
HAL Id: lirmm-03777161
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03777161

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hermes: Accelerating Long-Latency Load Requests via
Perceptron-Based Off-Chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo,
Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

To cite this version:
Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, et al..
Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction.
MICRO 2022 - 55th IEEE/ACM International Symposium on Microarchitecture, Oct 2022, Chicago,
IL, United States. pp.1-18, �10.1109/MICRO56248.2022.00015�. �lirmm-03777161�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03777161
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based O�-Chip Load Prediction

Rahul Bera1 Konstantinos Kanellopoulos1 Shankar Balachandran2 David Novo3

Ataberk Olgun1 Mohammad Sadrosadati1 Onur Mutlu1

1ETH Zürich 2Intel Processor Architecture Research Lab 3LIRMM, Univ. Montpellier, CNRS

Long-latency load requests continue to limit the performance
of modern high-performance processors. To increase the latency
tolerance of a processor, architects have primarily relied on two
key techniques: sophisticated data prefetchers and large on-chip
caches. In this work, we show that: (1) even a sophisticated state-
of-the-art prefetcher can only predict half of the o�-chip load
requests on average across a wide range of workloads, and (2)
due to the increasing size and complexity of on-chip caches, a
large fraction of the latency of an o�-chip load request is spent
accessing the on-chip cache hierarchy to solely determine that it
needs to go o�-chip.
The goal of this work is to accelerate o�-chip load requests

by removing the on-chip cache access latency from their critical
path. To this end, we propose a new technique called Hermes,
whose key idea is to: (1) accurately predict which load requests
might go o�-chip, and (2) speculatively fetch the data required
by the predicted o�-chip loads directly from the main memory,
while also concurrently accessing the cache hierarchy for such
loads.
To enable Hermes, we develop a new lightweight, perceptron-

based o�-chip load prediction technique that learns to identify
o�-chip load requests using multiple program features (e.g., se-
quence of program counters, byte o�set of a load request). For
every load request generated by the processor, the predictor ob-
serves a set of program features to predict whether or not the load
would go o�-chip. If the load is predicted to go o�-chip, Hermes
issues a speculative load request directly to the main memory
controller once the load’s physical address is generated. If the
prediction is correct, the load eventually misses the cache hierar-
chy and waits for the ongoing speculative load request to �nish,
and thus Hermes completely hides the on-chip cache hierarchy
access latency from the critical path of the correctly-predicted
o�-chip load. Our extensive evaluation using a wide range of
workloads shows that Hermes provides consistent performance
improvement on top of a state-of-the-art baseline system across a
wide range of con�gurations with varying core count, main mem-
ory bandwidth, high-performance data prefetchers, and on-chip
cache hierarchy access latencies, while incurring only modest
storage overhead. The source code of Hermes is freely available
at: https://github.com/CMU-SAFARI/Hermes.

1. Introduction
Long-latency load requests signi�cantly limit the performance
of high-performance out-of-order (OOO) processors. A load re-
quest that misses in the on-chip cache hierarchy and goes to the

o�-chip main memory (i.e., an o�-chip load) often stalls the pro-
cessor core by blocking the instruction retirement from the re-
order bu�er (ROB), thus limiting the core’s performance [88, 91,
92]. To increase the latency tolerance of a core, computer archi-
tects primarily rely on two key techniques. First, they employ
increasingly sophisticated hardware prefetchers that can learn
complex memory address patterns and fetch data required by
future load requests before the core demands them [28, 32,
33, 35, 75]. Second, they signi�cantly scale up the size of the
on-chip cache hierarchy with each new generation of proces-
sors [10, 11, 16].

Key problem. Despite recent advances in processor core
design, we observe two key trends in new processor designs
that leave a signi�cant opportunity for performance improve-
ment on the table. First, even a sophisticated state-of-the-art
prefetcher can only predict half of the long-latency o�-chip
load requests on average across a wide range of workloads (see
§2). This is because even the most sophisticated prefetchers
cannot easily learn the irregular access patterns in programs.

Second, a large fraction of the latency of an o�-chip load
request is spent on accessing the multi-level on-chip cache
hierarchy. This is primarily due to the increasing size of the
on-chip caches [15, 24, 25]. To cater to workloads with ever
increasing data footprints, on-chip caches in recent processors
are growing in size and complexity [30, 50, 116]. A larger on-
chip cache, on the one hand, improves a core’s performance
by reducing the fraction of load requests that go o�-chip [59,
99, 122]. On the other hand, a larger cache comes with longer
cache access latency, which increases the latency of each o�-
chip load request [18].

Our goal in this work is to accelerate long-latency o�-chip
load requests by removing on-chip cache access latency from
their critical path. To this end, we introduce a new technique
called Hermes, whose key idea is to predict which load re-
quests might go o�-chip and start fetching their correspond-
ing data directly from the main memory, while also concur-
rently accessing the cache hierarchy for such a load.1 By doing
so, Hermes hides the on-chip cache access latency under the
shadow of the main memory access latency (as illustrated in
Fig. 1), thereby signi�cantly reducing the overall latency of
an o�-chip load request. Hermes works in tandem with any
hardware data prefetcher and reduces the long memory access

1Hence named after Hermes, the Olympian deity [12] who can quickly
move between the realms of the divine (i.e., the processor) and the mortals
(i.e., the main memory).

1

ar
X

iv
:2

20
9.

00
18

8v
3

 [
cs

.A
R

]
 3

0
Se

p
20

22

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/CMU-SAFARI/Hermes

latency of o�-chip load requests that otherwise could not have
been prefetched by sophisticated state-of-the-art prefetchers.

L1 L2 LLC Main Memory

Main Memory

L1 L2 LLC

Processor is stalled
Latency tolerance limit of ROB

Saved stall cycles

B
a

se
li

n
e

Start fetching data from main memory a6ter physical address is available

H
er

m
es

Predict whether the load will go o=f-chip1

2

Figure 1: Comparison of the execution timeline of an o�-chip
load request in a conventional processor and in Hermes.

Key challenge. Although Hermes can potentially improve
performance by removing the on-chip cache access latency
from the critical path of a correctly-predicted o�-chip load
request, its performance gain signi�cantly depends on how
accurately it can identify the o�-chip load requests. This is
because a false-positive o�-chip prediction (i.e., a load request
that is predicted to go o�-chip but hits in the cache) generates
an unnecessary main memory request, incurring additional
main memory bandwidth and latency overheads, which can
easily diminish the performance bene�t gained by the load
latency reduction.

We identify two key challenges in designing an accurate
o�-chip load prediction mechanism. First, in a system with
state-of-the-art high-performance prefetchers, only 1 out of 20
load requests generated by a program on average eventually
goes o�-chip (see §3.2). Such a small fraction of o�-chip loads
makes it di�cult for an o�-chip load predictor to accurately
and robustly learn from program behavior to produce highly-
accurate predictions. Second, the accuracy of the o�-chip
prediction of a load can change in the presence of sophisti-
cated prefetching techniques, making it even harder for an
o�-chip load predictor to learn from both the program’s and
the prefetcher’s behavior.

Limitations of prior works. Several prior works [60, 84,
104, 126] propose predicting the cache level that would serve
a given load request to enable various performance optimiza-
tions (e.g., better instruction scheduling). However, most of
these works su�er from two key limitations that make them
unsuitable for o�-chip load prediction. First, prior predictors
su�er from low prediction accuracy (i.e., the fraction of pre-
dicted o�-chip load requests that actually went o�-chip) [84,
126], which increases the bandwidth overhead in main mem-
ory. As a result, they often lose the performance bene�t gained
by the load latency reduction and might lower performance
than the baseline system (see §8.1.1 and §8.2.2). Second, prior
o�-chip load prediction mechanisms often incur impractical
metadata overhead (e.g., an operating-system-managed meta-
data storage inside the physical main memory [60], extending
each TLB and cache entry with additional metadata for track-
ing cache residence and coherence of data [104, 105]), which
hinders adoption in commercial processors.

Key mechanism. To enable Hermes, we introduce a new
lightweight perceptron-based o�-chip predictor, called POPET,

that learns to identify o�-chip load requests using multiple pro-
gram features (e.g., sequence of program counters, byte o�set
of a load request). For every load generated by the processor,
POPET observes a set of program features to predict whether
or not the load would go o�-chip. If the load is predicted to
go o�-chip, Hermes issues a speculative load request (called a
Hermes request) directly to the main memory controller once
the load’s physical address is generated. This Hermes request
is serviced by the main memory controller concurrently with
the regular load request (i.e., the load issued by the processor
that generated the Hermes request) that accesses the on-chip
cache hierarchy. If the prediction is correct, the regular load
request eventually misses the cache hierarchy and waits for
the ongoing Hermes request to �nish, and thus Hermes com-
pletely hides the on-chip cache hierarchy access latency from
the critical path of a correctly-predicted o�-chip load.

Results summary. We evaluate Hermes with a diverse
set of 110 single-core and 220 multi-core workloads span-
ning SPEC CPU2006 [22], SPEC CPU2017 [23], PARSEC [20],
Ligra [108] graph processing workloads, and commercial
workloads [21]. Our evaluation yields �ve key results that
demonstrate Hermes’s e�ectiveness. First, POPET achieves
on average 77.1% accuracy and 74.3% coverage (i.e., the frac-
tion of o�-chip load requests of a workload that are success-
fully predicted), both of which are signi�cantly higher (1.6×
higher accuracy, 3.3× higher coverage) than that of the prior
best-accuracy o�-chip predictor, HMP [126]. Second, Hermes
improves performance on average by (up to) 5.4% (23.4%),
5.1% (25.7%), and 6.2% (32.2%) in single-core, eight-core,
and bandwidth-constrained system con�guration, on top of
the best-performing state-of-the-art data prefetcher Pythia [32].
Third, Hermes consistently improves performance when com-
bined with any baseline hardware data prefetcher. When
implemented combined with four recently-proposed high-
performance prefetchers (SPP [35, 75], Bingo [28], MLOP [106],
and SMS [110]) in single-core system, Hermes improves perfor-
mance on average by (up to) 5.1% (27%), 6.2% (22.4%), 7.6%
(26.7%), and 7.7% (25.7%). Fourth, Hermes provides better
performance-to-overhead bene�t than traditional prefetchers
due to its highly-accurate o�-chip predictions. For every 1%
performance increase, Hermes increases the main memory
requests by only 0.5%, whereas Pythia increases them by 2%.
Fifth, all of Hermes’s bene�ts come at a very modest stor-
age overhead of only 4 KB per core, while the state-of-the-art
prefetcher Pythia consumes 25.5 KB per core.

We make the following contributions in this paper:
• We identify two key opportunities for performance improve-

ment in modern processors: (1) a signi�cant fraction of the
load requests continues to go o�-chip even in the presence of
sophisticated data prefetchers, and (2) an increasing fraction
of the o�-chip load latency is spent accessing on-chip caches
due to the increasing size of the on-chip cache hierarchy.

• We introduce Hermes, a new technique that reduces long
memory access latency by predicting o�-chip load requests
and fetching their corresponding data directly from the main

2

memory, while concurrently accessing the on-chip cache
hierarchy for such loads.

• We design a new perceptron-based o�-chip load predictor,
called POPET, that accurately identi�es and predicts the
o�-chip load requests using multiple program features.

• We show that Hermes signi�cantly improves performance
across a wide range of workloads and system con�gura-
tions with varying core count, main memory bandwidth,
high-performance data prefetchers, and on-chip cache ac-
cess latencies.

• We open-source Hermes and all necessary traces and scripts
to reproduce results in https://github.com/CMU-SAFARI/
Hermes.

2. Motivation
High main memory access latency continues to limit the per-
formance of modern out-of-order (OOO) processors. A load
request that misses the on-chip cache hierarchy and goes to o�-
chip main memory often blocks instruction retirement from
the reorder bu�er (ROB), preventing the processor from allo-
cating new instructions into the ROB [51, 88, 91, 92], limiting
performance.

To tolerate long memory latency, recent high-performance
OOO cores have primarily relied on two key techniques. First,
modern cores have signi�cantly scaled up their on-chip cache
size (e.g., each Intel Alder Lake core [10] employs 4.3MB on-
chip cache (including L1, L2 and a per-core last-level cache
(LLC) slice), which is 1.88× larger than the on-chip cache in the
previous-generation Skylake core [4]). Second, modern cores
employ increasingly sophisticated hardware prefetchers [11,
16] that can more e�ectively predict the addresses of load
requests in advance and fetch their corresponding data to on-
chip caches before the program demands it, thereby completely
or partially hiding the long o�-chip load latency for a fraction
of o�-chip loads [11, 32, 33, 35].

Despite these advances, we observe two key trends in proces-
sor design that leave a signi�cant performance improvement
opportunity on the table: (1) a large fraction of load requests
continues to go o�-chip even in the presence of state-of-the-art
prefetchers, and (2) an increasing fraction of the latency of an
o�-chip load request is spent accessing the increasingly larger
on-chip caches.
A large fraction of loads is still uncovered by state-of-
the-art prefetchers. Over the past decades, researchers have
proposed many hardware prefetching techniques that have
consistently pushed the limits of performance improvement
(e.g., [26, 32, 33, 35, 37, 45, 46, 56, 70, 75-77, 79, 85, 94, 98, 106,
107, 110, 111]). We observe that state-of-the-art prefetchers
provide a large performance gain by accurately predicting
future load addresses. Yet, a large fraction of o�-chip load re-
quests cannot be predicted even by the most advanced prefetch-
ers. These uncovered requests limit the processor’s perfor-
mance by blocking instruction retirement in the ROB. Fig. 2
shows a stacked graph of total number o�-chip load requests
in a no-prefetching system and a system with the recently-

proposed hardware data prefetcher Pythia [32], normalized to
the no-prefetching system, across 110 workload traces catego-
rized into �ve workload categories.2 Each bar further catego-
rizes load requests into two classes: loads that block instruction
retirement from the ROB (called blocking) and loads that do not
(called non-blocking). §7 discusses our evaluation methodology.

