used for bitwise OR (Section 6.1). Suppose that
the user would like to perform the following bitwise operations:

{A1 +(B1 •B2 •B3 •B4)} • (C1 +C3) • (D2 +D4) (4)

As shown in Figure 16, the user can perform bitwise operations
using two intra-block MWS commands, 1 one for (C1 + C3) •

(D2 +D4) while enabling the inverse-read mode and initializa-
tion of both latches and 2 the other for A1 +(B1 • B2 • B3 • B4)
while disabling the inverse-read mode and initialization of both
latches. By disabling the initialization of both latches while
performing the second MWS command, the results of the two

12CONT is a command slot to indicate that an address cycle will follow next.
CONF is a command slot to indicate the end of the command sequence.

11

ISCM BLK PBM BLK PBM

1
2
3
4

A

Flash-Cosmos
NAND	Flash	Chip

Plane#2Plane#1
A B C D

16KiB

1
2
3
4

D
1
2
3
4

1
2
3
4

B C

MWS 1111 CONT CONF0011 0101 0100 1010

MWS 0001 CONT CONF0001 0001 0010 1111

Blk1 Blk2 Blk3 Blk4

Blk:	3 WLs:	1&3 Blk:	4 WLs:	2&4

(C1 • C3)+(D2• D4)(C1+C2) •(D2+D4)≡❶

A1+(B1• B2• B3• B4)❷

Blk:	1 WLs:	1 Blk:	2 WLs:	all

{A1+(B1 • B2 • B3 • B4)}•(C1+C2) •(D2+D4)

Figure 16: Operational example of Flash-Cosmos.While perform-
ing the second MWS command, the results of the two MWS com-
mands, 1 and 2 , are accumulated in both the S-latch and the
C-latch.

MWS commands, 1 and 2 , are accumulated in both the S-latch
and the C-latch (Section 6.1). Note that the order of the two
MWS commands is important, as an inverse read requires S-latch
initialization, which prevents the accumulation of the results.

6.3. System Support
We briefly discuss the end-to-end system support that we envi-
sion to efficiently enable Flash-Cosmos.
Requirements. There are two key requirements for a system
to take full advantage of Flash-Cosmos-enabled NAND flash
chips. First, the target data of bitwise operations needs to be
properly stored using ESP. To maximize the performance bene-
fits of Flash-Cosmos, it is important to store as many operands
of the target bitwise operation as possible in the same block,
which minimizes the number of MWS operations required. For
example, bitwise OR on 48 pages (i.e., operands) would require
12 inter-block MWS operations if each operand is stored in
different blocks, assuming that the maximum number of pages
for inter-block MWS is limited to 4 in order to avoid maxi-
mum power consumption related issues. However, when the
operands are stored in the same block with their inverse data,
it is possible to perform the same bitwise OR operation with
a single intra-block MWS operation using inverse-mode read
(Section 6.1). Second, the host system needs to interact with the
underlying SSD in order to efficiently store the data to maximize
the benefits of Flash-Cosmos.
Application Changes. In our design, the application program
needs to decide how to store data in three aspects. First, the
application determines the data that will be used for bulk bitwise
operations so that it can inform the SSD to selectively use ESP
for only such data (to minimize the storage overhead due to
SLC mode). Second, depending on the computation that can
benefit the most from Flash-Cosmos, the application decides
whether or not to store the inverse of the original data. For
example, if the application performs bitwise OR more frequently
than bitwise AND for certain data, it could be more beneficial to
store the inverse data to leverage intra-block MWS for bitwise
OR as well. Third, the application decides which operands to
be stored in the same block to minimize the number of MWS
operations required for the same bitwise operation.
System Software Changes. In our design, the application pro-
gram interacts with the SSD using the Flash-Cosmos library that
includes two methods: (i) fc_write, which writes the operand
data for bitwise operations, and (ii) fc_read, which reads the

results of bitwise operations. Using fc_write, the application
informs the SSD of the context of the operation, such as the pro-
gramming mode and the location (e.g., logical block address),
to ensure that the data is properly stored for in-flash computa-
tion. To perform an in-flash bitwise operation, the application
uses fc_read to specify to the SSD the locations of the target
operands, the size of the operands, and the types of bitwise
operations required.
SSD Changes. In our design, the SSD firmware requires two
key changes. First, it generates Flash-Cosmos commands to
properly handle fc_write and fc_read from the host system.
Second, the SSD firmware maintains additional metadata neces-
sary for Flash-Cosmos, such as each page’s programming mode
and the location where the page should be stored.

In this work, our focus is on investigating the feasibility and
benefits of Flash-Cosmos using modern NAND flash memory
chips. While the end-to-end support for Flash-Cosmos requires
several changes within layers of the system stack, we believe
that existing approaches can be applied to meet the key require-
ments (e.g., efficient storage layout designs [7-9, 37], host-SSD
communication [9, 50, 78], and metadata management inside
the SSD [50, 78]). We leave more efficient end-to-end system
designs and software stack for Flash-Cosmos to future work.

7. Methodology
Evaluated Systems. To evaluate the effectiveness of Flash-
Cosmos, we analyze four computing platforms: (i) an outside-
storage processing system (OSP),(ii) an in-storage processing
system (ISP), (iii) ParaBit (PB) [21], and (iv) Flash-Cosmos
(FC). OSP performs bulk bitwise operations using the host CPU
concurrently with reading the operands from the SSD to main
memory in batches. ISP leverages an in-storage hardware accel-
erator that consists of simple bitwise logic and 256-KiB SRAM
buffer in order to perform bulk bitwise operations inside the
SSD and sends only the final results to the host. PB and FC
perform bulk bitwise operations inside the NAND flash chips
via the in-flash processing mechanisms described in Section 3.1
and Section 6, respectively, and send only the final results to
the host. Unless otherwise specified, we set all the evaluated
systems to program (and thus read) the inputs and outputs of
bitwise operations in SLC mode for fair performance compari-
son.
Performance Modeling. We use two state-of-the-art simula-
tors to analyze the performance of the evaluated systems. We
model DRAM timing with the DDR4 interface [123] in Ramula-
tor [124, 125], a widely-used cycle-accurate DRAM simulator.
We model SSD performance using MQSim [126, 127], a state-
of-the-art SSD simulator. We extend MQSim to faithfully model
the performance of ISP, ParaBit, and Flash-Cosmos with the
timing parameters we obtain from our real-device character-
ization (Section 5). We model the end-to-end throughput of
the evaluated systems based on the throughput of each of two
computation stages, SSD read (including in-storage processing
in ISP, PB, and FC) and host computation (which we measure
on a real host system). Table 1 summarizes the configurations
of the SSD and host system used for our evaluation.

12

Table 1: Evaluated system configurations.

Real Host System
CPU: Intel Rocket Lake i7 11700K [91];
x86 [128]; 8 cores; out-of-order; 3.6 GHz;

Main Memory: 64 GB; DDR4-3600; 4 channels;

Simulated SSD

48-WL-layer 3D TLC NAND flash-based SSD; 2 TB;

Bandwidth: 8-GB/s external I/O bandwidth (4-lane PCIe Gen4);
1.2-GB/s Channel IO rate;

NAND Config: 8 channels; 8 dies/channel; 2 planes/dies;
2,048 blocks/plane; 196 (4×48) WLs/block; 16 KiB/page;

Latencies: tR (SLC mode): 22.5 µs; tMWS: 25 µs (Max. 4 blocks);
tPROG (SLC/MLC/TLC mode): 200/500/700 µs; tESP: 400 µs;

Power: HW Accelerator (only in ISP): 93 pJ for 64B operation;

