
HAL Id: lirmm-03784815
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03784815

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse Polynomial Interpolation and Division in
Soft-linear Time

Pascal Giorgi, Bruno Grenet, Armelle Perret Du Cray, Daniel S. Roche

To cite this version:
Pascal Giorgi, Bruno Grenet, Armelle Perret Du Cray, Daniel S. Roche. Sparse Polynomial Interpo-
lation and Division in Soft-linear Time. ISSAC 2022 - 47th International Symposium on Symbolic
and Algebraic Computation, Jul 2022, Lille, France. pp.459-468, �10.1145/3476446.3536173�. �lirmm-
03784815�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03784815
https://hal.archives-ouvertes.fr

ar
X

iv
:2

20
2.

08
10

6v
2

 [
cs

.S
C

]
 1

8
M

ay
 2

02
2

Sparse Polynomial Interpolation and Division

in So�-linear Time

Pascal Giorgi
LIRMM, Univ. Montpellier, CNRS

Montpellier, France

pascal.giorgi@lirmm.fr

Bruno Grenet
LIRMM, Univ. Montpellier, CNRS

Montpellier, France

bruno.grenet@lirmm.fr

Armelle Perret du Cray
LIRMM, Univ. Montpellier, CNRS

Montpellier, France

armelle.perret-du-cray@lirmm.fr

Daniel S. Roche
United States Naval Academy

Annapolis, Maryland, U.S.A

roche@usna.edu

May 19, 2022

Abstract

Given a way to evaluate an unknown polynomial with integer coefficients,

we present new algorithms to recover its nonzero coefficients and corresponding

exponents. As an application, we adapt this interpolation algorithm to the prob-

lem of computing the exact quotient of two given polynomials. �ese methods

are efficient in terms of the bit-length of the sparse representation, that is, the

number of nonzero terms, the size of coefficients, the number of variables, and

the logarithm of the degree. At the core of our results is a new Monte Carlo ran-

domized algorithm to recover a polynomial f (x) with integer coefficients given

a way to evaluate f (�) mod m for any chosen integers � and m. �is algorithm

has nearly-optimal bit complexity, meaning that the total bit-length of the probes,

as well as the computational running time, is so�ly linear (ignoring logarithmic

factors) in the bit-length of the resulting sparse polynomial. To our knowledge,

this is the first sparse interpolation algorithm with so�-linear bit complexity in

the total output size. For polynomials with integer coefficients, the best previ-

ously known results have at least a cubic dependency on the bit-length of the

exponents.

1 Introduction

Sparse and supersparse polynomials. Sparse polynomial interpolation is an im-

portant and well-studied problem in computer algebra, with numerous connections

to related problems in signal processing and coding theory. In our context, the task

is to determine the sparse representation of an unknown polynomial f ∈ ℤ[x1, … , xn],

1

http://arxiv.org/abs/2202.08106v2

which is the list of nonzero coefficients c1, … , ct ∈ ℤ and corresponding exponent

tuples e1, … , et ∈ ℕn such that

f = c1xe1 + c2xe2 + ⋯ + ctxet .
Here we use the convenient notation for each monomial

xei = xei,11 xei,22 ⋯xei,nn .

We assume every ci ≠ 0 and all the ei ’s are distinct. �e number of nonzero terms in f ,
also known as the sparsity, is wri�en as t = #f . �e bit size of the sparse representation

of f is t(n logD + logH)∗ with D the max degree of f , that is the largest exponent ei,j ,
and H its height, that is the maximum magnitude of a coefficient†.

Any sparse interpolation algorithm requires some bounds on the unknown f (typ-
ically on the degree, size of coefficients, and possibly number of nonzero terms), as

well as a way to evaluate f . �e algorithm constructs a series of evaluation points,

performs said evaluations, then performs some computations, possibly iterating these

steps before se�ling on the final result.