0

5

10

15

20

25

0%

25%

50%

75%

100%

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 ki

lo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e N
o-

pr
ef

et
ch

in
g

sy
st

em Blocking Non-blocking MPKI

AVG

Figure 2: The distribution of ROB-blocking and non-blocking
load requests (on the left y-axis), and LLC misses per kilo in-
structions (on the right y-axis) in the absence and presence of
a state-of-the-art hardware data prefetcher [32].

We make two key observations from Fig. 2. First, on aver-
age, Pythia accurately prefetches nearly half of all o�-chip load
requests in the no-prefetching system, thereby improving the
overall performance (not shown here; see §8.2.1). Second, the
remaining half of the o�-chip loads are not prefetched even
by a sophisticated prefetcher like Pythia. 71.4% of these non-
prefetched o�-chip loads block instruction retirement from the
ROB, signi�cantly limiting performance. We conclude that,
state-of-the-art prefetchers, while e�ective at improving per-
formance, still leave a signi�cant performance improvement
opportunity on the table.
An increasing fraction of o�-chip load latency is spent
accessing the on-chip cache hierarchy. We observe that the
on-chip cache hierarchy has not only grown tremendously
in size but also in design complexity (e.g., sliced last-level
cache organization [30, 50, 74]) in recent processors, in order
to cater to workloads with large data footprints. A larger
on-chip cache hierarchy, on the one hand, improves a core’s
performance by preventing more load requests from going o�-
chip. On the other hand, all on-chip caches need to be accessed
to determine if a load request should be sent o�-chip. As a
result, on-chip cache access latency signi�cantly contributes to
the total latency of an o�-chip load. With increasing on-chip
cache sizes, and the complexity of the cache hierarchy design
and the on-chip network [34, 116], the on-chip cache access
latency is increasing in processors [15, 18]. An analysis of the
Intel Alder Lake core suggests that the load-to-use latency of
an LLC access has increased to 14 ns (which is equivalent to
55 cycles for a core running at 4 GHz) [15, 24, 25].

To demonstrate the e�ect of long on-chip cache access la-
2We select Pythia as the baseline prefetcher as it provides the highest

prefetch coverage and performance bene�t among the �ve contemporary
prefetchers considered in this paper (see §7.2 and §8.4.2). Nonetheless, our
qualitative observation holds equally true for other prefetchers considered in
this work (see §7.2).

3

https://github.com/CMU-SAFARI/Hermes
https://github.com/CMU-SAFARI/Hermes

tency on the total latency of an o�-chip load, Fig. 3 plots the
average number of cycles a core stalls due to an o�-chip load
blocking any instruction from retiring from the ROB, aver-
aged across each workload category in our baseline system
with Pythia. Each bar further shows the average number of
cycles an o�-chip load spends for accessing the on-chip cache
hierarchy. Our simulation con�guration faithfully models an
Intel Alder Lake performance-core with a large ROB, large
on-chip caches and publicly-reported cache access latencies
(see §7). As Fig. 3 shows, an o�-chip load stalls the core for an
average of 147.1 cycles. 40.1% of these stall cycles (i.e., 58.9
cycles) can be completely eliminated by removing the on-chip
cache access latency from the o�-chip load’s critical path. We
conclude that a large and complex on-chip cache hierarchy
is directly responsible for a large fraction of the overall stall
cycles caused by an o�-chip load request. We envision that this
problem will only get exacerbated with new processor designs
as on-chip caches continue to grow in size and complexity [18].

147.1

0

20

40

60

80

100

120

140

160

180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 an

 o
ff-

ch
ip

 lo
ad

bl
oc

ki
ng

 in
st

ru
ct

io
n

re
tir

em
en

t f
ro

m
 R

OB

AVG

Figure 3: The average number of cycles a core stalls due to
an o�-chip load blocking any instruction from retiring from
the ROB across all workload categories. The dark portion in
each bar shows the cycles that can be completely eliminated
by removing the on-chip cache access latency from an o�-chip
load’s critical path.

3. Our Goal and Key Idea
Our goal is to improve processor performance by removing
the on-chip cache access latency from the critical path of o�-
chip load requests.

3.1. The Key Idea and Potential Bene�ts
To this end, we propose a new technique called Hermes, whose
key idea is to predict which load requests might go o�-chip
and start fetching their corresponding data directly from the
main memory, while also concurrently accessing the cache
hierarchy for such a load.

To understand the potential performance bene�ts of Her-
mes, we model an Ideal Hermes system in simulation where we
reduce the main memory access latency of every o�-chip load
request by the post-L1 on-chip cache hierarchy access latency
(which includes L2 and LLC access, and interconnect latency).
In other words, in the Ideal Hermes system, we (1) magically
and perfectly know if a load request would go o�-chip after its
physical address is available (i.e., after the translation lookaside
bu�er access, which happens in parallel with the L1 data cache
access in modern processors [29, 36, 95, 121]), and (2) directly

access the o�-chip main memory for such a load, eliminat-
ing the non-L1-cache related on-chip cache hierarchy access
latency from such a load’s total latency. Fig. 4(a) shows the
speedup of Ideal Hermes by itself and when combined with
Pythia normalized to the no-prefetching system in single-core
workloads. We make two key observations from Fig. 4(a). First,
Ideal Hermes combined with Pythia outperforms Pythia alone
by 8.3% on average across all workloads. Second, Ideal Her-
mes by itself provides nearly 80% of the performance improve-
ment that Pythia provides. Fig. 4(b) shows the speedup of Ideal
Hermes when combined with four other recently-proposed
high-performance prefetchers: Bingo [28], SPP [75] (with per-
ceptron �lter [35]), MLOP [106], and SMS [110]. Ideal Hermes
improves performance by 9.4%, 8.2%, 10.9%, and 13.3% on
top of four state-of-the-art prefetchers Bingo, SPP, MLOP, and
SMS, respectively. Based on these results, we conclude that
Hermes has high potential performance bene�t not only when
implemented alone but also when combined with a wide vari-
ety of high-performance prefetchers.

1.16
1.20

1.29

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em Ideal Hermes

Pythia (baseline)

Pythia + Ideal Hermes

1.20 1.19

1.14 1.13

1.06

1.29 1.29

1.23 1.24

1.19

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Pythia Bingo SPP MLOP SMS

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em Prefetcher-only Prefetcher + Ideal Hermes

(a)

(b)

GEOMEAN

8.3%

8.3% 9.4%

8.2% 10.9%

13.3%

Figure 4: (a) Speedup of Ideal Hermes by itself and when com-
bined with Pythia in single-core workloads. (b) Speedup of
Ideal Hermes when combined with four recently-proposed
prefetchers: Bingo [28], SPP [35, 75], MLOP [106], and
SMS [110].

3.2. Key Challenge
Even though Hermes has a signi�cant potential to improve
performance, Hermes’s performance gain heavily depends on
the accuracy (i.e., the fraction of predicted o�-chip loads that
actually go o�-chip) and the coverage (i.e., the fraction of o�-
chip loads that are successfully predicted) of the o�-chip load
prediction. A low-accuracy o�-chip load predictor generates
useless main memory requests, which incur both latency and
bandwidth overheads, and causes interference to the useful
requests in the main memory. A low-coverage predictor loses
opportunity to improve performance.

We identify two key challenges in designing an o�-chip load
predictor with high accuracy and high coverage. First, only
a small fraction of the total loads generated by a workload
goes o�-chip in presence of a sophisticated data prefetcher. As
shown in Figure 5, on average 7.9 loads per kilo instructions
miss the LLC and go o�-chip in our baseline system with Pythia.

4

However, these loads constitute only 5.1% of the total loads
generated by a workload. This small fraction of o�-chip loads
makes it di�cult for an o�-chip load predictor to accurately
learn from the workload behavior to produce highly-accurate
predictions.

0

2

4

6

8

10

12

0%

2%

4%

6%

8%

10%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es

pe
r k

ilo
 in

st
ru

ct
io

ns

Fr
ac

tio
n

of
 lo

ad
s

th
at

 g
oe

s o
ff-

ch
ip

Off-chip rate LLC MPKI

AVG

Figure 5: Percentage of loads that miss the LLC and goes o�-
chip (on the left y-axis) and the LLCMPKI (on the right y-axis)
in the baseline system with Pythia.

Second, the o�-chip predictability of a workload can change
in the presence of modern sophisticated data prefetchers. This
is because in the presence of a sophisticated prefetcher, the
likelihood of a load request going o�-chip not only depends
on the program behavior but also on the prefetcher’s ability to
successfully prefetch for the load.

In this work, we overcome these two key challenges by
designing a new o�-chip load prediction technique, called
POPET, based on perceptron learning [64, 82, 103]. By learning
to identify o�-chip loads using multiple program features (e.g.,
sequence of program counters, byte o�set of a load request,
page number of the load address), POPET provides both higher
accuracy and coverage than a prior cache hit-miss prediction
technique [126] and higher accuracy than another o�-chip load
prediction technique that we develop (see §7.2), in the presence
of modern sophisticated prefetchers, without requiring large
metadata storage overhead. With small changes to the existing
on-chip datapath design, we demonstrate that Hermes with
POPET signi�cantly outperforms the baseline system with a
state-of-the-art prefetcher across a wide range of workloads
and system con�gurations.

4. Key Related Works
The key idea of load hit-miss prediction (HMP) was proposed
in [126] and demonstrated as a method to improve the in-
struction scheduler e�ciency and performance. By predicting
which load instructions will miss the L1 data cache,3 HMP
enables the instruction scheduler to delay the scheduling of
dependent instructions until the data is fetched. This scheduler
optimization improves processor performance by scheduling
a load-dependent instruction to execute at the time when the
data in available. Even though Hermes leverages o�-chip load
prediction in a very di�erent way than HMP, we compare the
accuracy and coverage of our perceptron-based o�-chip load
predictor POPET, against those of HMP in §8.1.1 and show
that Hermes with POPET greatly outperforms Hermes with
HMP in §8.2.2.

3Even though HMP was originally proposed to predict loads that miss L1
data cache, it can be extended to predict loads that miss the entire multi-level
on-chip cache hierarchy.

Cache-level hit/miss prediction (i.e., predicting which cache
level a load might hit) has also been explored in three works:
Direct-to-Data cache (D2D [104]), Direct-to-Master cache
(D2M [105]), and Level Prediction (LP [60]). All three works em-
ploy di�erent mechanisms to track cacheline addresses present
in the cache hierarchy along with the cache-level(s) a cache-
line is present in. For a given load, these works predict which
cache-level the load would likely hit. If the cache-level hit/miss
prediction is correct, the processor fetches the data of the
correctly-predicted load by only accessing the predicted mem-
ory level (L1, L2, LLC, or the main memory) and bypassing
all other memory levels. By doing so, a cache-level hit/miss
predictor reduces the latency of a correctly-predicted load and
improves the processor’s energy e�ciency. However, if the
predictor incorrectly bypasses a memory level that has more up
to date data (e.g., if the data is present in L2, but the predictor
suggests fetching the data from LLC), the processor needs to
detect such mispredictions and access the correct memory level
to maintain correct execution, which comes with performance
overhead and additional complexity. Hermes di�ers from all
these prior works in three major ways:

Prediction via tracking addresses vs. learning from
program context. To make accurate cache-level prediction,
D2D, D2M, and LP rely on tracking cacheline addresses present
in the on-chip caches by using e�ciently-managed metadata
structures. For example, D2D and D2M extend each translation
look-aside bu�er (TLB) entry (called eTLB) to keep additional
cache-level-related metadata. LP manages the cache-level meta-
data as an in-memory table and caches the metadata on-chip
using a metadata prefetching mechanism. These metadata
structures need to be updated for almost all cache operations
(e.g., cache insertions, evictions) in order to faithfully track the
cache contents and to provide accurate cache-level predictions.
In contrast, POPET is built on the insight that the correlation
between di�erent types of program context information and
o�-chip loads can be accurately learned without tracking cache
contents. As a result, POPET does not explicitly track addresses
present in the cache hierarchy, but learns to predict o�-chip
loads by aggregating various program context information.

Lower complexity and hardware overhead. To enable
accurate cache-level hit/miss prediction and to recover from a
misprediction, prior works need relatively intrusive changes to
multiple components on the on-chip datapath. Both D2D and
D2M cache designs require extending the TLB and operating
system support to store the way and cache-level information
for every cacheline within the reach of eTLB. LP requires 2-bit
metadata for every 64B chunk of the physical main memory. LP
manages this metadata as an in-memory table in the system-
reserved physical main memory space [60], which necessitates
support from the operating system. In the worst case, to make a
cache-level hit/miss prediction, LP needs to fetch the metadata
from main memory, which can take longer than the cache
lookup LP is designed to avoid. In contrast, POPET incurs a
very modest (4 KB) total storage overhead and small changes
to the existing datapath.

5

No misprediction detection and recovery. LP requires
cache level misprediction detection and recovery to prevent
the program from using any stale, incoherent data from the
memory subsystem. On the other hand, Hermes never brings
any data to the on-chip cache hierarchy unless the data is
required by a LLC miss request (see §6.2.2). Hence, Hermes
does not require any misprediction detection and recovery
mechanism to maintain correct execution.

We design an address tag-tracking based o�-chip load pre-
dictor (called TTP ; see §7.2) inspired by these prior works [60,
81, 104] and evaluate it against POPET (see §8). TTP tracks ad-
dress tags present in the entire cache hierarchy in its metadata
structure (see §7.2) and predicts that a load would go o�-chip
if the tag of the load address is not present in its metadata
structure. We open-source the implementation of TTP in our
repository [13]. Our results show that POPET provides both
higher accuracy and higher performance than TTP (see §8.1.1
and §8.2.1).