Energy Modeling. We measure the energy consumption for
host computation using Intel RAPL [129] To model DRAM
energy consumption, We use DRAM power values based on the
DDR4 model [130, 131]. To model SSD energy consumption,
we use the SSD power values of Samsung 980 Pro SSDs [132]
and the NAND flash power values that we measure in our real-
device characterization (Section 5).
Workloads. We evaluate three real-world applications that
heavily rely on bulk bitwise operations. For fair comparison
with ParaBit, we evaluate two of the three applications studied
in [21], bitmap indices and image segmentation,13 as well as a
graph-processing workload called k-clique star listing [19, 133,
134]. For all workloads, we assume that the data set is initially
stored in the SSD due to its large size.
1) Bitmap Index (BMI): Bitmap indices [1] are an alternative
to traditional B-tree indices for databases, which can provide
high space efficiency and high performance for many queries
(e.g., join and scan) compared to B-trees. We assume a database
that tracks the log-in activities of u users for a website every
day. For the i-th day, the database maintains a vector Di with u
elements, each of which is a 1-bit flag to indicate each user’s
log-in activity on the day (0: not logged-in, 1: logged-in). Our
BMI workload runs the following query: “How many users
were active every day for the past m months?” Executing the
query requires (i) bitwise AND operations on d vectors, where
d is the number of days in the past m months, and (ii) a bit-
count operation, i.e., an operation that counts the number of ‘1’
(logged-in) bits in a given result vector r. We assume a database
that tracks the log-in activities of 800 million users and evaluate
the BMI workload while varying m from 1 to 36. For executing
the BMI workload, PB and FC perform the bit-count operation
using the host CPU concurrently with sending the result vector
to main memory in batches.
2) Image Segmentation (IMS): Image segmentation [135] is an
image processing kernel that aims to break an image into mul-
tiple regions depending on a given set of colors. To determine
whether a pixel p belongs to a certain color C, our IMS work-
load uses the YUV color recognition and performs a bitwise
AND operation of Y (p,C) • U(p,C) • V (p,C), where Y (p,C),
U(p,C), and V (p,C) are binary values that can be obtained

13We do not evaluate the other application evaluated in ParaBit [21], image
encryption [30], as it relies only on bitwise XOR operations that commodity
NAND flash chips already support (see Section 3), i.e., neither ParaBit nor Flash-
Cosmos is necessary to perform in-flash processing for such XOR operations.

from pre-processing [135]. In our evaluation, IMS segments I
images, each of which consists of 800×600 pixels, with four
colors. This can be done by performing a bulk bitwise AND
operation to three bit vectors where each bit-vector contains
I× 800× 600× 4 bits. We assume the three bit-vectors are
initially stored in the SSD and evaluate the IMS workload while
varying I from 10,000 to 200,000.
3) K-Clique Star Listing (KCS): K-clique star listing [19, 133,
134] aims to find all the k-clique stars in an input graph. For a
given graph, a k-clique is a sub-graph with k vertices that are
fully connected to each other. A k-clique star is a collection
of (i) a k-clique and (ii) all the vertices in the remainder of the
graph that are connected to all vertices of the k-clique. Prior
work demonstrates that k-clique star listing can be significantly
accelerated via processing-in-memory with a set-centric for-
mulation [19]. In our evaluation, each vertex is represented
using a bit-vector that contains adjacency information to all
other vertices in the graph. Each k-clique is represented with
another bit vector that specifies the set of vertices that belong
to the k-clique. With such bit-vector representations, our KCS
workload can determine a k-clique star by performing only a
bitwise AND operation of the bit-vectors of all the vertices in the
corresponding k-clique. To form the final representation of a
k-clique star, KCS performs a bitwise OR operation of the calcu-
lated intermediate bit vector and the bit-vector that represents
the k-clique. Note that Flash-Cosmos can perform both of the
bitwise AND and OR operations simultaneously if the k-clique bit
vector is stored in a block that is different from than the block
that stores the vertex adjacency vectors. We use an input graph
with 32 million vertices and 1,024 k-cliques and we sweep the
dimensions of the cliques, from 8 to 64.

Applications using bulk bitwise operations with many
operands can be particularly sensitive to the RBER of NAND
flash memory. For example, a single bit error in any of the
operands in the BMI workload results in an active user not being
counted. The probability of miscounting active users grows as
the number of operands increases and rapidly becomes imprac-
tical without a sufficiently low RBER. Assuming a best-case
RBER of 8.6× 10−4 (based on our analysis) and m=36, the
probability of a correct output is 0.42 which is not acceptable.
KCS is similarly error-intolerant due to the large number of
operands it uses. In contrast, IMS is more error tolerant due
to the fewer operands in this workload. Thus, we expect that
Flash-Cosmos would be a good fit for all these workloads, espe-
cially BMI and KCS, due to its zero bit error rate in computation
results.

8. Evaluation Results
We evaluate the performance and energy efficiency of Flash-
Cosmos by comparing its execution time and energy consump-
tion to three baseline computing platforms.

8.1. Impact on Performance
Figure 17 shows the speedups of Flash-Cosmos (FC), Para-
Bit (PB), and the in-storage processing system (ISP) over the

13

Sp
ee

d
u

p

1

101

102

103

0
1
2
3
4

1

101

102

m=# of months I=# of images [×103] k=# of vertices in a clique
1 3 6 12 24 36 10 50 100 200 8 16 24 32 48 64

(a) Bitmap index (BMI) (b) Image segmentation (IMS) (c) k-clique star listing (KCS)

PBISP FC

Figure 17: Performance comparison of four computing platforms on three real-world workloads. ISP (In-storage processing), PB
(ParaBit), FC (Flash-Cosmos). Speedup values are normalized to OSP (Outside-storage processing). Y-axis is in log-scale.

conventional outside-storage processing system (OSP). We make
six observations from Figure 17.

First, FC significantly outperforms OSP, providing 32×
speedup on average across all three workloads and input data
sets. In OSP, computation can be completely hidden by reading
of the operands due to the simple nature of bitwise operations,
but the SSD’s external bandwidth bottlenecks performance.
This means that, when the operands are stored in the storage
system, any other outside-storage processing platform (e.g.,
GPU or near-memory processor) cannot improve the perfor-
mance of bulk bitwise operations over OSP (unless one increases
SSD’s external bandwidth).

Second, FC also significantly outperforms ISP, providing
25× speedup on average. While ISP provides considerable
speedup (28%) over OSP by reducing external data movement
from the SSD (external bandwidth is 8 GB/s, Table 1), the
limited internal SSD bandwidth (9.6 GB/s, Table 1) becomes a
new bottleneck. ISP needs to read out all operands from NAND
flash chips to the hardware accelerators, which can be largely
avoided by in-flash processing.

Third, FC provides large performance improvement over Para-
Bit. While PB also significantly outperforms OSP (and ISP) by
9.4× (7.2×), FC outperforms PB by 3.5× on average across all
three workloads and input data sets. This highlights the key
benefit of performing MWS in real-world applications.

Fourth, the benefits of FC increase with the number of
operands used in bulk bitwise operations. The speedups of FC
for BMI are higher compared to the other two workloads, since
BMI has a larger number of operands (from 30 to 1,095). In
contrast, the performance of PB does not improve as the number
of operands increases (e.g., for k>16 in KCS). This is because
the performance bottleneck of PB shifts to the serial sensing
of the operands as discussed in Section 3.2, due to which the
latency also linearly increases with the number of operands.
As a result, while FC significantly improves performance over
OSP/ISP for BMI by 198.4×/150.5×, PB’s benefits over OSP/ISP
for BMI remain at only 14×/10.7×.

Fifth, the benefits of FC are affected by not only the number
of operands but also the operand size. For example, FC does
the same operation (AND) over 30 operands for BMI (when m=1)
and over 32 operands for KCS (when k=32). Although KCS has
more operands than BMI, we observe that FC provides higher
improvement over PB for BMI. This is because the total size of
the result bit vectors is smaller in BMI (100 MB) than in KCS
(4 GB), which results in reduced external I/O time spent for
transferring the results from the SSD to the host. As shown in

Figure 7(d), external data movement can become the bottleneck
even for in-flash processing if the external I/O time within an
application (e.g., due to transferring results out of the SSD) is
larger than the overall sensing time. Therefore, the benefit of FC
over PB is lower if the external I/O time dominates the overall
execution time.

Sixth, FC and PB show almost similar performance for IMS
across all input sets. Even though FC reduces the average num-
ber of sensing operations by 3× compared to PB when executing
the IMS workload, moving the large (up to 44GiB) result vector
of IMS to the host dominates the total execution time for both
mechanisms. This is in contrast to BMI where the vector size is
only 100 MB. Note that, in IMS, both FC and PB provide high
speedups compared to ISP and OSP (2.5× and 3×, respectively)
by reducing the amount of external and internal data transfers,
which are the performance bottleneck in IMS.