Dense polynomial interpolation algorithms have been known for centuries and

can always recover a unique result, even if the evaluation points are not chosen by

the algorithm. However, methods such as Lagrange interpolation scale at least lin-

early with the degree of the unknown polynomial. Sparse polynomial algorithms, by

contrast, should scale according to the number of nonzero terms, which in general

can be much smaller than the degree.

In fact, the degree could be exponentially larger than the sparse representation.

Algorithms whose cost scales with the bit-length of the exponents, i.e., the logarithm

of the degree, are called supersparse or lacunary polynomial algorithms.

Sparse interpolation Sparse interpolation has received much a�ention since the

landmark paper by Ben-Or and Tiwari [7], which provides a deterministic algorithm

of complexity polynomial in T , D, n for multivariate polynomials over ℤ, given a

bound on T ≥ t as input. �is algorithm is given in the context of an unknown

polynomial that a black box allows to evaluate at any point of ℤ freely chosen by

the algorithm. Numerous extensions have been proposed [52, 38, 30], in particular in

order to: deal with finite fields [21, 26, 32, 16, 29], avoid the bound on t by early termi-

nation techniques [34] or extend the problem to the case of sparse rational functions

[39, 37, 12, 25]. Some algorithms require the black box model to be slightly relaxed

and allow evaluations in extension rings or quotient rings [21, 41, 2, 45, 37, 16, 10, 23].

Garg and Schost [14] described the first algorithm for a generic ring whose com-

plexity is polynomial in logD (supersparse interpolation). �eir algorithm takes as

input a straight-line program (SLP) rather than a black box. Hence, there is no restric-

tion on the evaluation domain, but the evaluation cost has to be taken into account.

Subsequent works have refined the complexity bounds of this algorithmwhen the ring

∗Unless otherwise stated, logarithms are in base 2; We shall also use base-q logarithms for some primeq, and natural logarithms for prime-related statements.
†In this work, we do not consider the case of unbalanced bit lengths, where the differing sizes of each

coefficient and exponent are considered in the complexity.

2

of coefficients is a finite field, the ring of integers or rational numbers [4, 5, 31, 28].

�e best currently known complexity is due to Huang [27] for the interpolation of

an SLP of length L on a finite field Fq of large characteristic in Õ(LT logD log q) bit
operations. �is complexity is however not quasi-linear in the output size due to the

factor logD times log q.
More details on algorithms and techniques are given in Arnold’s �esis [3] or in

the survey from van der Hoeven and Lecerf [24].

In unbounded coefficient domains such as ℤ, the bit size of the values involved in
the evaluation and computation can growexponentially. Workingwith such exponential-

size integers is unrealistic and may even make the problem trivial: the unknown poly-

nomial f can be recovered from a single evaluation at a point larger than any coeffi-

cient, using the q-adic expansion of the result. Hence, modular techniques are needed

to get efficient algorithms [36, 23]. �is motivated the definition of more general black

boxes that enable to perform evaluation modulo a chosen integer m.

Definition 1.1. A modular black box (MBB, for short) for a multivariate polynomial

f ∈ ℤ[x1, … , xn] is a function that takes any modulus m ∈ ℕ and n-tuple of evaluation
points (�1, … , �n) ∈ {0, 1, … ,m − 1}n , and produces the evaluation f (�1, … , �n) mod m.

f�1,… , �n

m

f (�1,… , �n) mod m

An alternative input for sparse interpolation is straight-line programs (SLP). An

SLP naturally implements an MBB: Given the SLP for f ∈ ℤ[x1,… , xn], one can com-

pute f (�1,… , �n) mod m. If the SLP has length L, this amounts to O(L) operations in
ℤ/mℤ, or Õ(L(logm + logH)) bit operations, where H bounds the absolute values of

the constants used by the SLP. (More precisely, if the SLP uses k constants ≤ H in

absolute value, and H > m, we need to reduce these k integers modulo m, in time

Õ(k logH).)
A fair analysis of a sparse interpolation algorithm over ℤ[x] should therefore con-

sider four things: (1) the number of evaluations, (2) the bit-length of these evaluations,

(3) the arithmetic complexity of extra processing to produce the result, and (4) the bit-

length of integers involved in the extra processing.