5. Hermes: Design Overview
Fig. 6 shows a high-level overview of Hermes. POPET is the key
component of Hermes that is responsible for making highly-
accurate o�-chip load predictions. For every demand load
request generated by the processor, POPET predicts whether
or not the load request would go o�-chip (1). If the load is
predicted to go o�-chip, Hermes issues a speculative memory
request (called a Hermes request) directly to the main memory
controller once the load’s physical address is generated to
start fetching the corresponding data from the main memory
(2). This Hermes request is serviced by the main memory
controller concurrently with the regular load request (i.e., the
load issued by the processor that generated the Hermes request)
that accesses the on-chip cache hierarchy. If the prediction is
correct, the regular load request to the same address eventually
misses the LLC and waits for the ongoing Hermes request to
�nish, thereby completely hiding the on-chip cache hierarchy
access latency from the critical path of the correctly-predicted
o�-chip load (3). If a Hermes request returns from the main
memory but there has been no regular load request to the
same address, Hermes drops the request and does not �ll the
data into the cache hierarchy. By doing so, Hermes keeps
the on-chip cache hierarchy fully coherent even in case of a
misprediction. For every regular load request returning to the
core, Hermes trains POPET based on whether or not this load
has actually gone o�-chip (4).

6. Hermes: Detailed Design
We �rst describe the design of POPET in §6.1, followed by the
changes introduced by Hermes to the on-chip cache access
datapath in §6.2.

6.1. POPET Design
The purpose of POPET is to accurately predict whether or
not a load request generated by the processor will go o�-chip.
We design POPET using the multi-feature perceptron learning
mechanism [35, 47, 61, 62, 64, 65, 103, 113].

Core

L1-D

L2

LLC

MC

Main Memory

POPET
1

2

3

4
Predict whether the

load will go o/f-chip

Issue Hermes request

for predicted

o/f-chip load

Train POPET

Regular load request missing the LLC

waits for the Hermes request to finish

Existing datapath

New datapath

Figure 6: Overview of Hermes

What is perceptron learning? Perceptron learning,
whose roots are in [82] and was demonstrated by Rosen-
blatt [103], is a simpli�ed learning model to mimic biological
neurons. Fig. 7 shows a single-layer perceptron network where
each input is connected to the output via an arti�cial neuron.
Each arti�cial neuron is represented by a numeric value, called
weight. The perceptron network as a whole iteratively learns a
binary classi�cation function f(x) (shown in Eq. 1), a function
that maps the inputX (a vector of n values) to a binary output.

f(x) =
{

1 if w0 +
∑n
i=1 wixi > 0

0 otherwise (1)

The perceptron learning algorithm starts by initializing the
weight of each neuron and iteratively trains the weights using
each input vector from the training dataset in two steps. First,
for an input vector X , the perceptron network computes a
binary output using Eq. 1 and the current weight values of
its neurons. Second, if the computed output di�ers from the
desired output for that input vector provided by the dataset,
the weight of each neuron is updated [103]. This iterative
process is repeated until the error between the computed and
desired output falls below a user-speci�ed threshold.

1 x1 x2 xn

y

w0 w1 w2 wn

…

Perceptron inputs

Perceptron output

Artificial neuron

Figure 7: Overview of a single-layer perceptron model. Each
blue circle denotes an input and the green circle denotes the
output of the perceptron.

Jimenez et al. [64] have applied the perceptron learning
algorithm to design a lightweight, high-performance branch
predictor in a processor core. Today, multiple commercial

6

processors also use perceptron learning for making various
microarchitectural predictions (e.g., Samsung Exynos [49], and
AMD Ryzen [5]).

We design POPET using an existing microarchitectural per-
ceptron model, known as the hashed perceptron [112]. A hashed
perceptron model hashes multiple feature values to retrieve
weights of each feature from small tables. If the sum of these
weights exceeds a threshold, the model makes a positive pre-
diction. Hashed perceptron, as compared to other perceptron
models, is lightweight and easy to implement in hardware.
Prior works successfully apply hashed perceptron for vari-
ous microarchitectural predictions, e.g., branch outcome [47,
62, 64], LLC reuse [65, 113], prefetch usefulness [35]. This is
the �rst work that applies hashed perceptron to o�-chip load
prediction.

Why perceptron? We choose to design POPET based on
perceptron learning for two key reasons. First, by learning
using multiple program features, perceptron learning can pro-
vide highly accurate predictions that could not be otherwise
provided by simple history-based learning prediction (e.g.,
HMP [126], described in §4). Second, perceptron learning can
be implemented with low storage overhead, without requiring
any impractical metadata support (e.g., extending TLB [104,
105] or in-memory metadata storage [60], described in §4).

POPET overview. POPET is organized as a collection of
one-dimensional tables (each called a weight table), where each
table corresponds to a single program feature. Each table entry
stores a weight value, implemented using a 5-bit saturating
signed integer, that represents the correlation between the cor-
responding program feature value and the true outcome (i.e.,
whether a given load actually went o�-chip). A weight value
saturated near the maximum (i.e., +15) or the minimum (i.e.,
−16) value represents a strong positive or negative correla-
tion between the program feature value and the true outcome,
respectively. A weight value closer to zero signi�es a weak
correlation. The weights are adjusted during training (step 4
in Fig. 6) to update POPET’s prediction with the true outcome.
Each weight table is sized di�erently based on its correspond-
ing program feature (see Table 3).

6.1.1. Making a Prediction. During load queue (LQ) alloca-
tion for a load generated by the core (step 1 in Fig. 6), POPET
makes a binary prediction on whether or not the load request
would go o�-chip. The prediction happens in three stages as
shown in Fig. 8. In the �rst stage, POPET extracts a set of
program features from the current load request and a history
of prior requests (§6.1.3 shows the list of program features used
by POPET). In the second stage, each feature value is hashed
and used as an index to retrieve a weight value from the weight
table of the corresponding feature. In the third stage, all weight
values from individual features are accumulated to generate
the cumulative perceptron weight (Wσ). If Wσ exceeds a prede-
�ned threshold (called the activation threshold, τact), POPET
makes a positive prediction (i.e., it predicts that the current
load request would go o�-chip). Otherwise, POPET makes a
negative prediction. The hashed feature values, the cumulative

perceptron weight Wσ , and the predicted outcome are stored
in the LQ entry to be reused to train POPET when the load
request returns to the processor core (step 4 in Fig. 6).

Feature1 #
Weight

Table1
hash

index

Feature2 #
Weight

Table2
hash

index

FeatureN #

Weight

TableN

hash

index

!

weight1

weight2

weightn

ActivationSum

weights

Predict to

go o8f-chip

.

.

.

.

.

.

.

.

(e.g., PC + o8fset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

Figure 8: Stages to make a prediction by POPET

6.1.2. Training the Predictor. POPET training is invoked
when a demand load request returns to the core and prepares
to release its corresponding LQ entry (step 4 in Fig. 6). Every
demand load that misses the LLC and goes to the main memory
controller is marked as a true o�-chip load request. This true
o�-chip outcome, along with the predicted outcome stored in
the LQ entry of the demand load, are used to appropriately
train the feature weights of POPET. The training happens in
two stages. In the �rst stage, the Wσ (computed during predic-
tion) is retrieved from the LQ entry. If Wσ is neither positively
nor negatively saturated (i.e., Wσ lies within a negative and
a positive training threshold, TN and TP , respectively), the
weight training is triggered. This saturation check prevents the
individual feature weight values from getting over-saturated,
thereby helping POPET to quickly adapt its learning to pro-
gram phase changes. In the second stage, if the weight training
is triggered, the weights for each individual program feature
are retrieved from their corresponding weight table using the
hashed feature indices stored in the LQ entry. If the true out-
come is positive (meaning the load actually went o�-chip), the
weight value for each feature is incremented by one. If the true
outcome is negative, the weight values are decremented by one.
This simple weight update mechanism moves each individual
feature weight towards the direction of the true outcome, thus
gradually increasing the prediction accuracy.
6.1.3. Automated Feature Selection. The selection of the
program features used to make the o�-chip load prediction
is critical to POPET’s performance. A carefully-crafted and
selected set of features can signi�cantly improve the accuracy
and the coverage of POPET. In this section we propose an
automated, o�ine, performance-driven methodology to �nd a
set of program features for POPET.

We initially select a set of 16 individual program features
using our domain expertise that can correlate well with a load
going o�-chip. Table 1 shows the initial feature set.

The automated feature selection process happens o�ine dur-
ing the design time of POPET. The process starts with the initial
set of 16 individual program features and iteratively creates a

7

Table 1: The initial set of program features used for automated
feature selection. ⊕ represents a bitwise XOR operation.

Features without control-�ow
information

Features with control-�ow
information

1. Load virtual address
2. Virtual page number
3. Cacheline o�set in page
4. First access
5. Cacheline o�set + �rst access
6. Byte o�set in cacheline
7. Word o�set in cacheline

8. Load PC
9. PC ⊕ load virtual address

10. PC ⊕ virtual page number
11. PC ⊕ cacheline o�set
12. PC + �rst access
13. PC ⊕ byte o�set
14. PC ⊕ word o�set
15. Last-4 load PCs
16. Last-4 PCs

list of feature sets, each containing n features, at every iteration
n in the following way. In the �rst iteration, we design POPET
with each of the 16 initial program features and test its predic-
tion accuracy in 10 randomly-selected workload traces (called
testing workloads). We select the top-10 features that produce
the highest prediction accuracy for the second iteration. In the
second iteration, we create 160 two-combination feature sets
(meaning, each feature set contains two initial features from
Table 1) by combining each of the 16 initial features with each
of the 10 winning feature sets from the last iteration, and test
the prediction accuracy on the testing workloads. We select
the top-10 two-combination feature sets that produce the high-
est prediction accuracy for the third iteration. This iterative
process repeats until the maximum prediction accuracy gets
saturated (i.e., the di�erence in accuracy of two successive iter-
ations is less than 3%).4 Table 2 shows the �nal list of program
features selected by the automated feature selection process.

Table 2: POPET con�guration parameters

Selected features

• PC ⊕ cacheline o�set
• PC ⊕ byte o�set
• PC + �rst access
• Cacheline o�set + �rst access
• Last-4 load PCs

Threshold values τact = −18, TN = −35, TP = 40

Rationale for selected features. Each selected feature corre-
lates with the likelihood of observing an o�-chip load request
with a di�erent program context information. We explain the
rationale for each selected feature below.

(1) PC ⊕ cacheline o�set. This feature is computed by
XOR-ing the load PC value with the cacheline o�set of the load
address in the virtual page of the load request. The goal of this
feature is to learn the likelihood of a load request going o�-chip
when a given load PC touches a certain cacheline o�set in a
virtual page. The use of cacheline o�set information, instead
of load virtual address or virtual page number, enables this
feature to apply the learning across di�erent virtual pages.

(2) PC ⊕ cacheline byte o�set. This feature is computed
by XOR-ing the load PC with the byte o�set of the load cache-
line address. This feature is particularly useful in accurately

4For simplicity, our automated feature selection process optimizes for
accuracy. A more comprehensive feature selection process can also include
coverage or directly optimize for performance (i.e., execution time).

predicting o�-chip load requests when a program has a stream-
ing access pattern over a linearly allocated data structure. For
example, when a program streams through a large array of 4B
integers, every 16th load (as a 64B cacheline stores 16 integers)
generated by a load PC that is iterating over the array will go
o�-chip, and the remaining loads will hit in on-chip caches. In
this case, this feature learns to identify only those loads that
have a byte o�set of 0 to go o�-chip.

(3) PC + �rst access. This feature is computed by left-
shifting the load PC and adding the �rst access hint at the
most-signi�cant bit position. The �rst access hint is a binary
value that represents whether or not a cacheline has been
recently touched by the program. The hint is computed using
a small 64-entry bu�er (called the page bu�er) that tracks the
demanded cachelines from last 64 virtual pages. Each page
bu�er entry holds two pieces of information: a virtual page tag,
and a 64-bit bitmap, where each bit represents one cacheline in
the virtual page. During every load request generation, POPET
searches the page bu�er with the virtual page number of the
load address. If a matching entry is found, POPET uses the
value of the bit corresponding to the cacheline o�set in the
matching page bu�er entry’s bitmap as the �rst access hint.
If the bit is set (or unset), it signi�es that the corresponding
cacheline has (not) been recently accessed by the program. If
the bit is unset, POPET sets the bit in the page bu�er entry’s
bitmap. The �rst access hint provides a crude estimate of a
cacheline’s reuse in a short temporal window. However, it
alone cannot determine the cacheline’s residency in on-chip
caches, as the memory footprint tracked by the page bu�er is
much smaller than the total cache size.

(4) Cacheline o�set + �rst access. This feature is similar
to the PC + �rst access feature, except that it learns the likeli-
hood of a load request going o�-chip when a given cacheline
o�set is recently touched by the program.

(5) Last-4 load PCs. This feature value is computed as a
shifted-XOR of last four load PCs. It represents the execution
path of a program and correlates it with the likelihood of ob-
serving an o�-chip load request whenever the program follows
the same execution path.

6.1.4. Parameter Threshold Tuning. POPET has three tun-
able parameters: negative and positive training thresholds
(TN and TP , respectively), and the activation threshold (τact).
Properly tuning the values of all these three parameters is also
critical to POPET’s performance, since both POPET’s accuracy
and coverage are sensitive to parameter values.

We employ a three-step grid search technique to tune each of
the three parameters separately. In the �rst stage, we uniformly
sample values from a parameter’s range. For example, τact can
take values in the range [−80, 75].5 We uniformly sample
values from this range with a grid size of 5. In the second stage,
we run Hermes with the randomly-selected 10 test workloads
(as mentioned in §6.1.3) for each of the sampled values and

5As POPET uses �ve program features (see §6.1.3), the sum of all �ve
weights (each represented by a 5-bit saturating signed integer as described in
§6.1) can take a maximum and minimum value of 75 and −80, respectively.

8

pick the top-10 values that provide the highest performance
gain. In the third stage, we run Hermes with all single-core
workload traces using the selected 10 parameter values from
the second stage. We �nally select the value that provides the
highest average performance gain. Table 2 shows the selected
threshold values of each parameter.