We conclude that Flash-Cosmos is an effective substrate to
accelerate important real-world applications. Flash-Cosmos not
only largely outperforms the state-of-the-art IFP technique but
also, crucially, provides reliable, error-free execution (which is
necessary for correct results in all three real-world workloads
we evaluate).

8.2. Impact on Energy Consumption

Fig. 18 shows the energy-efficiency of FC, PB, and ISP, in terms
of the number of bits that can be computed/transferred per unit
of energy, normalized to that of OSP. We make three observa-
tions. First, FC greatly increases energy efficiency over the other
evaluated systems, providing 95×/13.4×/3.3× higher energy-
efficiency compared to OSP/ISP/PB, on average across all three
workloads and input sets. Flash-Cosmos has the maximum en-
ergy savings of 1,839×/222×/35.5× over OSP/ISP/PB for BMI
when m=36. Second, the overall trend of FC’s energy-efficiency
benefits is similar to its performance benefits. The energy ben-
efits of FC increase (decrease) as the number of operands (the
operand size) increases. Third, FC reduces energy by not only
reducing data movement but also reducing sensing energy, es-
pecially for multi-operand operations. As a result, it provides
higher improvements in energy efficiency (95× on average over
OSP) than in performance (32× on average over OSP). Note that,
as shown in Figures 17(b) and 18(b), for IMS, even though FC
performs similarly to PB, it provides 2.3% energy savings. We
conclude that Flash-Cosmos is an efficient substrate to eliminate
the energy overheads of data movement for many commonly-
used real-world applications.

14

1 3 6 12 24 36

N
or

m
. b

it
/e

n
er

gy

1
101
102

103
104

10 50 100 200
0
2
4
6
8

10

8 16 24 32 48 64
1

101

102

103

m=# of months I=# of images [×103] k=# of vertices in a clique

PBISP FC

(a) Bitmap index (BMI) (b) Image segmentation (IMS) (c) k-clique star listing (KCS)

Figure 18: Energy-efficiency comparison of four computing platforms on three real-world workloads. Normalized to OSP (Outside-
storage processing). Y-axis represents number of bits computed per unit of energy in log-scale.

8.3. Overhead Analysis
As briefly discussed in Section 4.2, Flash-Cosmos introduces
two key overheads due to the use of ESP for reliable in-flash
computation. First, ESP requires 2× the page-program latency
compared to regular SLC-mode programming. Second, ESP
consumes 2× the storage capacity to store the same amount of
data compared to MLC-mode programming.

While the write-performance and capacity overheads are not
negligible, we believe that both overheads would not be serious
obstacles to the adoption of Flash-Cosmos due to three reasons.
First, ESP is essential to ensuring the reliability of in-flash
computation.14 As shown in Section 3.2, regular SLC/MLC-
mode programming exhibits significantly higher RBER than the
UBER requirement, and ESP effectively solves this important
reliability problem that is present in in-flash computation.15

Second, both the write-performance and capacity overheads
apply only to the data used for bulk bitwise operations. As such,
Flash-Cosmos can minimize these overheads by selectively us-
ing ESP only for the data that is involved in in-flash processing
(bulk bitwise operations) while programming other data using
regular SLC/MLC/TLC-mode programming. Such a functional-
ity is supported by the multiple programming modes in modern
NAND flash memory, i.e., any block can be programmed in
SLC, MLC, and TLC modes [77, 78, 136].

Third, ESP does not degrade SSD write performance, in
terms of both bandwidth and latency, compared to MLC-mode
programming. This is because the program latency of ESP
(400 µs, Section 4.2) is still lower than the latency of MLC- and
TLC-mode programming (500 µs and 700 µs, respectively, in
our evaluated chips). We evaluate the sequential write band-
width of ESP, and the results show that ESP provides a write
bandwidth of 4.7 GB/s, which is 73.4%/121.4%/166.7% of the
regular SLC/MLC/TLC-mode programming write bandwidth
(6.4/3.87/2.82 GB/s).

9. Related Work
To our knowledge, this work is the first to enable in-flash bulk
bitwise operations on multiple operands through a single sens-
ing operation, while achieving zero bit errors in the computation

14In order to be useful for general-purpose computation, ParaBit has to support
error-free computation, potentially using ESP.

15Flash-Cosmos can also work with MLC NAND flash memory while guar-
anteeing the same level of reliability as ParaBit provides, when the operands
are stored in LSB pages. This is because the mechanism of LSB-page reads is
the same as SLC-page reads, except for the used read-reference voltage levels
(LSB-page read in MLC: VREF2 in in Figure 5(b) vs. SLC-page read: VREF in
Figure 5 (a)).

results. We already discussed and comprehensively compared
to the state-of-the-art technique [21] closely related to Flash-
Cosmos (Sections 3, 7 and 8). We briefly describe other NDP
proposals at different levels in the memory hierarchy.
In-Flash Processing. Several prior works propose in-flash pro-
cessing techniques to accelerate the multiply-and-accumulate
(MAC) operations in different applications such as neural net-
works (e.g., [57, 58, 62, 63, 110, 137-140]) and mixed signal
sensing (e.g., [60]). Similar to Flash-Cosmos, these mech-
anisms have high bit-level parallelism, but they exploit ana-
log current accumulation, which requires significant changes
to the NAND flash cell array structures, e.g., deploying pre-
cise and costly analog-to-digital converters inside the chip (see
Section 4.1). In contrast, our mechanism can be adopted in
commodity SSDs with very low cost, as we demonstrated in
Section 5.
In-Storage Processing. Several prior works propose to lever-
age the internal processor (e.g., [51, 52, 55, 56, 141-154]) or
embed hardware accelerators (e.g., [15-17, 49, 50, 155-165])
within the storage device for computation. Due to their more
general-purpose designs, these proposals can perform more
diverse and complex operations (e.g., arithmetic operations).
However, as discussed in Section 3, in-storage processing needs
to first read out the processed data from the flash chips and
transmit it to the SSD controller over the SSD-internal I/O link,
which is a performance bottleneck. In contrast, Flash-Cosmos
can effectively reduce the data movement between NAND flash
chips and the SSD controller by performing computation inside
the flash chip arrays, leading to more than an order of magni-
tude higher performance and energy-efficiency than in-storage
processing (Section 8).
In-Memory and In-Cache Processing. A large body of prior
work proposes various NDP techniques at other levels of the
memory hierarchy, e.g., in main memory (e.g., [6-9, 14, 20,
38, 39, 54, 166-192]) and in SRAM caches (e.g., [37, 40, 41,
193-199]). Even though these works provide significantly lower
access latency and high reliability, once the size of the processed
data exceeds the cache and main memory capacity, the data
needs to move between the storage devices and the rest of the
memory hierarchy. Flash-Cosmos can complement these NDP
approaches (including in-storage processing) by processing
large amounts of data inside flash arrays and communicating
only the results of the computation.

10. Discussion
Extensions to Other Applications. Flash-Cosmos can be used
to accelerate not only bitwise operations but also any desired op-

15

eration. This is because Flash-Cosmos supports a set of bitwise
operations that are logically complete, like other processing-
using-memory (PuM) substrates that use the operational prin-
ciples of the memory cells for computation, such as Compute
Caches [37] (SRAM-based PuM), Ambit [7] (DRAM-based
PuM), and Pinatubo [20] (NVM-based PuM). Follow-up works
(e.g., DualityCache [40], SIMDRAM [9], and IMP [200]) pro-
pose frameworks that leverage these substrates and techniques
to automate the creation of desired complex operations (e.g.,
addition and multiplication) to accelerate a broad range of work-
loads, including graph processing, databases, neural networks
and genome analysis. We leave the development of such a
framework for Flash-Cosmos to future work.
Limitations. Flash-Cosmos has two key limitations that also
commonly exist in other PuM solutions. First, like ParaBit and
other PuM proposals (e.g., [6-9, 20, 37-39, 166-170, 172, 173,
188]), it is not straightforward for Flash-Cosmos to work with
mainstream encryption techniques (e.g., AES-256 [132, 201])
that are widely used in modern SSDs. This is because widely-
used encryption techniques have input-data dependence and/or
require complex computation other than bitwise operations
(e.g., shifting). One possible solution is to employ homomor-
phic encryption that preserves the correctness of computation
for encrypted data [202]. Although homomorphic encryption
currently has many challenges with large computation and ca-
pacity overheads, we believe that the development of efficient
homomorphic encryption would be a promising direction to
solve this common problem of the PuM paradigm in dealing
with encrypted data.