Sparse polynomial exact division Another issue with sparse polynomials is the

complexity of the basic arithmetic operations; see the survey of Roche [48]. Even for

standard operations such as multiplication or division, no deterministic quasi-linear

time algorithm is known. In spite of some theoretical improvements and practical

implementations, deterministic algorithms for these operations remain quadratic in

the sparsity [33, 42, 43, 44, 15]. �e major difficulty comes from the unpredictability

of the sparsity of the result. �ite recently, new probabilistic algorithms for sparse

polynomial multiplication have been proposed [6, 46, 22]. �is led to the first quasi-

linear algorithm for sparse polynomial multiplication over the integers or finite fields

3

with large characteristic [18], based on sparse interpolation and sparse polynomial

verification [20].

For the Euclidean division of sparse polynomials, the case of exact division (when

the remainder is known to be zero) was improved by similar techniques [19]. �is led

to the first algorithm that is quasi-linear in the sparsity, though not in the total bit

size.

1.1 Summary of results

We provide the first truly quasi-linear sparse interpolation algorithm, for integer poly-

nomials.

�eorem 1.2. �ere is a Monte Carlo randomized algorithm that, given an MBB for an

unknown polynomial f ∈ ℤ[x1,… , xn] and bounds D, H , and T on respectively its max

degree, height and sparsity, recovers the sparse representation of f with probability at

least 2
3 . It requires O(T) probes to the MBB plus Õ(T (n logD + logH)) bit operations.

Based on similar techniques, we are also able to provide the first quasi-linear time

algorithm for computing the exact quotient of two sparse polynomials.

�eorem 1.3. �ere is a Monte Carlo randomized algorithm that, given two sparse

polynomials f , g ∈ ℤ[x1,… , xn] such that g divides f and a bound T on the sparsity of

the quotient f /g, computes the sparse representation of f /g with probability at least 2
3 . It

requires Õ((T + #f + #g)(n logD + logH)) bit operations where D = deg(f), and H is a

bound on the height of the three polynomials f , g and f /g.
Our algorithms are randomized of the Monte Carlo type, meaning that they can

return incorrect results. By repeatedly running the algorithms and taking themajority

result, the probability of error decreases exponentially in the number of iterations.

�e exact division algorithm can be performed without an a priori sparsity bound.

For that, we rely on the sparse product verification algorithm of Giorgi et al. [18,

20]. It becomes an Atlantic City algorithm (both its correctness and running time are

probabilistic) since the verification algorithm is randomized of Monte Carlo type.

We present our results for multivariate polynomials but will focus on univariate

polynomials in our descriptions and proofs that follow. �is is allowed by the fairly

classical Kronecker substitution [40, 35]. Indeed, there is a one-to-one correspondence

between polynomials f ∈ ℤ[x1, … , xn] with degxi f < D, and univariate polynomials

in ℤ[x] of degree < Dn through the transformation fu(x) = f (x, xD , xD2 , … , xDn−1).
Note that Kronecker substitution preserves the bit size of the polynomials. For sparse

polynomials, the transformation and its inverse require Õ(Tn logD) bit operations.
An MBB for f can simulate a univariate MBB for fu by evaluating f at the powers of
the given point. �is adds a negligible cost in our algorithms since we probe the MBB

on points of known low order.

�e rest of the paper is then devoted to univariate polynomials. By abuse of no-

tation we still use D to denote the degree of the univariate polynomial, instead ofDn .

4

1.2 Main ideas

Our new algorithms mostly combine aspects of existing techniques initiated by the

work of Garg and Schost [14] and Ben-Or and Tiwari [7] plus a few new techniques.

We outline the most important of them to give a broad overview of the main interpo-

lation algorithms.

Finding candidate exponents Like in the recent line of work of Gao and Huang

[27, 31, 28, 29], our overall approach is to generate candidate terms of the unknown

sparse polynomials f . �is is achieved by interpolating f mod xp − 1 for tiny primesp, where p ∈ O(T logD) is so small that even performing Õ(p) operations is allowable
within the targeted complexity.