6.2. Hermes Datapath Design
In this section, we describe the key changes introduced to the
existing well-optimized on-chip cache access datapath to incor-
porate Hermes. First, we show how the core issues a Hermes
request directly to the main memory controller if POPET pre-
dicts the load would go o�-chip and how a regular load request
that misses the LLC waits for an ongoing Hermes request
(see §6.2.1). Second, we discuss how the data fetched from
main memory is properly sent back to the core in presence of
Hermes while maintaining cache coherence (see §6.2.2).
6.2.1. Issuing a Hermes Request. For every load request
predicted to go o�-chip, Hermes issues a Hermes request di-
rectly to the main memory controller (step 2 in Fig. 6) once
the load’s physical address is generated. The main memory
controller enqueues the Hermes request in its read queue (RQ)
and starts fetching the corresponding data from the main mem-
ory as dictated by its scheduling policy, while the regular load
request is concurrently accessing the on-chip cache hierarchy.
If the o�-chip prediction is correct, the regular load request
eventually misses the LLC and checks the main memory con-
troller’s RQ for any ongoing main memory access to the same
load address (step 3). If the address is found, the regular load
request waits for the ongoing Hermes request to �nish before
sending the Hermes-fetched data back to the core.

Hermes’s performance gain depends on the latency to di-
rectly issue a Hermes request to the main memory controller
(called Hermes request issue latency). Although a Hermes re-
quest experiences a signi�cantly shorter latency to arrive at the
main memory controller than its corresponding regular load
request because a Hermes request bypasses the cache hierarchy
and on-chip queueing delays, a Hermes request nonetheless
pays for a latency to route through the on-chip network. We
model two variants of Hermes using an optimistic and a pes-
simistic estimate of Hermes request issue latency to take into
account a wide range of potential di�erences in on-chip inter-
connect designs (see §7.2). In §8.4.3, we also evaluate Hermes
with a wide range of Hermes request issue latencies (from 0
cycle to 24 cycles) and show that Hermes consistently provides
performance bene�t even with the most pessimistic Hermes
request issue latency.
6.2.2. Returning Data to the Core. For every Hermes re-
quest returning from main memory, Hermes checks the RQ of
the main memory controller and returns the fetched data back
to the LLC if there is a regular load request already waiting
for the same load address. If there is no regular load request
waiting for the completed Hermes request, Hermes drops the
request and does not �ll the data into the cache hierarchy,
which keeps the on-chip cache hierarchy internally coherent.

6.3. Storage Overhead
Table 3 shows the total storage overhead of Hermes. Hermes
requires only 4 KB of metadata storage per processor core.
POPET consumes 3.2 KB, whereas the metadata stored in LQ
for POPET training consumes 0.8 KB.

Table 3: Storage overhead of Hermes

Structure Description Size

POPET

• Perceptron weight tables
– PC ⊕ cacheline o�set: 1024 × 5b
– PC ⊕ byte o�set: 1024 × 5b
– PC + �rst access: 1024 × 5b
– Cacheline o�set + �rst access: 128 × 5b
– Last-4 load PCs: 1024 × 5b

• Page bu�er: 64 × 80b

3.2 KB

LQ
Metadata

Hashed PC: 128×32b; Last-4 PC: 128×10b;
First access: 128 × 1b; perceptron weight:
128 × 5b; prediction: 128 × 1b

0.8 KB

Total 4.0 KB

7. Methodology
We use the ChampSim trace-driven simulator [9] to evaluate
Hermes. We faithfully model the latest-generation Intel Alder
Lake performance-core [11] with its large ROB, large caches
with publicly-reported on-chip cache access latencies [18, 24,
25], and the state-of-the-art prefetcher Pythia [32] at the LLC.
Table 4 shows the key microarchitectural parameters. For
single-core simulations, we warm up the core using 100M in-
structions and simulate the next 500M instructions. For multi-
programmed simulations, we use 50M and 100M instructions
from each workload for warmup and simulation, respectively.
If a core �nishes early, the workload is replayed until every
core has �nished executing at least 100M instructions. The
source code of Hermes, along with all workload traces and
scripts to reproduce our results are freely available at [13].

Table 4: Simulated system parameters

Core
1 and 8 cores, 6-wide fetch/execute/commit, 512-entry ROB,
128/72-entry LQ/SQ, Perceptron branch predictor [61] with
17-cycle misprediction penalty

L1/L2
Caches

Private, 48KB/1.25MB, 64B line, 12/20-way, 16/48 MSHRs,
LRU, 5/15-cycle round-trip latency [25]

LLC 3MB/core, 64B line, 12 way, 64 MSHRs/slice, SHiP [122],
55-cycle round-trip latency [24, 25], Pythia prefetcher [32]

Main
Memory

1C: 1 channel, 1 rank per channel; 8C: 4 channels, 2 ranks
per channel; 8 banks per rank, DDR4-3200 MTPS, 64b data-
bus per channel, 2KB row bu�er per bank, tRCD=12.5ns,
tRP=12.5ns, tCAS=12.5ns

Hermes Hermes-O/P: 6/18-cycle Hermes request issue latency

7.1. Workloads
We evaluate Hermes using a wide range of memory-intensive
workloads spanning SPEC CPU2006 [22], SPEC CPU2017 [23],
PARSEC [20], Ligra graph processing workload suite [108],
and commercial workloads from the 2nd data value predic-
tion championship (CVP [21]). For SPEC CPU2006 and SPEC
CPU2017 workloads, we reuse the instruction traces provided

9

by the 2nd and the 3rd data prefetching championships (DPC [2,
3]). For PARSEC and Ligra workloads, we reuse the instruc-
tion traces open-sourced by Pythia [32]. The CVP workload
traces are collected by the Qualcomm Datacenter Technologies
and capture complex program behavior from various integer,
�oating-point, cryptographic, and server applications in the
�eld. We only consider workload traces in our evaluation that
have at least 3 LLC misses per kilo instructions (MPKI) in the
no-prefetching system. In total, we evaluate Hermes using
110 single-core workload traces from 73 workloads, which are
summarized in Table 5. All these traces can be freely down-
loaded using a script as mentioned in Appendix A.5. For multi-
programmed simulations, we create both homogeneous and
heterogeneous trace mixes. For an eight-core homogeneous
multi-programmed simulation, we run eight copies of each
trace from our single-core trace list, one trace in each core. For
heterogeneous multi-programmed simulation, we randomly
select any eight traces from our single-core trace list and run
one trace in each core. In total, we evaluate Hermes using 110
homogeneous and 110 heterogeneous eight-core workloads.

Table 5: Workloads used for evaluation

Suite #Workloads #Traces Example Workloads

SPEC06 14 22 gcc, mcf, cactusADM, lbm, ...
SPEC17 11 23 gcc, mcf, pop2, fotonik3d, ...
PARSEC 4 12 canneal, facesim, raytrace, ...
Ligra 11 20 BFS, PageRank, Radii, ...
CVP 33 33 integer, �oating-point, server, ...

7.2. Evaluated System Con�gurations
For a comprehensive analysis, we compare Hermes with var-
ious o�-chip load prediction mechanisms, as well as in com-
bination with various recently proposed prefetchers. Table 6
compares the storage overhead of all evaluated mechanisms.

(1) Various o�-chip prediction mechanisms. We com-
pare POPET against two cache hit/miss prediction techniques:
(1) HMP, proposed by Yoaz et al. [126], and (2) a simple cache-
line tag-tracking based predictor, called TTP, which we design.
HMP uses three predictors similar to a hybrid branch predictor:
local [125], gshare [83, 125], and gskew [86], each of which
individually predicts o�-chip loads using a di�erent prediction
mechanism. For a given load, HMP consults each individual
predictor and selects the majority prediction. We design TTP
by taking inspiration from prior cacheline address tracking-
based mechanisms [60, 81, 104] (see §4). TTP tracks partial
tags of cacheline addresses that are likely to be present in the
entire on-chip cache hierarchy in a separate metadata struc-
ture. For every cache �ll (LLC eviction), the partial tag of the
�lled (evicted) cacheline address is inserted into (evicted from)
TTP’s metadata. To predict whether or not a given load would
go o�-chip, TTP searches the metadata structure with the par-
tial tag of the load address. If the tag is not present in the
metadata structure, TTP predicts the load would go o�-chip.
We open-source TTP in our repository [13].

(2) Various data prefetchers. We evaluate Hermes com-
bined with �ve recently-proposed high-performance prefetch-

ing techniques: Pythia [32], Bingo [28], SPP [75] (with percep-
tron �lter [35]), MLOP [106], and SMS [110]. As mentioned in
Table 4, Pythia is incorporated in our baseline system.

Table 6: Storage overhead of all evaluated mechanisms

HMP [126] with local, gshare, and gskew predictors 11 KB
TTP with a metadata budget similar to the L2 cache 1536 KB
Pythia [32] with the same con�guration in [32] 25.5 KB
Bingo [28] with the same con�guration in [28] 46 KB
SPP [75] with perceptron-based prefetch �lter [35] 39.3 KB
MLOP [106] with the same con�guration in [106] 8 KB
SMS [110] with the same con�guration in [110] 20 KB
Hermes with POPET (this work) 4 KB

We evaluate two variants of Hermes: Hermes-O and
Hermes-P. These two variants di�er only in Hermes request
issue latency. Hermes-O (i.e., the optimistic Hermes) and
Hermes-P (i.e., the pessimistic Hermes) use a request issue
latency of 6 cycles and 18 cycles, respectively. Unless stated
otherwise, Hermes represents the optimistic variant Hermes-O.

8. Evaluation
8.1. POPET Prediction Analysis
8.1.1. Accuracy and Coverage of POPET. Fig. 9 shows the
comparison of POPET’s o�-chip load prediction accuracy and
coverage against those of HMP and TTP in the baseline sys-
tem. The key takeaway is that POPET has signi�cantly higher
accuracy and coverage than HMP. POPET provides 77.1% ac-
curacy with 74.3% coverage on average across all single-core
workloads, whereas HMP provides 47% accuracy with 22.3%
coverage. TTP, with a metadata budget of 1.5 MB, provides
the highest coverage (94.8%) but with a signi�cantly lower
accuracy (16.6%). POPET’s superior accuracy and coverage
directly translates to performance bene�ts both in single-core
and eight-core system con�guration (see §8.2 and §8.3).

0%

20%

40%

60%

80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Ac
cu

ra
cy

 %

HMP TTP POPET

0%

20%

40%

60%

80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET(a) (b)

AVG AVG

Figure 9: Comparison of (a) accuracy and (b) coverage of
POPET against those of HMP [126] and TTP.

8.1.2. E�ect of Di�erent POPET Features. Fig. 10 shows
the accuracy and coverage of POPET using the �ve selected
program features used individually and in various combina-
tions. We make two key observations. First, each program
feature individually produces predictions with a wide range
of accuracy and coverage. The PC ⊕ cacheline o�set feature
produces the lowest-quality predictions with only 53.4% ac-
curacy and 14.5% coverage, whereas the cacheline o�set +
�rst access feature produces the highest-quality predictions
with 70.6% accuracy and 48.1% coverage. Second, by stacking
multiple features together, the �nal POPET design achieves
both higher accuracy and coverage than those provided by any

10

single individual program feature. We conclude that POPET is
capable of learning from multiple program features to achieve
both higher o�-chip load prediction accuracy and coverage
than any individual program feature can provide.

0%

20%

40%

60%

80%

PC ⊕
cacheline
offset (1)

Last-4 load
PCs (2)

PC ⊕ byte
offset (3)

PC + first
access (4)

Cacheline
offset + first

access (5)

1+2 1+2+3 1+2+3+4 All (POPET)

Ac
cu

ra
cy

 an
d

co
ve

ra
ge

 %

Accuracy Coverage

Figure 10: The accuracy and coverage of POPET using each
program feature individually and in various combinations.

8.1.3. Usefulness of all features. To understand the useful-
ness of multi-feature learning, we analyze per-trace accuracy
and coverage of POPET using each individual program feature.
Fig. 11(a) shows the line graph of POPET’s prediction accu-
racy with each of the �ve program features individually for all
single-core workload traces. The traces are sorted in ascending
order of POPET accuracy using the feature cacheline o�set
+ �rst access, since this feature individually has the highest
average accuracy (as shown in Fig. 10(a)). The key takeaway
from Fig. 11(a) is that there is no single program feature that
individually provides the highest prediction accuracy across
all workloads. Out of 110 workload traces, the features PC +
�rst access, cacheline o�set + �rst access, PC ⊕ byte o�set,
PC ⊕ cacheline o�set, and last-4 load PCs provide the highest
prediction accuracy in 47, 29, 20, 9, and 5 workload traces, re-
spectively. We observe similar variability in POPET’s coverage,
as shown in Fig. 11(b), where no single program feature individ-
ually provides the highest coverage across all workloads. This
large variability of accuracy/coverage with di�erent features
in di�erent workloads warrants learning using all features
in unison to provide higher accuracy and coverage than any
individual program feature across a wide range of workloads.

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

Ac
cu

ra
cy

 %

Workload number

PC ^ cacheline offset Last-4 load PCs PC ^ byte offset PC + first access Cacheline offset + first access

PC + first access provides
highest accuracy

PC ^ byte offset provides
highest accuracy

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

Co
ve

ra
ge

 %

Workload number

PC ^ cacheline offset Last-4 load PCs PC ^ byte offset PC + first access Cacheline offset + first access

(a)

(b)

⊕ ⊕

⊕ ⊕

⊕

Figure 11: Line graph of POPET’s (a) accuracy and (b) coverage
using each of the �ve program features individually across all
110 single-core workloads. No single feature can provide the
best accuracy or coverage across all workloads.

8.2. Single-core Performance Analysis
8.2.1. Performance Improvement. Fig. 12 shows perfor-
mance of Hermes (O and P), Pythia, and Hermes combined with
Pythia normalized to the no-prefetching system in single-core
workloads. We make three key observations. First, Hermes pro-
vides nearly half of the performance bene�t of Pythia with only
1
5 × the storage overhead. On average, Hermes-O improves
performance by 11.5% over a no-prefetching system, whereas
Pythia improves performance by 20.3%. Second, Hermes-O
(Hermes-P) combined with Pythia outperforms Pythia by 5.4%
(4.3%). Third, Hermes combined with Pythia consistently out-
performs Pythia in every workload category.