Second, like ParaBit and other PuM proposals, Flash-Cosmos
can accelerate bulk bitwise operations only when the operands
are stored in the same chip. The system can potentially leverage
an efficient inter-chip data migration technique to gather the
target operands into the same block in background, but doing so
inevitably incurs data movement that eats away from the benefits
of Flash-Cosmos. When the operands are stored in different
chips, in-storage processing that uses hardware accelerators near
NAND flash chips could be more effective. Fortunately, Flash-
Cosmos requires only small changes to commodity NAND
flash chips, which makes it easy to be combined with such
an in-storage processing solution. We leave the integration of
Flash-Cosmos with other NDP solutions to future work.

11. Conclusion
We propose Flash-Cosmos, a new in-flash processing technique
that significantly improves the performance, energy efficiency,
and reliability of in-flash bulk bitwise operations. Flash-Cosmos
takes full advantage of the massive bit-level parallelism present
in modern NAND flash memory by leveraging the cell-array
structures and operating principles of NAND flash memory.
First, Flash-Cosmos enables the chips to perform bulk bitwise
operations on multiple (tens) operands via only one single-
sensing operation. Second, Flash-Cosmos enhances the existing
SLC-mode programming scheme to achieve zero bit errors in
computation results, thereby enabling the use of in-flash pro-
cessing for general, error-intolerant applications, which was

previously not possible. We experimentally demonstrate the
feasibility, performance, and reliability of Flash-Cosmos us-
ing 160 real 3D NAND flash chips. Our simulation-based real
workload evaluations show that Flash-Cosmos significantly out-
performs outside-storage processing, in-storage processing and
the state-of-the-art in-flash processing technique in terms of
both performance and energy efficiency while providing reli-
able operation. We conclude that Flash-Cosmos is a promising
substrate to enable highly-efficient, high-performance, and re-
liable in-flash computation. We hope and expect that future
work builds on Flash-Cosmos in many ways, e.g., by enabling
system-level frameworks that take advantage of Flash-Cosmos
and by demonstrating benefits over more workloads.

Acknowledgments
We thank the anonymous reviewers of ISCA 2022 and MI-
CRO 2022 for feedback. We thank the SAFARI group mem-
bers for feedback and the stimulating intellectual environment.
We specifically thank Nika Mansouri Ghiasi and Minesh Patel
who helped shape our arguments and strengthen our evalua-
tion. We acknowledge the generous gifts and support provided
by our industrial partners: Google, Huawei, Intel, Microsoft,
VMware, the Semiconductor Research Corporation and the
ETH Future Computing Laboratory. Jisung Park was in part
supported by the National Research Foundation (NRF) of Korea
(NRF-2020R1A6A3A03040573). (Co-corresponding Authors:
Jisung Park, Myungsuk Kim, and Onur Mutlu)

References
[1] C.-Y. Chan and Y. E. Ioannidis, “Bitmap Index Design and Evaluation,” in SIG-

MOD, 1998.
[2] E. O’Neil, P. O’Neil, and K. Wu, “Bitmap Index Design Choices and their Perfor-

mance Implications,” in IDEAS, 2007.
[3] Y. Li and J. M. Patel, “WideTable: An Accelerator for Analytical Data Processing,”

in VLDB, 2014.
[4] Y. Li and J. M. Patel, “BitWeaving: Fast Scans for Main Memory Data Processing,”

in SIGMOD, 2013.
[5] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety, and Y. He,

“BitFunnel: Revisiting Signatures for Search,” in SIGIR, 2017.
[6] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,

O. Mutlu, P. B. Gibbons, M. A. Kozuch et al., “RowClone: Fast and Energy-
Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[7] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[8] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu, P. B.
Gibbons, and T. C. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE
CAL, 2015.

[9] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi, M. Patel,
M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu, “SIMDRAM: A Framework for
Bit-Serial SIMD Processing Using DRAM,” in ASPLOS, 2021.

[10] “FastBit: An Efficient Compressed Bitmap Index Technology,” https://sdm.lbl.gov/
fastbit/.

[11] M.-C. Wu and A. P. Buchmann, “Encoded Bitmap Indexing for Data Warehouses,”
in ICDE, 1998.

[12] Z. Guz, M. Awasthi, V. Balakrishnan, M. Ghosh, A. Shayesteh, T. Suri, and
S. Semiconductor, “Real-Time Analytics as the Killer Application for Processing-
In-Memory,” WoNDP, 2014.

[13] Redis, “Redis bitmaps,” https://redis.io/docs/data-types/bitmaps/.
[14] B. Perach, R. Ronen, B. Kimelfeld, and S. Kvatinsky, “PIMDB: Under-

standing Bulk-Bitwise Processing In-Memory Through Database Analytics,”
arXiv:2203.10486, 2022.

[15] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu et al., “BlueDBM:
An Appliance for Big Data Analytics,” in ISCA, 2015.

[16] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H. Bobarshad, V. Alves, and
N. Bagherzadeh, “Catalina: In-Storage Processing Acceleration for Scalable Big
Data Analytics,” in PDP, 2019.

16

https://sdm.lbl.gov/fastbit/
https://sdm.lbl.gov/fastbit/
https://redis.io/docs/data-types/bitmaps/

[17] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and Y. S. Ki,
“SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD,” IEEE CAL,
2020.

[18] S. Beamer, K. Asanovic, and D. Patterson, “Direction-Optimizing Breadth-First
Search,” in SC, 2012.

[19] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun, J. Beránek,
K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi, I. Stefan et al.,
“SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-
in-Memory Systems,” in MICRO, 2021.

[20] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A Processing-in-
Memory Architecture for Bulk Bitwise Operations in Emerging Non-Volatile Mem-
ories,” in DAC, 2016.

[21] C. Gao, X. Xin, Y. Lu, Y. Zhang, J. Yang, and J. Shu, “ParaBit: Processing Parallel
Bitwise Operations in NAND Flash Memory Based SSDs,” in MICRO, 2021.

[22] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan, “GateKeeper: A
New Hardware Architecture for Accelerating Pre-alignment in DNA Short Read
Mapping,” Bioinformatics, 2017.

[23] J. Loving, Y. Hernandez, and G. Benson, “BitPAl: A Bit-Parallel, General Integer-
Scoring Sequence Alignment Algorithm,” Bioinformatics, 2014.

[24] H. Xin, J. Greth, J. Emmons, G. Pekhimenko, C. Kingsford, C. Alkan, and
O. Mutlu, “Shifted Hamming Distance: A Fast and Accurate SIMD-Friendly Filter
to Accelerate Alignment Verification in Read Mapping,” Bioinformatics, 2015.

[25] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim,
R. Ausavarungnirun, M. Alser, J. Gómez-Luna, A. Boroumand, A. Nori, A. Scibisz,
S. Subramoney, C. Alkan, S. Ghose, and O. Mutlu, “GenASM: A High-
Performance, Low-Power Approximate String Matching Acceleration Framework
for Genome Sequence Analysis,” in MICRO, 2020.

[26] J. S. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin,
C. Alkan, and O. Mutlu, “GRIM-Filter: Fast Seed Location Filtering in DNA Read
Mapping Using Processing-in-Memory Technologies,” BMC Genomics, 2018.

[27] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. De-
von, K. Dewar, M. Doyle, W. Fitzhugh et al., “Initial Sequencing and Analysis of
the Human Genome,” Nature, 2001.

[28] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic Local
Alignment Search Tool,” JMB, 1990.

[29] G. Myers, “A Fast Bit-Vector Algorithm for Approximate String Matching Based
on Dynamic Programming,” JACM, 1999.

[30] J. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim, “Optical Image Encryption Based on
XOR Operations,” Optical Engineering, 1999.

[31] P. Tuyls, H. D. Hollmann, J. H. Van Lint, and L. Tolhuizen, “XOR-based Visual
Cryptography Schemes,” Des. Codes, Cryptogr., 2005.

[32] S. A. Manavski, “CUDA Compatible GPU as an Efficient Hardware Accelerator
for AES Cryptography,” in SPCOM, 2007.

[33] P. Kanerva, “Sparse Distributed Memory and Related Models,” Tech. Rep., 1992.
[34] P. Kanerva, “Hyperdimensional Computing: An Introduction to Computing in Dis-

tributed Representation with High-Dimensional Random Vectors,” Cognitive Com-
putation, 2009.