�is approach originates in the work of Garg and Schost [14] on SLP. In that and

subsequent works, the polynomial reduced modulo xp−1 is explicitly computed using

dense arithmetic. �is step alone is too costly to get a quasi-linear complexity.

Our approach is to instead compute f mod xp − 1 using sparse interpolation à

la Prony. To this end, we have to evaluate f on elements of order p. If ! is the

generator of an order-p subgroup of Fq , then f (!) = (f mod xp − 1)(!). �is allows

us to recover the polynomial f modulo ⟨xp − 1, q⟩. If Fq is a small field, namely q ∈
poly(p), this Prony-based interpolation has quasi-linear cost. Since q is rather small,

this actually only provides the exponents modulo p of f , but almost no information

on the coefficients.

To recover the values of the coefficients, we need to work in a ringℤ/mℤ for some

large modulusm. A full Prony-based sparse interpolation over that ring would be too

expensive. However, the exponents of f mod xp − 1 have already been computed and

we only need to perform the second part of the algorithm, namely sparse interpolation

with known support. Also we cannot afford to compute a large enough prime number

m. Instead, we work over a prime power modulus, namely m = qk for some k. �is

part can still be done in quasi-linear time, even in this larger ring, since it amounts to

solving structured linear system of size O(#f).
�ere, we can only ensure a good probability that one-half of the terms do not

collide in the reduction modulo xp − 1. As proposed by Huang [27] this can be easily

turned into a Monte Carlo algorithm by doing O(log T) interpolations with different

primes p. A second problem is that, from this step, we learn only the exponents

modulo p and not the full exponents themselves. Here we can rely on the clever idea

of embedding the exponents in the coefficients [23, 6, 27]. �e approach of Huang

[27] is to use the derivative for that purpose. �is is well adapted for SLP since the

derivative can be computed by means of automatic differentiation. A more general

way that encompasses the MBB, reminiscent of Paillier encryption scheme [47], has

been proposed by Arnold and Roche [6]. Given a modulus m, they consider both

polynomials f (x) and f ((1 + m)x) in the ring ℤ/m2ℤ. Because of the identity (1 +
m)ei mod m2 = 1 + eim, the ratio of corresponding coefficients between these two

polynomials reveals each exponent ei modulo m2, provided that term did not collide

with any others. In our case, the modulusm is qk and we actually perform the second

part of the Prony-based interpolation algorithm over ℤ/q2kℤ to compute both f (x)
and f ((1 + qk)x) modulo ⟨xp − 1, q2k⟩.

5

Finding ringswith specified subgroups Our approach crucially relies on the abil-

ity of finding prime numbers p, q and elements ! and!k such that ! and !k are gener-
ators of order-p subgroups of respectively Fq andℤ/q2kℤ. In particular, p must divideq − 1. Effective versions of Dirichlet’s theorem on primes in arithmetic progressions

tell us that, for a prime p, we can (usually) find another prime q such that p | (q − 1),
where q ≤ O(p6) is not too much larger than p, see [49]. �is allows us to choose q
as a prime in the arithmetic progression {ap + 1 ∶ a ≥ 1} and to set ! = � (q−1)/p for

a random � ∈ Fq . Furthermore, one can easily construct an element !k of order p in

ℤ/q2kℤ by li�ing ! through Newton iteration. We also demonstrate that !k is prin-

cipal, which is a necessary condition to be able to solve our structured linear system

which is of transposed Vandermonde type.

Notice that changing the base ring is mandatory to minimize the bit complexity.