1.0
9 1.1

2
1.2

0
1.2

5 1.2
6

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em Hermes-P Hermes-O Pythia (baseline) Pythia + Hermes-P Pythia + Hermes-O

GEOMEAN

Figure 12: Speedup in single-core workloads

To better understand Hermes’s performance improvement,
Fig. 13 shows the performance line graph of Hermes, Pythia,
and Hermes combined with Pythia for every single-core work-
load trace. The traces are sorted in ascending order of per-
formance gains by Hermes combined with Pythia over the
no-prefetching system. We make four key observations from
Fig. 13. First, Hermes combined with Pythia outperforms the
no-prefetching system in all but three single-core workload
traces. The compute_int_539 and 605.mcf_s-782B traces ex-
perience the highest and the lowest speedup (2.3× and 0.8×,
respectively). Second, unlike Pythia, Hermes always improves
performance over the no-prefetching system in every workload
trace. Third, Hermes outperforms Pythia by 7.9% on average
in 51 traces (e.g., streamcluster-6B, Ligra_PageRank-79B).
In the remaining 59 traces, Pythia outperforms Hermes by 26%
on average. Fourth, Hermes combined with Pythia consistently
outperforms both Hermes and Pythia alone in almost every
workload trace.

Based on our performance results, we conclude that, Hermes
provides signi�cant and consistent performance improvements
over a wide range of workloads both by itself and when com-
bined with the state-of-the-art prefetcher Pythia.

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

Sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

Workload number

Hermes-O Pythia (baseline) Pythia + Hermes-O

605.mcf_s-782B

623.xalancbmk_s-10B

compute_int_539

602.gcc_s-2226B

streamcluster-6B

Ligra_PageRank-79B
Ligra_Components-22B

server_612

compute_int_264

Ligra_Triangle-25B

Figure 13: Single-core performance of all 110 workloads

8.2.2. E�ect of the O�-chip Load Prediction Mechanism.
Fig. 14 shows the performance of Hermes with POPET, Hermes-

11

HMP, Hermes-TTP, and the Ideal Hermes (see §3.1) combined
with Pythia normalized to the no-prefetching system in single-
core workloads. We make two key observations. First, Hermes
with POPET outperforms both Hermes-HMP and Hermes-TTP.
On average, Hermes-HMP, Hermes-TTP, and Hermes with
POPET combined with Pythia provide 0.8%, 1.7%, and 5.4%
performance improvement over Pythia, respectively. Second,
Hermes-POPET provides nearly 90% of the performance im-
provement provided by the Ideal Hermes that employs an ideal
o�-chip load predictor with 100% accuracy and coverage. We
conclude that Hermes provides performance gains due to both
the high o�-chip load prediction accuracy and coverage of
POPET. Thus, designing a good o�-chip predictor is critical
for Hermes to improve performance.

1.2
03

1.2
11

1.2
20 1.2

57 1.2
86

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

Pythia (baseline) Pythia + Hermes-HMP Pythia + Hermes-TTP Pythia + Hermes-POPET Pythia + Ideal Hermes

GEOMEAN

Figure 14: Speedup of Hermes with three o�-chip load predic-
tors (HMP, TTP, and POPET) and the Ideal Hermes.

8.2.3. E�ect on Stall Cycles. Fig. 15(a) plots the distribution
of the percentage reduction in stall cycles due to o�-chip load
requests in a system with Hermes over the baseline system in
single-core workloads as a box-and-whiskers plot.6 The key
observation is that Hermes reduces the stall cycles caused by
o�-chip loads by 16.2% on average (up to 51.8%) across all
workloads. PARSEC workloads experience the highest average
stall cycle reduction of 23.8%. 90 out of 110 workloads ex-
perience at least 10% stall cycle reduction. We conclude that
Hermes considerably reduces the stall cycles due to o�-chip
load requests, which leads to performance improvement.

5.
5%

38
.5

% 44
.4

%

0%

10%

20%

30%

40%

50%

60%

70%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

%
 in

cr
ea

se
 in

 m
ai

n
m

em
or

y r
eq

ue
st

s
ov

er
 th

e N
o-

pr
ef

et
ch

in
g

sy
st

em

Hermes-O
Pythia (baseline)
Pythia + Hermes-O

%
 re

du
ct

io
n

of
 st

al
l c

yc
le

s
du

e t
o

of
f-c

hi
p

lo
ad

s

-10%

0%

10%

20%

30%

40%

50%

60%

(a)

(b)SPEC06 SPEC17 PARSEC Ligra CVP

AVG

Figure 15: (a) Reduction in stall cycles caused by o�-chip loads.
(b) Overhead in the main memory requests.

8.2.4. Overhead in Main Memory Requests. Fig. 15(b)
shows the percentage increase in main memory requests in
Hermes, Pythia, and Hermes combined with Pythia over the

6Each box is lower-bounded by the �rst quartile (i.e., the middle value
between the lowest value and the median value of the data points) and upper-
bounded by the third quartile (i.e., the middle value between the median and
the highest value of the data points). The inter-quartile range (IQR) is the
distance between the �rst and the third quartile (i.e., the length of the box).
Whiskers extend an additional 1.5 × IQR on the either side of the box. Any
outlier values that falls outside the range of whiskers are marked by dots. The
cross marked value within each box represents the mean.

no-prefetching system in all single-core workloads. We make
two key observations. First, Hermes increases main memory
requests by only 5.5% (on average) over the no-prefetching
system, whereas Pythia by 38.5%. This means that, every
1% performance gain (see Fig. 12) comes at a cost of only
0.5% increase in main memory requests in Hermes, whereas
nearly 2% increase in main memory requests in Pythia. We
attribute this result to the highly-accurate predictions made by
POPET, as compared to less-accurate prefetch decisions made
by Pythia. Second, Hermes combined with Pythia further in-
creases main memory requests by only 5.9% over Pythia. This
means that, every 1% performance bene�t by Hermes on top
of Pythia comes at a cost of only 1% overhead in main mem-
ory requests. We conclude that, Hermes, due to its underlying
high-accuracy prediction mechanism, adds considerably lower
overhead in main memory requests while providing signi�cant
performance improvement both by itself and when combined
with Pythia.

8.3. Eight-core Performance Analysis
Fig. 16 shows the performance of Pythia, Hermes-HMP,
Hermes-TTP, and Hermes-POPET combined with Pythia nor-
malized to the no-prefetching system in all eight-core work-
loads. The key takeaway is that due to the highly-accurate
predictions by POPET, Hermes-POPET combined with Pythia
consistently outperforms Pythia in every workload category.
On average, Hermes-HMP, Hermes-TTP, and Hermes-POPET
combined with Pythia provide 0.6%, −2.1%, and 5.1% higher
performance on top of Pythia, respectively. Due to its inac-
curate predictions, TTP generates many unnecessary main
memory requests, which reduce the performance of Hermes-
TTP combined with Pythia as compared to Pythia alone in the
bandwidth-constrained four-core con�guration. We conclude
that Hermes provides signi�cant and consistent performance
improvement in the bandwidth-constrained eight-core system
due to its highly-accurate o�-chip load prediction.

1.1
23 1.1
29

1.1
02

1.1
74

1

1.05

1.1

1.15

1.2

1.25

SPEC06 SPEC17 PARSEC Ligra CVP MIX GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

Pythia (baseline) Pythia + Hermes-HMP Pythia+Hermes-TTP Pythia + Hermes-POPET

GEOMEAN

Figure 16: Speedup in eight-core workloads

8.4. Performance Sensitivity Analysis
8.4.1. E�ect of MainMemory Bandwidth. Fig. 17(a) shows
the speedup of Hermes, Pythia, and Hermes combined with
Pythia over the no-prefetching system in single-core work-
loads by scaling the main memory bandwidth. We make
two key observations. First, Hermes combined with Pythia
consistently outperforms Pythia in every main memory band-
width con�guration from 1

16 × to 4× of the baseline system.
Hermes combined with Pythia outperforms Pythia alone by
6.2% and 5.5% in the main memory bandwidth con�guration

12

1

1.05

1.1

1.15

1.2

1.25

1.3

Pythia Bingo SPP MLOP SMS

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

Prefetcher types

Prefetcher-only
Prefetcher + Hermes-P
Prefetcher + Hermes-O

1.18
1.19

1.2
1.21
1.22
1.23
1.24
1.25
1.26
1.27

0 3 6 9 12 15 18 21 24

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes request issue latency
(in processor cycles)

Pythia alone

Pythia+
Hermes-O Pythia+

Hermes-P

1.15

1.17

1.19

1.21

1.23

1.25

1.27

1.29

40 45 50 55 60 65

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

On-chip cache hierarchy access latency
(in processor cycles)

Pythia Pythia + Hermes-P Pythia + Hermes-O

(b) (c) (d)

0.9
0.95

1
1.05

1.1
1.15
1.2

1.25
1.3

200 400 800 1600 3200 6400 12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

Main Memory MTPS (in log scale)

Hermes Pythia Pythia+Hermes

(a)

~AMD Threadripper 3990X

~AMD EPYC Rome 7720P

~Intel Xeon 6258R

~I
nt

el
i9

-1
29

00
K

~A
M

D
Ry

ze
n 5

95
0X

Figure 17: Performance sensitivity to (a) main memory bandwidth, (b) di�erent prefetching techniques, (c) Hermes request
issue latency, and (d) on-chip cache hierarchy access latency. The baseline system con�guration is highlighted in green. Other
highlighted con�gurations closely match with various commercial processors [6, 7, 17].

with 200 and 12800 million transfers per second (MTPS), re-
spectively. Second, Hermes by itself outperforms Pythia in
highly-bandwidth-constrained con�gurations. This is due to
the highly-accurate o�-chip load predictions made by POPET,
which incurs less main memory bandwidth overhead than the
aggressive, less-accurate prefetching decisions made by Pythia.
Hermes outperforms Pythia by 2.8% and 8.9% in 400 and 200
MTPS con�gurations, respectively.
8.4.2. E�ect of the Baseline Prefetcher. We evaluate Her-
mes combined with four recently-proposed data prefetchers:
Bingo [28], SPP [75] (with perceptron �lter [35]), MLOP [106],
and SMS [110]. For each experiment, we replace the baseline
LLC prefetcher Pythia with a new prefetcher and measure the
performance improvement of the prefetcher by itself and Her-
mes combined with the prefetcher. Fig. 17(b) shows the perfor-
mance of the baseline prefetcher, and Hermes-P/O combined
with the baseline prefetcher, normalized to the no-prefetching
system in single-core workloads. The key takeaway is that
Hermes combined with any baseline prefetcher consistently
outperforms the baseline prefetcher by itself for all four evalu-
ated prefetching techniques. Hermes+prefetcher outperforms
the prefetcher alone by 6.2%, 5.1%, 7.6%, and 7.7%, for Bingo,
SPP, MLOP, and SMS as the baseline prefetcher.
8.4.3. E�ect of the Hermes Request Issue Latency. To an-
alyze the performance bene�t of Hermes over a wide range
of processor designs with simple or complex on-chip datap-
ath, we perform a performance sensitivity study by varying
the Hermes request issue latency. Fig.17(c) shows the perfor-
mance of Hermes combined with Pythia normalized to the
no-prefetching system in single-core workloads as Hermes
request issue latency varies from 0 cycles to 24 cycles. The
dashed-line represents the performance of Pythia alone. We
make two key observations. First, the speedup of Hermes
combined with Pythia decreases as the Hermes request issue
latency increases. Second, even with a pessimistic Hermes re-
quest issue latency of 24 cycles, Hermes combined with Pythia
outperforms Pythia. Pythia+Hermes outperforms Pythia by
5.7% and 3.6% with 0-cycle and 24-cycle Hermes request issue
latency, respectively.
8.4.4. E�ect of the On-chip Cache Hierarchy Access La-
tency. We evaluate Hermes by varying the on-chip cache hier-
archy access latency. For each experiment, we keep the L1 and
L2 cache access latencies unchanged and vary the LLC access la-

tency from 25-cycles to 50-cycles, to mimic the access latencies
of a wide range of sliced LLC designs with simple or complex
on-chip networks. Fig. 17(d) shows the performance of Pythia,
and Hermes (O and P) combined with Pythia, normalized to
the no-prefetching system in single-core workloads. We make
two key observations. First, Hermes combined with Pythia
consistently outperforms Pythia for every on-chip cache hier-
archy latency. Hermes-O combined with Pythia outperforms
Pythia alone by 3.6% and 6.2% in system with 40-cycle and
65-cycle on-chip cache hierarchy access latency, respectively.
Second, the performance improvement by Hermes combined
with Pythia increases as the on-chip cache hierarchy access la-
tency increases. Thus, we posit that Hermes can provide even
higher performance bene�t in future processors with longer
on-chip cache access latencies.
8.4.5. E�ect of the Activation Threshold. We evaluate the
impact of the activation threshold (τact) on Hermes’s perfor-
mance by varying τact. Fig. 17 shows POPET’s accuracy and
coverage (as line graphs on the left y-axis) and the performance
of Hermes combined with Pythia over the no-prefetching sys-
tem (as a bar graph on the right y-axis) across all single-core
workloads as τact varies from −38 to 2. The key takeaway
from Fig. 17 is that POPET’s accuracy (coverage) increases
(decreases) as τact increases. However, Hermes’s performance
gain peaks near τact = −26, which favors higher coverage by
trading o� accuracy. As POPET’s accuracy directly impacts
Hermes’s main memory request overhead (and hence its per-
formance in bandwidth-constrained con�gurations), we set
τact = −18 in POPET. Doing so simultaneously optimizes
both POPET’s accuracy and coverage.

1.24

1.244

1.248

1.252

1.256

1.26

0%

20%

40%

60%

80%

100%

-38 -34 -30 -26 -22 -18 -14 -10 -6 -2 2

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

Ac
cu

ra
cy

/C
ov

er
ag

e %

Activation threshold

Speedup Accuracy Coverage

Figure 17: E�ect of the activation threshold on POPET’s accu-
racy and coverage (on the left y-axis) and Hermes’s speedup
(on the right y-axis) for all single-core workloads.