[35] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebastian,
“In-memory Hyperdimensional Computing,” Nature Electronics, 2020.

[36] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring Hyperdi-
mensional Associative Memory,” in HPCA, 2017.

[37] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das,
“Compute Caches,” in HPCA, 2017.

[38] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
arXiv:1905.09822, 2019.

[39] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA: A DRAM-
based Reconfigurable In-Situ Accelerator,” in MICRO, 2017.

[40] D. Fujiki, S. Mahlke, and R. Das, “Duality Cache for Data Parallel Acceleration,”
in ISCA, 2019.

[41] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw,
and R. Das, “Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Net-
works,” in ISCA, 2018.

[42] A. K. Ramanathan, G. S. Kalsi, S. Srinivasa, T. M. Chandran, K. R. Pillai, O. J.
Omer, V. Narayanan, and S. Subramoney, “Look-up Table Based Energy Efficient
Processing in Cache Support for Neural Network Acceleration,” in MICRO, 2020.

[43] A. Augusta and S. Idreos, “JAFAR: Near-Data Processing for Databases,” in SIG-
MOD, 2015.

[44] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-
Memory Accelerator for Parallel Graph Processing,” in ISCA, 2015.

[45] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-
Overhead, Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[46] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi, B. Grot,
and D. Pnevmatikatos, “The Mondrian Data Engine,” in ISCA, 2017.

[47] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA: Near-DRAM
Acceleration Architecture Leveraging Commodity DRAM Devices and Standard
Memory Modules,” in HPCA, 2015.

[48] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable Logic for
Near-Data Processing,” in HPCA, 2016.

[49] S.-W. Jun, A. Wright, S. Zhang, S. Xu, and Arvind, “GraFBoost: Using Acceler-
ated Flash Storage for External Graph Analytics,” in ISCA, 2018.

[50] V. S. Mailthody, Z. Qureshi, W. Liang, Z. Feng, S. G. De Gonzalo, Y. Li, H. Franke,
J. Xiong, J. Huang, and W.-m. Hwu, “Deepstore: In-Storage Acceleration for Intel-
ligent Queries,” in MICRO, 2019.

[51] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu, and

S. Swanson, “Willow: A User-Programmable SSD,” in USENIX OSDI, 2014.
[52] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang, M. Kwon, C. Yoon,

S. Cho et al., “Biscuit: A Framework for Near-Data Processing of Big Data Work-
loads,” in ISCA, 2016.

[53] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and
S. Swanson, “Near-Data Processing: Insights from a MICRO-46 Workshop,” IEEE
Micro, 2014.

[54] O. Mutlu, S. Ghose, J. Goḿes-Luna, and R. Ausavarungnirun, “A Modern Primer
on Processing in Memory,” in Emerging Computing: From Devices to Systems –
Looking Beyond Moore and Von Neumann. Springer, 2021.

[55] N. Mansouri Ghiasi, J. Park, H. Mustafa, J. Kim, A. Olgun, A. Gollwitzer,
D. Senol Cali, C. Firtina, H. Mao, N. Almadhoun Alserr, R. Ausavarungnirun,
N. Vijaykumar, M. Alser, and O. Mutlu, “GenStore: A High-Performance In-
Storage Processing System for Genome Sequence Analysis,” in ASPLOS, 2022.

[56] Y. Kang, Y. suk Kee, E. L. Miller, and C. Park, “Enabling Cost-effective Data
Processing with Smart SSD,” in MSST, 2013.

[57] W. Choi, P.-F. Chiu, W. Ma, G. Hemink, T. Hoang, M. Lueker-Boden, and
Z. Bandic, “An In-Flash Binary Neural Network Accelerator with SLC NAND
Flash Array,” in ISCAS, 2020.

[58] R. Han, P. Huang, Y. Xiang, C. Liu, Z. Dong, Z. Su, Y. Liu, L. Liu, X. Liu, and
J. Kang, “A Novel Convolution Computing Paradigm Based on NOR Flash Array
with High Computing Speed and Energy Efficiency,” TCAS, 2019.

[59] W. Shim and S. Yu, “GP3D: 3D NAND based In-memory Graph Processing Accel-
erator,” JETCAS, 2022.

[60] F. Merrikh-Bayat, G. Xinjie, M. Klachko, M. Prezioso, K. Likharev, and D. Strukov,
“High-Performance Mixed-Signal Neurocomputing With Nanoscale Floating-Gate
Memory Cell Arrays,” TNNLS, 2017.

[61] P.-H. Tseng, F.-M. Lee, Y.-H. Lin, L.-Y. Chen, Y.-C. Li, H.-W. Hu, Y.-Y. Wang,
C.-C. Hsieh, M.-H. Lee, H.-L. Lung, K.-Y. Hsieh, K.-C. Wang, and C.-Y. Lu, “In-
Memory-Searching Architecture Based on 3D-NAND Technology with Ultra-High
Parallelism,” in IEDM, 2020.

[62] P. Wang, F. Xu, B. Wang, B. Gao, H. Wu, H. Qian, and S. Yu, “Three-Dimensional
NAND Flash for Vector-Matrix Multiplication,” TVLSI, 2018.

[63] H.-T. Lue, P.-K. Hsu, M.-L. Wei, T.-H. Yeh, P.-Y. Du, W.-C. Chen, K.-C. Wang,
and C.-Y. Lu, “Optimal Design Methods to Transform 3D NAND Flash into a
High-Density, High-Bandwidth and Low-Power Nonvolatile Computing in Mem-
ory (nvCIM) Accelerator for Deep-Learning Neural Networks (DNN),” in IEDM,
2019.

[64] J. Park, M. Kim, M. Chun, L. Orosa, J. Kim, and O. Mutlu, “Reducing Solid-State
Drive Read Latency by Optimizing Read-Retry,” in ASPLOS, 2021.

[65] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Reliability Issues in Flash-
memory-based Solid-state Drives: Experimental Analysis, Mitigation, Recovery,”
in Inside Solid State Drives, 2018.

[66] J. Cha and S. Kang, “Data Randomization Scheme for Endurance Enhancement
and Interference Mitigation of Multilevel Flash Memory Devices,” ETRI Journal,
2013.

[67] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” Proc. IEEE,
2017.

[68] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in MLC NAND
Flash Memory: Characterization, Modeling, and Mitigation,” in ICCD, 2013.

[69] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities in
MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in HPCA, 2017.

[70] J. Park, J. Jeong, S. Lee, Y. Song, and J. Kim, “Improving Performance and Life-
time of NAND Storage Systems Using Relaxed Program Sequence,” in DAC, 2016.

[71] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC
NAND Flash Memory: Characterization, Optimization, and Recovery,” in HPCA,
2015.

[72] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal et al., “Flash
Correct-and-Refresh: Retention-Aware Error Management for Increased Flash
Memory Lifetime,” in ICCD, 2012.

[73] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Crista, O. S. Unsal et al., “Error
Analysis and Retention-aware Management for NAND Flash Memory,” Intel Tech.
J., 2013.

[74] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving 3D NAND
Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation,”
in SIGMETRICS, 2018.

[75] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Errors in MLC NAND Flash
Memory: Characterization, Mitigation, and Recovery,” in DSN, 2015.

[76] K. Ha, J. Jeong, and J. Kim, “An Integrated Approach for Managing Read Disturbs
in High-density NAND Flash Memory,” TCAD, 2015.

[77] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “FlexFS: A Flexible Flash File System
for MLC NAND Flash Memory.” in USENIX ATC, 2009.

[78] M. Kim, J. Park, G. Cho, Y. Kim, L. Orosa, O. Mutlu, and J. Kim, “Evanesco: Ar-
chitectural Support for Efficient Data Sanitization in Modern Flash-based Storage
Systems,” in ASPLOS, 2020.

[79] J. Jeong, S. S. Hahn, S. Lee, and J. Kim, “Lifetime Improvement of NAND Flash-
based Storage Systems Using Dynamic Program and Erase Scaling,” in FAST, 2014.

[80] Y. Shim, M. Kim, M. Chun, J. Park, Y. Kim, and J. Kim, “Exploiting Process
Similarity of 3D Flash Memory for High Performance SSDs,” in MICRO, 2019.