Namely, the large rings have a modulus with O(logD + logH) bits, but we only doÕ(T) arithmetic operations in such rings. �e tiny fields, by contrast, have a modulus

of only O(log(T logDH)) bits, but require at most Õ(T logD) operations.
Exact division To compute the quotient of two sparse polynomials f and g such

that g divides f , we adapt our interpolation techniques. To allow the evaluation of

f /g by evaluating both f and g, we slightly change the values of p and q and ensure

that !, !k and their powers are not roots of g. �e values of p and q do not grow

too much: p remains linear in the input plus the output bit size, and q polynomial in

p. Since the height and sparsity of f /g are unknown, we must discover them during

the computation. �e idea is to begin with small bounds for both and increase them

when needed. For this we rely on sparse polynomial product and modular product

verification [18, 20]. A delicate aspect is to intertwine both bound increases.

1.3 Outline of the paper

We start with a preliminary section that gives few number theoretic results that are

needed to prove the correctness of our algorithms.

Section 3 provides our so�ly linear interpolation algorithm extending further the

main idea described above. �is interpolation algorithm is re-used in Section 4 to

provide a similar algorithm for the computation of the exact quotient of two sparse

polynomials. Moreover, we will present an unconditional algorithm that does not

require any prior knowledge of the quotient, and which has an expected so�ly linear

running time.

2 Number-theoretic preliminaries

Our algorithms use number-theoretic results that are for many of them quite standard

in the sparse interpolation literature. We recall them in this section, in the specific

form required for our proofs. One slightly less common routine consists in computing

a primitive root of unity (PRU) of prime order p in a ring ℤ/qkℤ where q = ap + 1 is
also a prime number. We show how to use Newton iteration for this purpose.

6

2.1 Prime number generation

Our algorithm first computes f mod xp − 1 where f is the polynomial to be interpo-

lated, and p some random prime number. �e goal is that not too many exponents off collide modulo p to be able to recover the terms of f . We use a result of Arnold and

Roche [6]. Note that similar results are given in other references [4, 31].

Fact 2.1 ([6, Lemma 3.4]). Let f be a T -sparse degree-D univariate polynomial, and p
be a random prime number in (�, 2�) where � ≥ 53�(1−) (T − 1) lnD for some and �.
�en f mod xp − 1 has at least T collision-free terms with probability at least 1 − �.

To compute f mod xp − 1, one has to evaluate f on p-PRUs. First, we need ap-PRU ! ∈ Fq for some prime q, and then a p-PRU !k ∈ ℤ/qkℤ for some integerk. To get !, we actually generate the triple (p, q, !) in a single algorithm, with the

required properties. In particular, we need to find two prime numbers p, q such thatp | (q − 1), that is q is in the arithmetic progression {ap + 1 ∶ a ≥ 1}, and such

that q = poly(p). To this end, we generate p at random and sample random elements< p6 in the arithmetic progression until a prime q is found. Such an algorithm can be

found in Arnold’s Ph.D. thesis [3] with a rigorous proof based on effective versions

of Dirichlet’s theorem [1, 51]. �e next fact presents a variant with be�er probability

bounds and a larger range of validity. We provide the complete proof in a short note

[17].

Fact 2.2. �ere exists an explicit Monte Carlo algorithm which, given a bound � ≥ 258�2 ,
produces a triple (p, q, !) that has the following properties with probability at least 1 − �,
and returns fail otherwise:

• p is uniformly distributed amongst the primes of (�, 2�);
• q ≤ �6 is a prime such that p | (q − 1);
• ! is a p-primitive root of unity in Fq ;

Its worst-case bit complexity is polylog(�). Further, if � ≥ 5√ 48� lnK for some integerK > 0, the probability that q divides K is at most �.
While the rigorous proof of this fact implies to have large values for �, it is not too

difficult to see by running few experiments that such triples exist with good probabil-

ity even for smaller values. One can find some preliminary experiments in our short

note [17]. In this paper, we rely on Fact 2.2 to provide rigorously proven algorithm,

thus implying limitations on its practicability. Nevertheless, Algorithms 2 and 3 can

be turned into practical ones just by ignoring the constant 258�2 but without any formal

proof.