8.5. Power Overhead
To accurately estimate Hermes’s dynamic power consumption,
we model our single-core con�guration in McPAT [78] and

13

compute processor power consumption using statistics from
performance simulations. Fig. 18 shows the runtime dynamic
power consumed by Hermes, Pythia, and Hermes combined
with Pythia, normalized to the no-prefetching system for all
single-core workloads. We make two key observations. First,
Hermes increases processor power consumption by only 3.6%
on average over the no-prefetching system, whereas Pythia
increases power consumption by 8.7%. Second, Hermes com-
bined with Pythia incurs only 1.5% additional power overhead
on top of Pythia. We conclude that Hermes incurs only a mod-
est power overhead and is more e�cient than Pythia alone.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

N
o-

pr
ef

et
ch

in
g

H
er

m
es

Py
th

ia
 (b

as
el

in
e)

Py
th

ia
 +

 H
er

m
es

N
o-

pr
ef

et
ch

in
g

H
er

m
es

Py
th

ia
 (b

as
el

in
e)

Py
th

ia
 +

 H
er

m
es

N
o-

pr
ef

et
ch

in
g

H
er

m
es

Py
th

ia
 (b

as
el

in
e)

Py
th

ia
 +

 H
er

m
es

N
o-

pr
ef

et
ch

in
g

H
er

m
es

Py
th

ia
 (b

as
el

in
e)

Py
th

ia
 +

 H
er

m
es

N
o-

pr
ef

et
ch

in
g

H
er

m
es

Py
th

ia
 (b

as
el

in
e)

Py
th

ia
 +

 H
er

m
es

N
o-

pr
ef

et
ch

in
g

H
er

m
es

Py
th

ia
 (b

as
el

in
e)

Py
th

ia
 +

 H
er

m
es

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Ru
nt

im
e d

yn
am

ic
po

w
er

no

rm
al

iz
ed

 to
 th

e N
o-

pr
ef

et
ch

in
g

sy
st

em L1-I L1-D L2 L3 Bus Others

AVG

Figure 18: Processor power consumption of Hermes, Pythia,
and Hermes combined with Pythia.

9. Other Related Work
To our knowledge, this is the �rst work that proposes (1) a
lightweight perceptron-based o�-chip load predictor (POPET)
that makes accurate predictions without having large metadata
overhead, and (2) a mechanism (Hermes) that takes advantage
of such a predictor to improve processor performance by elim-
inating on-chip cache access latency from the critical path of a
correctly-predicted o�-chip load. We have already quantita-
tively and qualitatively compared (1) POPET with HMP [126]
and (2) Hermes with multiple state-of-the-art hardware data
prefetchers: Pythia [32], Bingo [28], SPP [35, 75], MLOP [106],
and SMS [110]. In this section, we discuss other related works.

Hit/miss prediction. Peir et al. [96] propose a Bloom-�lter-
based hit/miss predictor to optimize instruction scheduling
in an out-of-order processor. Memik et al. [84] propose �ve
di�erent heuristics to keep track of cache contents using simple
tables. Prior works [81, 100] also explore hit/miss prediction
in DRAM caches. Loh and Hill [81] propose MissMap, which
uses bitvectors to track the residency of cachelines in a large
DRAM cache. Adapting MissMap to o�-chip load prediction
poses two key challenges. First, MissMap can have high false-
positive prediction rate (as discussed in [60]). Second, the size
of MissMap can grow very large, leading to large latency and
storage overheads. POPET, on the other hand, requires only
4 KB of storage overhead, while producing highly-accurate
o�-chip load predictions.

Cache bypassing. High-performance cache management
policies (e.g., [38, 43, 48, 53, 58, 63, 65-68, 72, 73, 80, 97, 101,
102, 114, 115, 120, 122]) dynamically bypass cache levels dur-
ing a cache �ll operation if the incoming cacheline is not
expected to be used by the program in the future. This ex-
pectation (i.e., reuse prediction) can be provided by either a
hardware-based reuse prediction mechanism [43, 58, 63, 65, 72,

73, 80, 97, 101, 102, 120] or a software hint [8, 19, 38, 114, 115],
e.g., non-temporal load instructions employed by modern pro-
cessors [8, 19]. The goal of these cache bypassing techniques
is to better utilize the cache space by avoiding the insertion of
useless cachelines into the cache. Hermes’s goal is di�erent
and orthogonal to these techniques: to reduce the latency of
a long-latency o�-chip load by eliminating the on-chip cache
hierarchy access latency from its critical path. As such, Hermes
can be combined with any cache bypassing technique.

Data prefetching. Prior prefetching techniques can be
broadly categorized into three classes: (1) precomputation-
based prefetchers that pre-execute program code to generate
future loads [42, 51, 52, 55, 87-93], (2) temporal prefetchers that
predict future load addresses by memorizing long sequence of
demanded cacheline addresses [27, 31, 39-41, 44, 54, 57, 69, 71,
109, 117-119, 123, 124], and (3) spatial prefetchers that predict
future load addresses by learning program access patterns over
di�erent memory regions [26, 28, 32, 33, 35, 37, 46, 56, 70, 75-
77, 85, 94, 98, 106, 107, 110, 111]. As we show in §8.4.2, Hermes
can be combined with any baseline prefetcher to provide higher
performance than just the prefetcher alone.

10. Conclusion
We introduce Hermes, a technique that accelerates long-
latency o�-chip load requests by eliminating the on-chip cache
hierarchy access latency from their critical path. To enable
Hermes, we propose a perceptron-learning based o�-chip load
predictor (POPET) that accurately predicts which load requests
might go o�-chip. Our extensive evaluations using a wide
range of workloads and system con�gurations show that Her-
mes provides signi�cant performance bene�ts over a baseline
system with a state-of-the-art prefetcher. As on-chip cache
hierarchy continues to grow in size and complexity in future
processors, we believe and hope that Hermes’s key observa-
tion and o�-chip load prediction mechanism would inspire
future works to explore a multitude of other memory system
optimizations.

Acknowledgments
We thank Anant Nori and Sreenivas Subramoney for their
valuable feedback on this work. We thank the anonymous
reviewers of MICRO 2022 for their encouraging feedback. We
thank the SAFARI Research Group members for providing a
stimulating intellectual environment. We acknowledge the gen-
erous gifts from our industrial partners: Google, Huawei, Intel,
Microsoft, and VMware. This work is supported in part by
the Semiconductor Research Corporation and the ETH Future
Computing Laboratory. The �rst author thanks his departed
father, whom he lost in COVID-19 pandemic.

References
[1] “2nd Cache Replacement Championship,” https://crc2.ece.tamu.edu.
[2] “2nd Data Prefetching Championship,” http://comparch-conf.gatech.edu/dpc2/.
[3] “3rd Data Prefetching Championship,” https://dpc3.compas.cs.stonybrook.edu.
[4] “6th Generation Intel® Processor Family,” https://www.intel.com/content/www/

us/en/processors/core/desktop-6th-gen-core-family-spec-update.html.
[5] “AMD Gives More Zen Details: Ryzen,” https://bit.ly/3ACs9ES.

14

https://crc2.ece.tamu.edu
http://comparch-conf.gatech.edu/dpc2/
https://dpc3.compas.cs.stonybrook.edu
https://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-spec-update.html
https://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-spec-update.html
https://bit.ly/3ACs9ES

[6] “AMD Ryzen Threadripper 3990X,” https://en.wikichip.org/wiki/amd/ryzen_
threadripper/3990x.

[7] “AMD Zen2 EPYC 7702P,” https://en.wikichip.org/wiki/amd/epyc/7702p.
[8] “Caching of Temporal vs. Non-Temporal Data - Intel® 64

and IA-32 Architectures Developer’s Manual,” https://www.
intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-1-manual.html.

[9] “ChampSim,” https://github.com/ChampSim/ChampSim.
[10] “Golden Cove - Microarchitectures - Intel,” https://en.wikichip.org/wiki/intel/

microarchitectures/golden_cove.
[11] “Golden Cove Microarchitecture (P-Core) Examined,” https://www.anandtech.

com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3.
[12] “Hermes - Wikipedia,” https://en.wikipedia.org/wiki/Hermes.
[13] “Hermes GitHub repository,” https://github.com/CMU-SAFARI/Hermes.
[14] “Hermes Zenodo repository,” https://doi.org/10.5281/zenodo.6909799.
[15] “Intel Core i5-12600K DDR4 Alder Lake CPU Review,” https://www.thefpsreview.

com/2021/12/08/intel-core-i5-12600k-ddr4-alder-lake-cpu-review/6/.
[16] “Intel Details Golden Cove,” https://fuse.wikichip.org/news/6111/

intel-details-golden-cove-next-generation-big-core-for-client-and-server-socs/.
[17] “Intel Xeon Gold 6258R,” https://en.wikichip.org/wiki/intel/xeon_gold/6258r.
[18] “L3 Cache Latency Comparison at Base Frequency,” https://www.cpuagent.

com/cpu/intel-core-i9-10900k/benchmarks/l3-cache-latency-at-base-frequency/
nvidia-geforce-rtx-2080-ti?res=1&quality=ultra.

[19] “MOVNTI - x86 ISA,” https://www.felixcloutier.com/x86/movnti.
[20] “PARSEC,” http://parsec.cs.princeton.edu/.
[21] “Second Championship Value Prediction (CVP-2),” https://www.microarch.org/

cvp1/cvp2/rules.html.
[22] “SPEC CPU 2006,” https://www.spec.org/cpu2006/.
[23] “SPEC CPU 2017,” https://www.spec.org/cpu2017/.
[24] “Surprisingly High Latency Discovered in Alder Lake,” https://bit.ly/3RhlK8z.
[25] “The Intel 12th Gen Core i9-12900K Review,” https://bit.ly/3wFRM6l.
[26] J.-L. Baer and T.-F. Chen, “An E�ective On-chip Preloading Scheme to Reduce Data

Access Penalty,” in SC, 1991.
[27] M. Bakhshalipour, P. Lot�-Kamran, and H. Sarbazi-Azad, “Domino Temporal Data

Prefetcher,” in HPCA, 2018.
[28] M. Bakhshalipour, M. Shakerinava, P. Lot�-Kamran, and H. Sarbazi-Azad, “Bingo

Spatial Data Prefetcher,” in HPCA, 2019.
[29] A. Basu, M. D. Hill, and M. M. Swift, “Reducing Memory Reference Energy with

Opportunistic Virtual Caching,” in ISCA, 2012.
[30] B. M. Beckmann and D. A. Wood, “Managing Wire Delay in Large Chip-

Multiprocessor Caches,” in MICRO, 2004.
[31] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A. Yoaz, and

U. Weiser, “Correlated Load-Address Predictors,” ISCA, 1999.
[32] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and O. Mutlu,

“Pythia: A Customizable Hardware Prefetching Framework Using Online Rein-
forcement Learning,” in MICRO, 2021.

[33] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “DSPatch: Dual Spatial Pattern
Prefetcher,” in MICRO, 2019.

[34] M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarungnirun, O. Mutlu, and T. Hoe-
�er, “Slim NoC: A Low-diameter On-chip Network Topology for High Energy Ef-
�ciency and Scalability,” in ASPLOS, 2018.

[35] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A. Jiménez,
“Perceptron-Based Prefetch Filtering,” in ISCA, 2019.

[36] M. Cekleov and M. Dubois, “Virtual-Address Caches. Part 1: Problems and Solu-
tions in Uniprocessors,” IEEE Micro, 1997.

[37] T.-F. Chen and J.-L. Baer, “E�ective Hardware-Based Data Prefetching for High-
Performance Processors,” in IEEE TC, 1995.

[38] C.-H. Chi and H. Dietz, “Improving Cache Performance by Selective Cache Bypass,”
in HICSS, 1989.

[39] T. M. Chilimbi and M. Hirzel, “Dynamic Hot Data Stream Prefetching for General-
Purpose Programs,” in PLDI, 2002.

[40] Y. Chou, “Low-cost Epoch-based Correlation Prefetching for Commercial Applica-
tions,” in MICRO, 2007.

[41] R. Cooksey, S. Jourdan, and D. Grunwald, “A Stateless, Content-Directed Data
Prefetching Mechanism,” ASPLOS, 2002.

[42] J. Dundas and T. Mudge, “Improving Data Cache Performance by Pre-executing
Instructions Under a Cache Miss,” in ICS, 1997.

[43] H. Dybdahl and P. Stenström, “Enhancing Last-Level Cache Performance by Block
Bypassing and Early Miss Determination,” in ACSAC, 2006.

[44] M. Ferdman and B. Falsa�, “Last-touch Correlated Data Streaming,” in ISPASS,
2007.

[45] M. Ferdman, S. Somogyi, and B. Falsa�, “Spatial Memory Streaming with Rotated
Patterns,” in In 1st JILP Data Prefetching Championship, 2009.

[46] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride Directed Prefetching in Scalar
Processors,” in MICRO, 1992.

[47] E. Garza, S. Mirbagher-Ajorpaz, T. A. Khan, and D. A. Jimenez, “Bit-level Percep-
tron Prediction for Indirect Branches,” in ISCA, 2019.

[48] J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and Insertion Algorithms for
Exclusive Last-Level Caches,” in ISCA, 2011.

[49] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez, T. Nakra, P. Kitchin,
R. Hensley, E. Brekelbaum, V. Sinha et al., “Evolution of the Samsung Exynos CPU
Microarchitecture,” in ISCA, 2020.