[81] M. Kim, Y. Song, M. Jung, and J. Kim, “SARO: A State-Aware Reliability Opti-
mization Technique for High Density NAND Flash Memory,” in GLSVLSI, 2018.

17

[82] Y. Feng, D. Feng, W. Tong, Y. Jiang, and C. Liu, “Using Disturbance Compensation
and Data Clustering (DC)2 to Improve Reliability and Performance of 3D MLC
Flash Memory,” in ICCD, 2017.

[83] H. Wang, N. Wong, T.-Y. Chen, and R. D. Wesel, “Using Dynamic Allocation of
Write Voltage to Extend Flash Memory Lifetime,” TCOM, 2016.

[84] G. Dong, S. Li, and T. Zhang, “Using Data Postcompensation and Predistortion to
Tolerate Cell-to-Cell Interference in MLC NAND Flash Memory,” TCAS, 2010.

[85] J. Lee, H.-S. Im, D.-S. Byeon, K.-H. Lee, D.-H. Chae, K.-H. Lee, S. W. Hwang,
S.-S. Lee, Y.-H. Lim, J.-D. Lee, J.-D. Choi, Y.-I. Seo, J.-S. Lee, and K.-D. Suh,
“High-Performance 1-Gb-NAND Flash Memory with 0.12-µm Technology,” JSSC,
2002.

[86] J. Lee, H.-S. Im, D.-S. Byeon, K.-H. Lee, D.-H. Chae, K.-H. Lee, Y.-H. Lim, J.-D.
Choi, Y.-I. Seo, J.-S. Lee et al., “A 1.8V 1Gb NAND Flash Memory with 0.12µm
STI Process Technology,” in ISSCC, 2002.

[87] C. Kim, J. Ryu, T. Lee, H. Kim, J. Lim, J. Jeong, S. Seo, H. Jeon, B. Kim, I. Lee,
D. Lee, P. Kwak, S. Cho, Y. Yim, C. Cho, W. Jeong, K. Park, J.-M. Han, D. Song,
K. Kyung, Y.-H. Lim, and Y.-H. Jun, “A 21 nm High Performance 64 Gb MLC
NAND Flash Memory with 400 MB/s Asynchronous Toggle DDR Interface,” JSSC,
2012.

[88] C. Kim, D.-H. Kim, W. Jeong, H.-J. Kim, I. H. Park, H.-W. Park, J. Lee, J. Park, Y.-
L. Ahn, J. Y. Lee, S.-B. Kim, H. Yoon, J. D. Yu, N. Choi, N. Kim, H. Jang, J. Park,
S. Song, Y. Park, J. Bang, S. Hong, Y. Choi, M.-S. Kim, H. Kim, P. Kwak, J.-D.
Ihm, D. S. Byeon, J.-Y. Lee, K.-T. Park, and K.-H. Kyung, “A 512-Gb 3-b/Cell
64-Stacked WL 3-D-NAND Flash Memory,” JSSC, 2018.

[89] L. Crippa and R. Micheloni, “Sensing circuits,” in Inside NAND Flash Memories,
2010.

[90] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling Accurate and
Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,”
JSAC, 2016.

[91] Intel Corp., “Intel Core i711700K Processor – Product Specifica-
tions,” https://ark.intel.com/content/www/us/en/ark/products/212047/
intel-core-i711700k-processor-16m-cache-up-to-5-00-ghz.html, 2021.

[92] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND Flash Memories, 2010.
[93] D. Hong, M. Kim, J. Park, M. Jung, and J. Kim, “Improving SSD Performance

Using Adaptive Restricted-Copyback Operations,” in NVMSA, 2019.
[94] F. Wu, J. Zhou, S. Wang, Y. Du, C. Yang, and C. Xie, “FastGC: Accelerate Garbage

Collection via an Efficient Copyback-Based Data Migration in SSDs,” in DAC,
2018.

[95] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC NAND Flash
Memory: Measurement, Characterization, and Analysis,” in DATE, 2012.

[96] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang, “LDPC-in-SSD:
Making Advanced Error Correction Codes Work Effectively in Solid State Drives,”
in FAST, 2013.

[97] Micron, “Product Flyer: Micron 3D NAND Flash Memory,” 2016,
https://www.micron.com/-/media/client/global/documents/products/product-flyer/
3d_nand_flyer.pdf?la=en.

[98] G. Dong, N. Xie, and T. Zhang, “On the Use of Soft-Decision Error-Correction
Codes in NAND Flash Memory,” TCAS, 2010.

[99] L. Zuolo, C. Zambelli, P. Olivo, R. Micheloni, and A. Marelli, “LDPC Soft Decod-
ing with Reduced Power and Latency in 1X-2X NAND Flash-Based Solid State
Drives,” in IMW, 2015.

[100] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi, “Error-Prediction LDPC and Error-
Recovery Schemes for Highly Reliable Solid-State Drives (SSDs),” JSSC, 2013.

[101] X. Hu, “LDPC Codes for Flash Channel,” Flash Memory Summit, 2012.
[102] R.-A. Cernea, “Highly Compact Non-Volatile Memory and Method Thereof,” 2006,

US Patent 6,983,428.
[103] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-

Level Parallelism (SALP) in DRAM,” in ISCA, 2012.
[104] N. Leong, S. Chandra, and H. Chen, “Random Cache Read Using a Double Mem-

ory,” 2008, US Patent 7,423,915.
[105] Macronix, “Technical Note: Improving NAND Throughput with Two-Plane

and Cache Operations,” 2013, https://www.macronix.com/Lists/ApplicationNote/
Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%
20Two-Plane%20and%20Cache%20Operations.pdf.

[106] Micron, “NAND Flash Memory Data Sheet: MT29F16G08ABABA, MT29F32G-
08AFABA, MT29F64G08A[J/K/M]ABA, MT29F128G08AUABA, MT29F16G-
08ABCBB, MT29F32G08AECBB, MT29F64G08A[K/M]CBB, MT29F128G-
08AUCBB,” 2009.

[107] Samsung, “32Gb A-die NAND Flash Datasheet,” 2009.
[108] Toshiba, “NAND Memory Toggle DDR1.0 Technical Data Sheet,” 2012.
[109] D. Kang, M. Kim, S. C. Jeon, W. Jung, J. Park, G. Choo, D.-k. Shim, A. Kavala, S.-

B. Kim, K.-M. Kang, J. Lee, K. Ko, H.-W. Park, B.-J. Min, C. Yu, S. Yun, N. Kim,
Y. Jung, S. Seo, S. Kim, M. K. Lee, J.-Y. Park, J. C. Kim, Y. S. Cha, K. Kim, Y. Jo,
H. Kim, Y. Choi, J. Byun, J.-h. Park, K. Kim, T.-H. Kwon, Y. Min, C. Yoon, Y. Kim,
D.-H. Kwak, E. Lee, W.-g. Hahn, K.-s. Kim, K. Kim, E. Yoon, W.-T. Kim, I. Lee,
S. h. Moon, J. Ihm, D. S. Byeon, K.-W. Song, S. Hwang, and K. H. Kyung, “A
512Gb 3-Bit/Cell 3D 6th-Generation V-NAND Flash Memory with 82MB/s Write
Throughput and 1.2Gb/s Interface,” in ISSCC, 2019.

[110] S. Kim, Y. Jin, G. Sohn, J. Bae, T. J. Ham, and J. W. Lee, “Behemoth: A Flash-
centric Training Accelerator for Extreme-scale {DNNs},” in FAST, 2021.

[111] J. Gray and C. Van Ingen, “Empirical Measurements of Disk Failure Rates and
Error Rates,” arXiv cs/0701166, 2007.

[112] A. Cox, “JEDEC SSD Endurance Workloads,” in FMS, 2011.
[113] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,

R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network Accel-
erator with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[114] K.-D. Suh, B.-H. Suh, Y.-H. Lim, J.-K. Kim, Y.-J. Choi, Y.-N. Koh, S.-S. Lee, S.-
C. Kwon, B.-S. Choi, J.-S. Yum, J.-H. Choi, J.-R. Kim, and H.-K. Lim, “A 3.3 V
32 Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme,”
JSSC, 1995.

[115] X. Jimenez, D. Novo, and P. Ienne, “Phoenix: Reviving MLC Blocks as SLC to
Extend NAND Flash Devices Lifetime,” in DATE, 2013.