2.2 Generators of prime-order subgroups

In the crucial steps of our interpolation algorithm, we need to evaluate in a small size-p multiplicative subgroup within a larger ring of order qk , where p | (q − 1) and k ≥ 1.
7

In order to do so, we need a generator of the order-p subgroup of the ringℤ/qkℤ, that
is, a pth primitive root of unity (PRU) in the ring.

One way to obtain such a generator would be to take a random invertible element

in the ring and raise it to the power '(qk)/p = (q − 1)qk−1/p modulo qk . �e result

will certainly have multiplicative order which divides p, and therefore this power of

a random element is a p-PRU unless it equals 1.

Unfortunately, that approach is too costly for our purposes, because the modulus

and exponent could both have roughly k log q bits. �ere is a solution to this: take ap-PRU! in the fieldℤ/qℤ, and li� it to a p-PRU !k inℤ/qkℤ using a Newton iteration.

�is works because of the following elementary lemma.

Lemma 2.3. Suppose p, q are primes such that p | (q − 1) and k ≥ 1. Let !k be anyp-PRU modulo qk . �en !k mod q is also a p-PRU modulo q. Moreover, !k is principal,

that is !ik − 1 is not a zero divisor for 0 < i < p.
Proof. Let g be any generator of (ℤ/qkℤ)∗, which is cyclic since qk is a prime power.

�en g mod q must also be a generator of the smaller group (ℤ/qℤ)∗; otherwise the
set {gi mod qk}i≥0 would be too small. Because g is a generator and !k is a p-PRU

modulo qk , we can write !k = gi'(qk)/p for some integer i ∈ {1, 2,… , p − 1}. �is

means that

!k mod q = gi'(qk)/p mod q = (g mod q)i(q−1)/p mod q,

where we use the fact that '(qk) = (q − 1)qk−1 and aq mod q = a for any integer a.

Because g mod q is a generator modulo q, and 1 ≤ i ≤ p −1, this means that !k mod q

is a p-PRU modulo q.

For the second part, since !k mod q is a p-PRU, !ik − 1 mod q ≠ 0 for 0 < i < p.

And zero divisors modulo qk must be multiple of q, since q is prime.

Roughly speaking, Lemma 2.3 states that there is a 1-1 correspondence between

p-PRUs modulo q and p-PRUs modulo qk . In particular, for any p-PRU ! modulo

q, there is a unique p-PRU !k modulo qk such that !k mod q = !. We construct the

larger p-PRU !k through a standard Newton iteration, solving the equation !
pk −1 = 0

modulo higher and higher powers of q. Assuming we know !i = !k mod qi already,
write !2i = !i + aqi , where a < qi consists of the next i base-q digits of !k . Solving
the modular equation !

p
2i mod q2i = 1 gives
a = (1 − !

pi mod q2i
qi)!ip−1 mod qi ,

where the fraction divided by qi is exact integer division, and the inverse p−1 is modulo

qi .
�eorem2.4. Provided! is a p-PRUmodulo q, Algorithm 1 returns a p-PRU!k modulo

qk . It has bit complexity Õ(k log2 q).
Proof. �e loop runs O(log k) times. �e dominating step is !

pi mod q2i at the last

phase of the Newton iteration with 2i ≥ k. Because p < q, this gives the stated bit

complexity.

8

Algorithm 1: LiftPRU

Input: Primes p, q with p | (q − 1), a p-PRU ! ∈ Fq and an integer k ≥ 1
Output: !k , a p-PRU modulo qk

1 i ← 1 ; !1 ← !

2 while i < k do

3 a ← !
pi mod q2i

4 a′ ← (1 − a)/qi using exact integer division

5 a′′ ← a′!ip−1 mod qi
6 !2i ← !i + a′′qi
7 i ← 2i
8 return !i mod qk

3 Univariate Interpolation

In this section, we present aMonte Carlo algorithm to interpolate a sparse polynomial

given through an MBB. Our algorithm builds on classical techniques but with the

originality to use non-integral domains and not only finite fields. We first recall some

of these techniques before describing the algorithm.