[50] N. Hardavellas, M. Ferdman, B. Falsa�, and A. Ailamaki, “Reactive NUCA: Near-

Optimal Block Placement and Replication in Distributed Caches,” in ISCA, 2009.
[51] M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous Runahead: Transparent Hard-

ware Acceleration for Memory Intensive Workloads,” in MICRO, 2016.
[52] M. Hashemi and Y. N. Patt, “Filtered Runahead Execution with a Runahead Bu�er,”

in MICRO, 2015.
[53] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the Memory System: Pre-

dicting and Optimizing Memory Behavior,” in ISCA, 2002.
[54] Z. Hu, M. Martonosi, and S. Kaxiras, “TCP: Tag Correlating Prefetchers,” in HPCA,

2003.
[55] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham, “E�ective

Stream-Based and Execution-Based Data Prefetching,” in ICS, 2004.
[56] Y. Ishii, M. Inaba, and K. Hiraki, “Access Map Pattern Matching for Data Cache

Prefetch,” in ISC, 2009.
[57] A. Jain and C. Lin, “Linearizing Irregular Memory Accesses for Improved Corre-

lated Prefetching,” in MICRO, 2013.
[58] A. Jain and C. Lin, “Back to the Future: Leveraging Belady’s Algorithm for Im-

proved Cache Replacement,” in ISCA, 2016.
[59] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High Performance Cache

Replacement Using Re-Reference Interval Prediction (RRIP),” in ISCA, 2010.
[60] M. Jalili and M. Erez, “Reducing Load Latency with Cache Level Prediction,” in

HPCA, 2022.
[61] D. A. Jimenez and C. Lin, “Dynamic Branch Prediction with Perceptrons,” in HPCA,

2001.
[62] D. A. Jiménez, “Fast Path-Based Neural Branch Prediction,” in MICRO, 2003.
[63] D. A. Jiménez, “Dead Block Replacement and Bypass with a Sampling Predictor,”

in JWAC, 2010.
[64] D. A. Jiménez and C. Lin, “Neural Methods for Dynamic Branch Prediction,” TOCS,

2002.
[65] D. A. Jiménez and E. Teran, “Multiperspective Reuse Prediction,” in MICRO, 2017.
[66] T. L. Johnson, D. A. Connors, and W.-M. W. Hwu, “Run-Time Adaptive Cache

Management,” in HICSS, 1998.
[67] T. L. Johnson, D. A. Connors, M. C. Merten, and W.-m. W. Hwu, “Run-Time Cache

Bypassing,” IEEE Trans. Computers, 1999.
[68] T. L. Johnson and W.-m. W. Hwu, “Run-Time Adaptive Cache Hierarchy Manage-

ment via Reference Analysis,” in ISCA, 1997.
[69] D. Joseph and D. Grunwald, “Prefetching using Markov Predictors,” in ISCA, 1997.
[70] N. P. Jouppi, “Improving Direct-mapped Cache Performance by the Addition of a

Small Fully-associative Cache and Prefetch Bu�ers,” in ISCA, 1990.
[71] M. Karlsson, F. Dahlgren, and P. Stenstrom, “A Prefetching Technique for Irregular

Accesses to Linked Data Structures,” in HPCA, 2000.
[72] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling Dead Block Prediction for Last-

Level Caches,” in MICRO, 2010.
[73] M. Kharbutli and Y. Solihin, “Counter-Based Cache Replacement and Bypassing

Algorithms,” IEEE TC, 2008.
[74] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform Cache Structure

for Wire-Delay Dominated On-Chip Caches,” in ASPLOS, 2002.
[75] J. Kim, S. H. Pugsley, P. V. Gratz, A. Reddy, C. Wilkerson, and Z. Chishti, “Path

Con�dence Based Lookahead Prefetching,” in MICRO, 2016.
[76] S. Kondguli and M. Huang, “Division of Labor: A More E�ective Approach to

Prefetching,” in ISCA, 2018.
[77] S. Kumar and C. Wilkerson, “Exploiting Spatial Locality in Data Caches using Spa-

tial Footprints,” in ISCA, 1998.
[78] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mc-

PAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore
and Manycore Architectures,” in MICRO, 2009.

[79] H. Litz, G. Ayers, and P. Ranganathan, “CRISP: Critical Slice Prefetching,” in ASP-
LOS, 2022.

[80] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache Bursts: A New Approach for
Eliminating Dead Blocks and Increasing Cache E�ciency,” in MICRO, 2008.

[81] G. H. Loh and M. D. Hill, “E�ciently Enabling Conventional Block Sizes for Very
Large Die-Stacked DRAM Caches,” in MICRO, 2011.

[82] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in Ner-
vous Activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, 1943.

[83] S. McFarling, “Combining Branch Predictors,” Digital Western Research Labora-
tory, Tech. Rep. 36, 1993.

[84] G. Memik, G. Reinman, and W. H. Mangione-Smith, “Just Say No: Bene�ts of Early
Cache Miss Determination,” in HPCA, 2003.

[85] P. Michaud, “Best-O�set Hardware Prefetching,” in HPCA, 2016.
[86] P. Michaud, A. Seznec, and R. Uhlig, “Trading Con�ict and Capacity Aliasing in

Conditional Branch Predictors,” in ISCA, 1997.
[87] O. Mutlu, H. Kim, and Y. N. Patt, “Address-Value Delta (AVD) Prediction: Increas-

ing the E�ectiveness of Runahead Execution by Exploiting Regular Memory Allo-
cation Patterns,” in MICRO, 2005.

[88] O. Mutlu, H. Kim, and Y. N. Patt, “Techniques for E�cient Processing in Runahead
Execution Engines,” in ISCA, 2005.

[89] O. Mutlu, H. Kim, and Y. N. Patt, “E�cient Runahead Execution: Power-E�cient
Memory Latency Tolerance,” in IEEE Micro, 2006.

[90] O. Mutlu, H. Kim, J. Stark, and Y. N. Patt, “On Reusing the Results of Pre-Executed
Instructions in a Runahead Execution Processor,” IEEE CAL, 2005.

[91] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution: An Alter-
native to Very Large Instruction Windows for Out-of-order Processors,” in HPCA,
2003.

[92] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution: An E�ective

15

https://en.wikichip.org/wiki/amd/ryzen_threadripper/3990x
https://en.wikichip.org/wiki/amd/ryzen_threadripper/3990x
https://en.wikichip.org/wiki/amd/epyc/7702p
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://github.com/ChampSim/ChampSim
https://en.wikichip.org/wiki/intel/microarchitectures/golden_cove
https://en.wikichip.org/wiki/intel/microarchitectures/golden_cove
https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
https://en.wikipedia.org/wiki/Hermes
https://github.com/CMU-SAFARI/Hermes
https://doi.org/10.5281/zenodo.6909799
https://www.thefpsreview.com/2021/12/08/intel-core-i5-12600k-ddr4-alder-lake-cpu-review/6/
https://www.thefpsreview.com/2021/12/08/intel-core-i5-12600k-ddr4-alder-lake-cpu-review/6/
https://fuse.wikichip.org/news/6111/intel-details-golden-cove-next-generation-big-core-for-client-and-server-socs/
https://fuse.wikichip.org/news/6111/intel-details-golden-cove-next-generation-big-core-for-client-and-server-socs/
https://en.wikichip.org/wiki/intel/xeon_gold/6258r
https://www.cpuagent.com/cpu/intel-core-i9-10900k/benchmarks/l3-cache-latency-at-base-frequency/nvidia-geforce-rtx-2080-ti?res=1&quality=ultra
https://www.cpuagent.com/cpu/intel-core-i9-10900k/benchmarks/l3-cache-latency-at-base-frequency/nvidia-geforce-rtx-2080-ti?res=1&quality=ultra
https://www.cpuagent.com/cpu/intel-core-i9-10900k/benchmarks/l3-cache-latency-at-base-frequency/nvidia-geforce-rtx-2080-ti?res=1&quality=ultra
https://www.felixcloutier.com/x86/movnti
http://parsec.cs.princeton.edu/
https://www.microarch.org/cvp1/cvp2/rules.html
https://www.microarch.org/cvp1/cvp2/rules.html
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://bit.ly/3RhlK8z
https://bit.ly/3wFRM6l

Alternative to Large Instruction Windows,” in IEEE Micro, 2003.
[93] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout, “Vector Runahead,” in

ISCA, 2021.
[94] S. Pakalapati and B. Panda, “Bouquet of Instruction Pointers: Instruction Pointer

Classi�er-based Spatial Hardware Prefetching,” in ISCA, 2020.
[95] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-

ware Software Interface. Morgan kaufmann, 2016.
[96] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai, “Bloom Filtering Cache Misses for

Accurate Data Speculation and Prefetching,” in ICS, 2002.
[97] T. Piquet, O. Rochecouste, and A. Seznec, “Exploiting Single-Usage for E�ective

Memory Management,” in ACSAC, 2007.
[98] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott, A. Jaleel, S.-L. Lu,

K. Chow, and R. Balasubramonian, “Sandbox Prefetching: Safe Run-Time Evalua-
tion of Aggressive Prefetchers,” in HPCA, 2014.

[99] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive Insertion
Policies for High Performance Caching,” in ISCA, 2007.

[100] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-o� in Architecting
DRAM Caches: Outperforming Impractical SRAM-Tags with a Simple and Practi-
cal Design,” in MICRO, 2012.

[101] J. A. Rivers and E. S. Davidson, “Reducing Con�icts in Direct-Mapped Caches with
a Temporality-Based Design,” in ICPP, 1996.

[102] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, and M. Farrens, “Utilizing Reuse
Information in Data Cache Management,” in ICS, 1998.

[103] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain,” Psychological review, vol. 65, no. 6, 1958.

[104] A. Sembrant, E. Hagersten, and D. Black-Scha�er, “The Direct-to-Data (D2D)
Cache: Navigating the Cache Hierarchy with a Single Lookup,” ISCA, 2014.

[105] A. Sembrant, E. Hagersten, and D. Black-Scha�er, “A Split Cache Hierarchy for
Enabling Data-Oriented Optimizations,” in HPCA, 2017.

[106] M. Shakerinava, M. Bakhshalipour, P. Lot�-Kamran, and H. Sarbazi-Azad, “Multi-
Lookahead O�set Prefetching,” 2019.

[107] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and
Z. Chishti, “E�ciently Prefetching Complex Address Patterns,” in MICRO, 2015.

[108] J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph Processing Framework for
Shared Memory,” in PPoPP, 2013.

[109] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsa�, “Spatio-Temporal Memory
Streaming,” in ISCA, 2009.

[110] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsa�, and A. Moshovos, “Spatial Mem-
ory Streaming,” in ISCA, 2006.

[111] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed Prefetching: Im-
proving the Performance and Bandwidth-E�ciency of Hardware Prefetchers,” in
HPCA, 2007.

[112] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron
Branch Prediction,” TACO, 2005.

[113] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron Learning for Reuse Prediction,”
in MICRO, 2016.

[114] G. Tyson, M. Farrens, J. Matthews, and A. Pleszkun, “A Modi�ed Approach to Data
Cache Management,” in MICRO, 1995.

[115] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “Managing Data Caches
using Selective Cache Line Replacement,” IJPP, 1997.

[116] Z. Wang, J. Weng, J. Lowe-Power, J. Gaur, and T. Nowatzki, “Stream Floating: En-
abling Proactive and Decentralized Cache Optimizations,” in HPCA, 2021.

[117] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsa�, and A. Moshovos, “Practical
O�-chip Meta-data for Temporal Memory Streaming,” in HPCA, 2009.

[118] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsa�, and A. Moshovos, “Making
Address-Correlated Prefetching Practical,” IEEE micro, 2010.

[119] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsa�, “Tem-
poral Streaming of Shared Memory,” in ISCA, 2005.

[120] W. A. Wong and J.-L. Baer, “Modi�ed LRU Policies for Improving Second-level
Cache Behavior,” in HPCA, 2000.

[121] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, and J. M. Pendleton, “An In-Cache
Address Translation Mechanism,” ISCA, 1986.

[122] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr, and J. Emer,
“SHiP: Signature-based Hit Predictor for High Performance Caching,” in MICRO,
2011.

[123] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “E�cient Metadata Manage-
ment for Irregular Data Prefetching,” in ISCA, 2019.

[124] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin, “Temporal Prefetch-
ing Without the O�-Chip Metadata,” in MICRO, 2019.

[125] T.-Y. Yeh and Y. N. Patt, “Two-level Adaptive Training Branch Prediction,” in MI-
CRO, 1991.

[126] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation Techniques for Improving
Load Related Instruction Scheduling,” in ISCA, 1999.

[127] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple Linux Utility for Re-
source Management,” in Workshop on job scheduling strategies for parallel process-
ing. Springer, 2003, pp. 44–60.

A. Artifact Appendix

A.1. Abstract

We implement Hermes using the ChampSim simulator [9]. In
this artifact, we provide the source code of Hermes and nec-
essary instructions to reproduce its key performance results.7
We identify four key results to demonstrate Hermes’s novelty:
• Comparison of accuracy and coverage of POPET against

HMP and TTP (Fig. 9).
• Workload category-wise performance comparison in single-

core workloads (Fig. 12).
• Workload category-wise performance comparison of Hermes

with POPET with Hermes-HMP and Hermes-TTP in single-
core workloads (Fig. 14).

• Performance sensitivity to di�erent prefetching techniques
(Fig. 17(b)).
The artifact can be executed in any machine with a general-

purpose CPU and 36 GB disk space. However, we strongly
recommend running the artifact on a compute cluster with
slurm [127] support for bulk experimentation.

A.2. Artifact Check-list (Meta-information)

• Compilation: GCC 6.3.0 or above.
• Data set: Download traces using the supplied script.
• Run-time environment: Perl v5.24.1
• Metrics: IPC, predictor’s coverage, and accuracy.
• Experiments: Generate experiments using supplied scripts.
• How much disk space required (approximately)?: 36 GB
• How much time is needed to prepare work�ow (approxi-
mately)?: ∼ 2 hours. Mostly depends on downloading bandwidth.

• Howmuch time is needed to complete experiments (approx-
imately)?: ∼ 12 hours using a compute cluster with 640 cores.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT
• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.

6909799

A.3. Description

A.3.1. How to Access. The source code can be downloaded from
either GitHub [13] or Zenodo [14].