[116] ONFI Workgroup, “Open NAND Flash Interface Specification Revision 4.2,” 2020,
https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-gold.pdf.

[117] S. Arrhenius, “Über die Dissociationswärme und den Einfluss der Temperatur auf
den Dissociationsgrad der Elektrolyte,” Z. Phys. Chem., 1889.

[118] JEDEC, JESD47: Stress-Test-Driven Qualification of Integrated Circuits, 2010.
[119] JEDEC, JESD22-A117: Electrically Erasable Programmable ROM (EEPROM)

Program / Erase Endurance and Data Retention Stress Test, 2010.
[120] PCISIG, “PCIe Specification,” 2017, https://pcisig.com/specifications/pciexpress/.
[121] S.-K. Lu, S.-X. Zhong, and M. Hashizume, “Fault Leveling Techniques for Yield

and Reliability Enhancement of NAND Flash Memories,” JET, 2018.
[122] H. Cao, F. Liu, Q. Wang, Z. Du, L. Jin, and Z. Huo, “An Efficient Built-in Error

Detection Methodology with Fast Page-oriented Data Comparison in 3D NAND
Flash Memories,” Electronics Letters, 2022.

[123] JEDEC, JESD79-4C: DDR4 SDRAM Standard, 2020.
[124] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simu-

lator,” CAL, 2016.
[125] CMU-SAFARI, “Ramulator,” https://github.com/CMU-SAFARI/ramulator.git.
[126] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu, “MQSim: A

Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices,”
in FAST, 2018.

[127] CMU-SAFARI, “MQSim,” https://github.com/CMU-SAFARI/MQSim.git.
[128] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Vol. 3,

2016.
[129] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring Energy Consumption

for Short Code Paths Using RAPL,” SIGMETRICS, 2012.
[130] M. T. Inc., “4Gb: x4, x8, x16 DDR4 SDRAM Data Sheet,” 2016.
[131] S. Ghose, T. Li, N. Hajinazar, D. S. Cali, and O. Mutlu, “Demystifying Complex

Workload-DRAM Interactions: An Experimental Study,” ACM POMACS, 2019.
[132] Samsung, “Samsung SSD 980 PRO,” 2020. [Online]. Available: https:

//www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
[133] M. Danisch, O. Balalau, and M. Sozio, “Listing k-Cliques in Sparse Real-world

Graphs,” in TheWebConf, 2018.
[134] S. Jabbour, N. Mhadhbi, B. Raddaoui, , and L. Sais, “Pushing the Envelope in

Overlapping Communities Detection,” in ISIDAS, 2018.
[135] J. Bruce, T. Balch, and M. Veloso, “Fast and Inexpensive Color Image Segmenta-

tion for Interactive Robots,” in IROS, 2000.
[136] S. Li, W. Tong, J. Liu, B. Wu, and Y. Feng, “Accelerating Garbage Collection for

3D MLC Flash Memory with SLC Blocks,” in ICCAD, 2019.
[137] S. Wang, “MemCore: Computing-in-Flash Design for Deep Neural Network Ac-

celeration,” in EDTM, 2022.
[138] R. Han, Y. Xiang, P. Huang, Y. Shan, X. Liu, and J. Kang, “Flash Memory Array

for Efficient Implementation of Deep Neural Networks,” Adv. Intell. Syst., 2021.
[139] M. Kang, H. Kim, H. Shin, J. Sim, K. Kim, and L.-S. Kim, “S-FLASH: A

NAND Flash-based Deep Neural Network Accelerator Exploiting Bit-Level Spar-
sity,” IEEE TC, 2021.

[140] S.-T. Lee and J.-H. Lee, “Neuromorphic Computing Using NAND Flash Memory
Architecture With Pulse Width Modulation Scheme,” Front. Neurosci., 2020.

[141] X. Wang, Y. Yuan, Y. Zhou, C. C. Coats, and J. Huang, “Project Almanac: A Time-
Traveling Solid-State Drive,” in EuroSys, 2019.

[142] A. Acharya, M. Uysal, and J. Saltz, “Active Disks: Programming Model, Algo-
rithms and Evaluation,” ASPLOS, 1998.

[143] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A Case for Intelligent Disks
(IDISKs),” SIGMOD Rec., 1998.

[144] J. Wang, D. Park, Y.-S. Kee, Y. Papakonstantinou, and S. Swanson, “SSD In-
Storage Computing for List Intersection,” in DaMoN, 2016.

[145] G. Koo, K. K. Matam, T. I, H. K. G. Narra, J. Li, H.-W. Tseng, S. Swanson, and
M. Annavaram, “Summarizer: Trading Communication with Computing Near Stor-
age,” in MICRO, 2017.

[146] D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers, and Y. Solihin,
“Active Flash: Towards Energy-Efficient, In-Situ Data Analytics on Extreme-Scale
Machines,” in FAST, 2013.

[147] D. Tiwari, S. S. Vazhkudai, Y. Kim, X. Ma, S. Boboila, and P. J. Desnoyers, “Reduc-
ing Data Movement Costs Using Energy-Efficient, Active Computation on SSD,” in
HotPower, 2012.

[148] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and G. M. Shipman, “Active
Flash: Out-of-core Data Analytics on Flash Storage ,” in MSST, 2012.

[149] D.-H. Bae, J.-H. Kim, S.-W. Kim, H. Oh, and C. Park, “Intelligent SSD: A Turbo
for Big Data Mining,” in CIKM, 2013.

[150] M. Torabzadehkashi, S. Rezaei, V. Alves, and N. Bagherzadeh, “CompStor: An In-
Storage Computation Platform for Scalable Distributed Processing,” in IPDPSW,
2018.

[151] L. Kang, Y. Xue, W. Jia, X. Wang, J. Kim, C. Youn, M. J. Kang, H. J. Lim, B. Ja-
cob, and J. Huang, “IceClave: A Trusted Execution Environment for In-Storage
Computing,” in MICRO, 2021.

[152] C. Li, Y. Wang, C. Liu, S. Liang, H. Li, and X. Li, “GLIST: Towards In-Storage

18

https://ark.intel.com/content/www/us/en/ark/products/212047/intel-core-i711700k-processor-16m-cache-up-to-5-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212047/intel-core-i711700k-processor-16m-cache-up-to-5-00-ghz.html
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-gold.pdf
https://pcisig.com/specifications/pciexpress/
https://github.com/CMU-SAFARI/ramulator.git
https://github.com/CMU-SAFARI/MQSim.git
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/

Graph Learning,” in USENIX ATC, 2021.
[153] M. Lim, J. Jung, and D. Shin, “LSM-Tree Compaction Acceleration Using In-

Storage Processing,” in ICCE-Asia, 2021.
[154] M. Kim and S. Lee, “Reducing Tail Latency of DNN-based Recommender Systems

using In-Storage Processing,” in APSys, 2020.
[155] S. Pei, J. Yang, and Q. Yang, “REGISTOR: A Platform for Unstructured Data Pro-

cessing inside SSD Storage,” ACM TOS, 2019.
[156] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query Processing

on Smart SSDs: Opportunities and Challenges,” in ACM SIGMOD, 2013.
[157] S. Kim, H. Oh, C. Park, S. Cho, S.-W. Lee, and B. Moon, “In-Storage Processing

of Database Scans and Joins,” Information Sciences, 2016.
[158] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle, “Active Disks for Large-Scale

Data Processing,” Computer, 2001.
[159] E. Riedel, G. Gibson, and C. Faloutsos, “Active Storage for Large-Scale Data Min-

ing and Multimedia Applications,” VLDB, 1998.
[160] S. Liang, Y. Wang, Y. Lu, Z. Yang, H. Li, and X. Li, “Cognitive SSD: A Deep

Learning Engine for In-Storage Data Retrieval,” in USENIX ATC, 2019.
[161] B. Y. Cho, W. S. Jeong, D. Oh, and W. W. Ro, “XSD: Accelerating MapReduce by

Harnessing the GPU inside an SSD ,” in WoNDP, 2013.
[162] M. Ajdari, P. Park, J. Kim, D. Kwon, and J. Kim, “CIDR: A Cost-effective In-line

Data Reduction System for Terabit-per-second Scale SSD Arrays,” in HPCA, 2019.
[163] S. Liang, Y. Wang, C. Liu, H. Li, and X. Li, “InS-DLA: An In-SSD Deep Learning

Accelerator for Near-Data Processing,” in FPL, 2019.
[164] W. S. Jeong, C. Lee, K. Kim, M. K. Yoon, W. Jeon, M. Jung, and W. W. Ro, “RE-

ACT: Scalable and High-performance Regular Expression Pattern Matching Accel-
erator for In-storage Processing,” IEEE TPDS, 2019.