Given an MBB for f , we need to compute the exponents of f mod xp − 1. We note

that evaluating f at powers of a p-th primitive root of unity (p-PRU) ! is equivalent

to evaluating f mod xp − 1 at the same points. As in the classical Ben-Or–Tiwari

algorithm, given the sequence f (1), f (!), . . . , f (!2T−1), we can compute a degree-

≤ T annihilator polynomial Λ in Õ(T) operations in Fq using fast Berlekamp-Massey

algorithm [50, 13]. �e roots of Λ are the !e where e < p belongs to the support off mod xp − 1. In our case, p is small and these exponents can be retrieved in Õ(p)
arithmetic operations using Bluestein’s chirp transform [9] to evaluate Λ at 1, !, . . . ,!p−1. Altogether, this gives the following.
Fact 3.1. Given the evaluations of a T -sparse polynomial f ∈ Fq[x] at 1, !, . . . , !2T−1
where ! ∈ Fq is a p-PRU, one can compute the exponents of f mod xp − 1 in Õ(T + p)
operations in Fq or Õ((T + p) log q) bit operations.

During the algorithm, we need both to evaluate a sparse polynomial on a geomet-

ric progression and to reconstruct a sparse polynomial from these evaluations and its

exponents. If f = ∑t−1i=0 cixei ∈ Fq[x] is a sparse polynomial, then for any !
⎛⎜⎜⎜⎜⎜
⎝

1 ⋯ 1!e0 ⋯ !et−1
!2e0 ⋯ !2et−1
⋮ ⋮

!(t−1)e0 ⋯ !(t−1)et−1

⎞
⎟
⎟
⎟
⎟
⎟⎠

⎛⎜⎜⎜⎜⎜
⎝

c0c1c1
⋮ct−1

⎞
⎟
⎟
⎟
⎟
⎟⎠
=
⎛⎜⎜⎜⎜⎜
⎝

f (1)f (!)f (!2)
⋮f (!t−1)

⎞
⎟
⎟
⎟
⎟
⎟⎠
.

�is shows that the evaluation is amatrix-vector product and the interpolation the

resolution of a linear system, where the matrix is a transposed Vandermonde matrix.

9

�ese problems admit algorithms of complexity Õ(t) over any finite field through
connections to dense polynomial arithmetic in degree t [38, 11] Actually, these algo-
rithmswork formore general rings. It is trivial for thematrix-vector product that does

not require any inversion in the ring. �e resolution of the linear system requires the

matrix to be invertible, that is !ei − !ej must be a unit for i ≠ j . �is condition holds

when ! is a p-th principal root of unity, that is when !p = 1 and !i − 1 is not a zero
divisior for 0 < i < p. �e following fact summarizes these known results.

Fact 3.2. Let R be a ring, f = ∑t−1i=0 cixei be a sparse polynomial over R, and! a principalp-th root of unity. �en

• evaluating f mod xp − 1 at 1, !, . . . , !t−1, and
• retrieving the coefficients of f mod xp − 1 from its set of exponents and f (1), . . . ,f (!t−1)

can be done in Õ(t log p) operations in R.
We shall use these results over two rings. First, using Fact 3.1 we perform the

evaluation on powers of a p-PRU in Fq to recover the set of exponents modulo p.
From these exponents, we rely on Fact 3.2 with a p-PRU !k ∈ ℤ/qkℤ to recover the

polynomial modulo xp −1 over the larger ringℤ/qkℤ, using this time both evaluation

and interpolation. Note that k is carefully chosen so that it allows to recover all the

integer coefficients of f mod (xp−1). �e correctness follows directly from Lemma 2.3

that shows that a p-PRU in ℤ/qkℤ is also principal.

Whilewe completely know f mod xp−1, some terms of this polynomial come from

collisions: �at is, two (or more) distinct monomials cixei and cjxej from f may collide

modulo p and create the term (ci +cj)xei mod p in f mod xp −1. We shall overcome this

difficulty by a random choice of p that guarantees that with good probability, not too

many terms collide. Other terms of f mod xp − 1 are collision-free, that is of the formcixei mod p . To recover the exponent ei from these terms, we embed the exponents

into its coefficients.