A.3.2. Hardware Dependencies. Hermes can be run on any system
with a general-purpose CPU and at least 36 GB of free disk space.

A.3.3. Software Dependencies.
• cmake >= 3.20.2

• gcc >= v6.3.0

• perl >= v5.24.1

• xz >= v5.2.5

• gzip >= v1.6

• megatools >= v1.11.0

• md5sum >= v8.26

• wget >= v1.18

• Microsoft Excel >= v16.51

7This appendix focuses on reproducing four key results mentioned here.
Nonetheless, the artifact contains �les and necessary scripts to reproduce all
results mentioned in the paper.

16

https://doi.org/10.5281/zenodo.6909799
https://doi.org/10.5281/zenodo.6909799

A.3.4. Data Sets. The ChampSim traces required to evaluate Hermes
can be downloaded using the supplied script. Our implementation
of Hermes is fully compatible with prior ChampSim traces that are
used in previous cache replacement (CRC-2 [1]), data prefetching
(DPC-3 [3]) and value-prediction (CVP-2 [21]) championships.

A.4. Installation
1. Clone Hermes from GitHub repository:

$ git clone https://github.com/CMU-SAFARI/

Hermes.git

2. Please make sure to set environment variables as:
$ source setvars.sh

3. Clone Bloom�lter library inside Hermes home and build:
$ cd $HERMES_HOME

$ git clone https://github.com/mavam/libbf.git libbf/

$ cd libbf/

$ mkdir build && cd build/ && cmake ../

$ make clean && make

4. Build Hermes for single-core Intel Goldencove con�guration as:
$ cd $HERMES_HOME

$./build_champsim.sh glc multi multi multi multi 1 1 0

A.5. Preparing Traces
This section describes the steps to download and verify the necessary
ChampSim traces. We recommend the reader to follow the README
in the GitHub repository to get up-to-date information.
1. Install the Megatools executable as:

$ cd $HERMES_HOME/scripts

$ wget -no-check-certificate

https://megatools.megous.com/builds/builds/

megatools-1.11.0.20220519-linux-x86_64.tar.gz

$ tar -xvf megatools-1.11.0.20220519-linux-x86_64.tar.gz

2. Use download_traces.pl script to download traces:
$ cd $HERMES_HOME/traces

$ perl $HERMES_HOME/scripts/download_traces.pl

-csv artifact_traces.csv -dir ./

3. Once the script �nishes downloading 110 traces, please verify the
checksum as follows. Make sure all traces pass the checksum test.
$ cd $HERMES_HOME/traces

$ md5sum -c artifact_traces.md5

4. If the traces are downloaded in other path, please up-
date the full path in MICRO22_AE.tlist �le inside
$HERMES_HOME/experiments directory appropriately.

A.6. Experimental Work�ow
This section describes the steps to generate and execute necessary
experiments. We recommend the reader to follow script/README.md

to know more about each script used in this section.
A.6.1. Launching Experiments. The following instructions enable
launching all experiments required to reproduce key results in a
local machine. We strongly recommend using a compute cluster
with slurm support to e�ciently launch experiments in bulk. To
launch experiments using slurm, please provide -local 0 (tested
using slurm v16.05.9).
1. Create the job�le for the experiments as follows:

$ cd $HERMES_HOME/experiments

$ perl $HERMES_HOME/scripts/create_jobfile.pl -exe

$HERMES_HOME/bin/glc-perceptron-no-

multi-multi-multi-multi-1core-1ch -tlist

MICRO22_AE.tlist -exp MICRO22_AE.exp -local 1 > jobfile.sh

2. Please make sure the paths used in tlist and exp �les are appro-
priately changed before creating the job�le.

3. If you are creating jobs for slurm, please set the slurm partition
name appropriately (set as slurm_part by default). You might
also want to set some key parameters for slurm con�guration as
follows: (a) max memory per node: 2 GB, (b) timeout: 12 hours.

4. Finally, launch the experiments as follows:
$ cd $HERMES_HOME/outputs/

$ source ../jobfile.sh

A.6.2. Rolling-up Statistics. The rollup.pl script parses a set of
output �les of a given experiment and dumps all statistics in a comma-
separated-value (CSV) format. To automate the roll-up process, we
use the following set of instructions which enable the creation of four
CSV �les in experiments directory. These CSV �les are later used for
comparison in Appendix A.7.

$ cd $HERMES_HOME/experiments

$ bash automate_rollup.sh

A.7. Evaluation
We use three metrics for comparing Hermes with previous works: (1)
performance, (2) accuracy and (3) coverage of the o�-chip predictor.
The performance gain of a simulation con�guration is measured with
respect to the no-prefetching system using Eq. 2.

PerfX = IPCX

IPCnopref
(2)

We measure the accuracy and coverage of each evaluated o�-chip
prediction mechanism using Eq. 3 and 4.

AccuracyX = TP

TP + FP
(3)

CoverageX = TP

TP + FN
(4)

Here, TP represents the number of predicted o�-chip requests that
actually go o�-chip, FP represents the number of predicted o�-chip
requests that do not go o�-chip, and FN represents the number of
requests that are not predicted by the o�-chip predictor but go o�-
chip.

To easily calculate the metrics, we provide a Microsoft Excel
template to post-process the rolled-up CSV �les generated in Ap-
pendix A.6.2. The template has �ve sheets. The �rst sheet (named
metadata) contains the metadata to identify the category of each
workload trace and experiment. Each of the remaining sheets shares
the same name of the rolled-up CSV �le. Each of these sheets is al-
ready populated with our collected results, necessary formulas, pivot
tables, and charts to reproduce the results presented in the paper.
Only the blue-highlighted columns in each sheet need to be populated
by your own CSV �les. Please follow these instructions to reproduce
the results from your own CSV statistics �les:
1. Copy and paste each CSV �le into its corresponding sheet’s top

left corner (i.e., cell A1).

17

2. If you have copied the CSV �le using an CSV application that
already automatically separates the columns, then go to Step 4.

3. Immediately after pasting, convert the comma-separated rows into
columns by going to Data→ Text-to-Columns→ Select comma
as a delimiter. This replaces the already existing data in the sheet
with the newly collected data.

4. Refresh each pivot table in each sheet by clicking on them and then
clicking Pivot-Table-Analyse→ Refresh.

The reader can also use any other data processor (e.g., Python pandas)
to reproduce the same result.

A.8. Expected Results
• Accuracy and coverage comparison. POPET should show

77.1% accuracy, whereas HMP and TTP should show 46.8% and
16.6% accuracy, respectively. POPET should show 74.4% coverage,
whereas HMP and TTP should show 22.3% and 94.8% coverage,
respectively.

• Performance comparison with Pythia. Hermes-P, Hermes-O,
Pythia, Pythia+Hermes-P, and Pythia+Hermes-O should provide
8.9%, 11.5%, 20.5%, 24.7%, and 25.6% geomean performance
improvement, respectively, across all single-core workloads.

• Performance comparison with prior predictors. Pythia,
Pythia+Hermes-HMP, Pythia+Hermes-TTP, and Pythia+Hermes-
POPET should provide 20.5%, 21.1%, 22.09%, and 25.6% ge-
omean performance improvement, respectively, across all single-
core workload traces.

• Performance comparison with varying prefetchers. Both
Hermes-P and Hermes-O improves performance than the prefetcher
by itself for every baseline prefetcher type: Pythia, Bingo, SPP,
MLOP, and SMS.

A.9. Experiment Customization
• The con�guration of each prefetcher can be customized by changing

the ini �les inside the config directory.
• The exp �les can be customized to run new experiments with

di�erent prefetcher combinations. More experiment �les can be
found inside experiments/extra directory. One can use the same
instructions mentioned in Appendix A.6.1 to launch experiments.

A.10. Quick Troubleshooting
Please check the FAQ section in GitHub (https://github.com/
CMU-SAFARI/Hermes#frequently-asked-questions) for quick
troubleshooting tips.

A.11. Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

B. Extended Results
B.1. Performance Sensitivity to ROB Size
Fig. 19 shows the performance of Hermes, Pythia, and Hermes com-
bined with Pythia normalized to the no-prefetching system in single-
core workloads as the size of reorder bu�er (ROB) varies from 256
entries to 1024 entries. The key takeaway is that Hermes combined
with Pythia outperforms Pythia alone in every ROB size con�guration.
Pythia+Hermes outperforms Pythia by 6.7% and 5.3% in a system
with 256-entry and 1024-entry ROB.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

256 512 768 1024

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

ROB Size

Hermes Pythia Pythia+Hermes

Figure 19: Performance sensitivity to reorder bu�er size. The
baseline con�guration is marked in green.

B.2. Performance Sensitivity to LLC Size
Fig. 19 shows the performance of Hermes, Pythia, and Hermes com-
bined with Pythia normalized to the no-prefetching system in single-
core workloads as the per-core last-level cache (LLC) size varies
from 3 MB to 24 MB. The key takeaway is that Hermes combined
with Pythia outperforms Pythia alone in every LLC size con�gu-
ration. Even in a system with a 12 MB and 24 MB LLC per core,
Pythia+Hermes provides 2.5% and 1.3% performance bene�t over
Pythia alone, respectively.

1

1.05

1.1

1.15

1.2

1.25

1.3

3 6 12 24

Ge
om

ea
n

sp
ee

du
p

ov
er

 th
e N

o-
pr

ef
et

ch
in

g
sy

st
em

LLC size per core (in MB)

Hermes Pythia Hermes+Pythia

Figure 20: Performance sensitivity to LLC size. The baseline
con�guration is marked in green.

B.3. Variation of Prediction Accuracy and Cover-
age with Di�erent Prefetchers

Fig. 21 shows the o�-chip load prediction accuracy and coverage
when Hermes is combined with di�erent baseline data prefetchers.
We make two key observations. First, POPET’s accuracy and coverage
varies widely based on the baseline data prefetcher. When combined
with Pythia, Bingo, SPP, MLOP, and SMS, POPET provides accuracy of
77.3%, 78.1%, 73.4%, 79.9%, and 76.0%, while providing coverage
of 74.2%, 77.6%, 65.9%, 81.7%, and 84.7%, respectively. Second,
in a system without any baseline data prefetcher, POPET provides
signi�cantly higher accuracy (88.9%) and coverage (93.6%) than any
con�guration with a baseline prefetcher. This shows that, the prefetch
requests generated by a sophisticated data prefetcher interfere with
the o�-chip load prediction. This is why POPET’s accuracy and
coverage increases in absence of a data prefetcher.

50%

60%

70%

80%

90%

100%

Pythia+Herm
es

Bingo+Herm
es

SPP+Herm
es

MLOP+Herm
es

SMS+Herm
es

Herm
es alone

Accuracy Coverage

Figure 21: Variation of o�-chip load prediction accuracy and
coverage with di�erent data prefetchers.

18

https://github.com/CMU-SAFARI/Hermes#frequently-asked-questions
https://github.com/CMU-SAFARI/Hermes#frequently-asked-questions
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

B.4. Overhead in Main Memory Requests with Dif-
ferent Prefetchers

Fig. 22 shows the percentage increase in the main memory requests
over the no-prefetching system by di�erent types of data prefetchers
alone, and in combination with Hermes in all single-core workloads.
Combining Hermes with the baseline prefetcher increases the main
memory request overhead by 5.9%, 7.6%, 5.9%, 8.6%, and 15.6%
for the baseline prefetchers Pythia, Bingo, SPP, MLOP, and SMS,
respectively.

0%

10%

20%

30%

40%

50%

Pythia Bingo SPP MLOP SMS

Prefetcher
Prefetcher+Hermes5.9%

7.6%

5.8%

8.6% 15.6%

Figure 22: Overhead in main memory requests with di�erent
data prefetchers.

19

	1 Introduction
	2 Motivation
	3 Our Goal and Key Idea
	3.1 The Key Idea and Potential Benefits
	3.2 Key Challenge

	4 Key Related Works
	5 Hermes: Design Overview
	6 Hermes: Detailed Design
	6.1 POPET Design
	6.1.1 Making a Prediction
	6.1.2 Training the Predictor
	6.1.3 Automated Feature Selection
	6.1.4 Parameter Threshold Tuning

	6.2 Hermes Datapath Design
	6.2.1 Issuing a Hermes Request
	6.2.2 Returning Data to the Core

	6.3 Storage Overhead

	7 Methodology
	7.1 Workloads
	7.2 Evaluated System Configurations

	8 Evaluation
	8.1 POPET Prediction Analysis
	8.1.1 Accuracy and Coverage of POPET
	8.1.2 Effect of Different POPET Features
	8.1.3 Usefulness of all features

	8.2 Single-core Performance Analysis
	8.2.1 Performance Improvement
	8.2.2 Effect of the Off-chip Load Prediction Mechanism
	8.2.3 Effect on Stall Cycles
	8.2.4 Overhead in Main Memory Requests

	8.3 Eight-core Performance Analysis
	8.4 Performance Sensitivity Analysis
	8.4.1 Effect of Main Memory Bandwidth
	8.4.2 Effect of the Baseline Prefetcher
	8.4.3 Effect of the Hermes Request Issue Latency
	8.4.4 Effect of the On-chip Cache Hierarchy Access Latency
	8.4.5 Effect of the Activation Threshold

	8.5 Power Overhead

	9 Other Related Work
	10 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.3.1 How to Access
	A.3.2 Hardware Dependencies
	A.3.3 Software Dependencies
	A.3.4 Data Sets

	A.4 Installation
	A.5 Preparing Traces
	A.6 Experimental Workflow
	A.6.1 Launching Experiments
	A.6.2 Rolling-up Statistics

	A.7 Evaluation
	A.8 Expected Results
	A.9 Experiment Customization
	A.10 Quick Troubleshooting
	A.11 Methodology

	B Extended Results
	B.1 Performance Sensitivity to ROB Size
	B.2 Performance Sensitivity to LLC Size
	B.3 Variation of Prediction Accuracy and Coverage with Different Prefetchers
	B.4 Overhead in Main Memory Requests with Different Prefetchers