[165] S.-W. Jun, H. T. Nguyen, V. Gadepally et al., “In-Storage Embedded Accelerator
for Sparse Pattern Processing,” in HPEC, 2016.

[166] S. Angizi and D. Fan, “GraphiDe: A Graph Processing Accelerator Leveraging
In-DRAM-Computing,” in GLSVLSI, 2019.

[167] M. F. Ali, A. Jaiswal, and K. Roy, “In-Memory Low-Cost Bit-Serial Addition Using
Commodity DRAM Technology,” TCAS-I, 2019.

[168] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[169] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “DrAcc: A DRAM based
Accelerator for Accurate CNN Inference,” in DAC, 2018.

[170] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-Memory Com-
pute Using Off-the-Shelf DRAMs,” in MICRO, 2019.

[171] X. Xin, Y. Zhang, and J. Yang, “ELP2IM: Efficient and Low Power Bitwise Opera-
tion Processing in DRAM,” in HPCA, 2020.

[172] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A.
Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Buddy-RAM: Improv-
ing the Performance and Efficiency of Bulk Bitwise Operations Using DRAM,”
arXiv:1611.09988, 2016.

[173] M. S. Truong, E. Chen, D. Su, L. Shen, A. Glass, L. R. Carley, J. A. Bain, and
S. Ghose, “RACER: Bit-Pipelined Processing Using Resistive Memory,” in MI-
CRO, 2021.

[174] C. Giannoula, I. Fernandez, J. G. Luna, N. Koziris, G. Goumas, and
O. Mutlu, “SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-in-Memory Architectures,” POMACS, 2022.

[175] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang,
“GraphH: A Processing-in-Memory Architecture for Large-Scale Graph Process-
ing,” IEEE TCAD, 2019.

[176] Y. Tang, Y. Wang, H. Li, and X. Li, “ApproxPIM: Exploiting Realistic 3D-Stacked
DRAM for Energy-Efficient Processing in-Memory,” in ASP-DAC, 2017.

[177] O. Leitersdorf, D. Leitersdorf, J. Gal, M. Dahan, R. Ronen, and S. Kvatinsky, “Ar-
itPIM: High-Throughput In-Memory Arithmetic,” arXiv:2206.04218, 2022.

[178] N. Rohbani, M. A. Soleimani, and H. Sarbazi-Azad, “PIPF-DRAM: Processing in
Precharge-Free DRAM,” in DAC, 2022.

[179] X.-Q. Li, G.-M. Tan, and N.-H. Sun, “PIM-Align: A Processing-in-Memory Archi-
tecture for FM-Index Search Algorithm,” JCST, 2021.

[180] H. Kim, H. Park, T. Kim, K. Cho, E. Lee, S. Ryu, H.-J. Lee, K. Choi, and J. Lee,
“GradPIM: A Practical Processing-in-DRAM Architecture for Gradient Descent,”
in HPCA, 2021.

[181] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Igna-
towski, “TOP-PIM: Throughput-Oriented Programmable Processing in Memory,”
in HPDC, 2014.

[182] P. C. Santos, G. F. Oliveira, D. G. Tomé, M. A. Alves, E. C. Almeida, and L. Carro,
“Operand Size Reconfiguration for Big Data Processing in Memory,” in DATE,
2017.

[183] J. D. Ferreira, G. Falcao, J. Gómez-Luna, M. Alser, L. Orosa, M. Sadrosadati, J. S.
Kim, G. F. Oliveira, T. Shahroodi, A. Nori et al., “pLUTo: Enabling Massively
Parallel Computation in DRAM via Lookup Tables,” arXiv:2104.07699, 2021.

[184] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian, “GraphQ:
Scalable PIM-Based Graph Processing,” in MICRO, 2019.

[185] D. A. Patterson, T. E. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. E.
Kozyrakis, R. Thomas, and K. A. Yelick, “A Case for Intelligent RAM,” IEEE
Micro, 1997.

[186] A. Boroumand, S. Ghose, G. F. Oliveira, and O. Mutlu, “Polynesia: Enabling High-
Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with
Hardware/Software Co-Design,” in ICDE, 2022.

[187] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk, O. Mutlu,
and H. Corporaal, “NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning,” in DAC, 2019.

[188] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm: In-DRAM
Bulk Copy, Initialization, Bitwise AND and OR,” arXiv:1610.09603, 2016.

[189] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi,
H. Zheng, and O. Mutlu, “LazyPIM: An Efficient Cache Coherence Mechanism for
Processing-in-Memory,” IEEE CAL, 2017.

[190] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME:
A Novel Processing-in-Memory Architecture for Neural Network Computation in
ReRAM-Based Main Memory,” in ISCA, 2016.

[191] W. Kautz, “Cellular Logic-in-Memory Arrays,” IEEE Trans. Comput., 1969.
[192] H. S. Stone, “A Logic-in-Memory Computer,” IEEE Trans. Comput., 1970.
[193] M. Kang, S. K. Gonugondla, and N. R. Shanbhag, “Deep In-Memory Architectures

in SRAM: An Analog Approach to Approximate Computing,” Proc. IEEE, 2020.
[194] K. Angstadt, A. Subramaniyan, E. Sadredini, R. Rahimi, K. Skadron, W. Weimer,

and R. Das, “ASPEN: A Scalable In-SRAM Architecture for Pushdown Automata,”
in MICRO, 2018.

[195] M. Kang, S. K. Gonugondla, and N. R. Shanbhag, “Deep In-Memory Architectures
in SRAM: An Analog Approach to Approximate Computing,” Proc. IEEE, 2020.

[196] J. Zhang, Z. Wang, and N. Verma, “In-Memory Computation of a Machine-
Learning Classifier in a Standard 6T SRAM Array,” IEEE JSSC, 2017.

[197] Y.-H. Lin, C. Liu, C.-L. Hu, K.-Y. Chang, J.-Y. Chen, and S.-J. Jou, “A Reconfig-
urable In-SRAM Computing Architecture for DCNN Applications,” in VLSI-DAT,
2021.

[198] K. Al-Hawaj, O. Afuye, S. Agwa, A. Apsel, and C. Batten, “Towards a Recon-
figurable Bit-Serial/Bit-Parallel Vector Accelerator using In-Situ Processing-In-
SRAM,” in ISCAS, 2020.

[199] J. Zhang, H. Naghibijouybari, and E. Sadredini, “Sealer: In-SRAM AES for High-
Performance and Low-Overhead Memory Encryption,” arXiv:2207.01298, 2022.

[200] D. Fujiki, S. Mahlke, and R. Das, “In-Memory Data Parallel Processor,” in ASP-
LOS, 2018.

[201] A. Biryukov and D. Khovratovich, “Related-Key Cryptanalysis of the Full AES-
192 and AES-256,” in ASIACRYPT, 2009.

[202] C. Fontaine and F. Galand, “A Survey of Homomorphic Encryption for Nonspecial-
ists,” EURASIP JIS, 2007.

19

	1 Introduction
	2 Background
	2.1 Basics of NAND Flash Memory
	2.2 Reliability of NAND Flash Memory

	3 Motivation
	3.1 In-Flash Bulk Bitwise Operations
	3.2 Limitations of State-of-the-Art

	4 Flash-Cosmos: Key Mechanisms
	4.1 Multi-Wordline Sensing (MWS)
	4.2 Enhanced SLC-Mode Programming (ESP)

	5 Real Device Characterization
	5.1 Characterization Methodology
	5.2 Characterization Results

	6 Design of Flash-Cosmos
	6.1 blackEnhanced Computation Capability
	6.2 Flash-Cosmos Command Set
	6.3 blackSystem Support

	7 Methodology
	8 Evaluation Results
	8.1 Impact on Performance
	8.2 Impact on Energy Consumption
	8.3 Overhead Analysis

	9 Related Work
	10 Discussion
	11 Conclusion