�e idea, due to Arnold and Roche [6], is to compute the sparse representations

of both f and f ((1 + qk)x), modulo ⟨xp − 1, q2k⟩. Since (1 + qk)ei = 1 + eiqk mod q2k , a
collision-free term cixei is mapped to cixei mod p in f mod ⟨xp −1, q2k⟩ and c′i xei mod p
in f ((1 + qk)x) mod ⟨xp − 1, q2k⟩ where c′i = ci(1 + eiqk). �is allows us to recover

both ci and ei = (c′i /ci − 1)/qk as soon as k is large enough. More precisely, we need ci
to be a unit and representable in ℤ/q2kℤ, and (1 + eiqk) ≤ q2k so that the division byqk remains over the integers. �at is, q must be chosen not to divide any coefficient

and k > max(12 logq 2H, logq D).
We note that there is no a priori way to distinguish between collision-free terms

and colliding terms. For some colliding terms, the recovered value of ei is clearly
wrong since it is not integral or too large, but one cannot avoid recovering unwanted

terms in general. �is is again taken care of through the choice of p, as in [27, 30], to

avoid reconstructing too many erroneous terms.

Fact 3.3. Given the sparse representation of f (x) mod ⟨xp−1, q2k⟩ and f ((1+qk)x) mod⟨xp − 1, q2k⟩ such that q does not divide any coefficient of f mod xp − 1 and k ≥

10

max(12 logq 2H, logq D), one can compute a set of tentative terms of f , containing all

the collision-free terms modulo xp − 1, in O(T) arithmetic operations.

Interpolate mbb given in Algorithm 2 follows the idea from the three previous

facts to reach a so�ly-linear time complexity.

Algorithm 2: Interpolate mbb

Input :a polynomial f ∈ ℤ[x] represented by an MBB; bounds D, T and H
on respectively the degree, the sparsity and the height of f

Output : the sparse representation of f ∈ ℤ[x] with probability ≥ 23 ;
otherwise any T -sparse polynomial or fail

1 f ∗ ← 0 ; � ← 1/(9 ⌈log T ⌉)
2 � ← max(258�2 , 5� (T − 1) lnD, 5

√
48� T lnH)

/* Heuristically 258�2 can be replaced by 1, see

discussion after Fact 2.2. */

3 while T ≥ 1 do

4 Compute a triple (p, q, !) such that ! ∈ Fq is a p-PRU where p and q are

prime numbers and � < p < 2� using Fact 2.2

5 Evaluate (f − f ∗) at 1, !, . . . , !2T−1 and compute the exponents of

(f − f ∗) mod ⟨xp − 1, q⟩ using Fact 3.1

6 Compute a p-PRU !k ∈ ℤ/q2kℤ where k = ⌈max(12 logq 2H, logq D)⌉
using �eorem 2.4

7 Evaluate (f − f ∗) at 1, !k , . . . , !T−1k and compute the sparse representation

of (f − f ∗) mod ⟨xp − 1, q2k⟩ using Fact 3.2

8 Perform the same step with shi�ed evaluation points to compute the

sparse representation of (f − f ∗)((1 + qk)x) mod ⟨xp − 1, q2k⟩
9 Compute tentative terms of (f − f ∗) using Fact 3.3

10 Add the tentative terms to f ∗ ; T ← ⌊T /2⌋
11 return f ∗

�eorem 3.4. Algorithm Interpolate mbb works as specified. It requires O(T)
probes to the MBB, Õ(T logDH) operations on integers of size O(log(T logDH)), andÕ(T log logDH) operations on integers of size O(logDH). If the input is an SLP of

length L and if H is also a bound on the absolute values of the constants of the SLP,

the bit complexity of the algorithm is Õ(LT (logD + logH)).

For any � ≥ 1, O(�) repetitions of the algorithm improve the success probability to

1 − 1
2� .

Correctness. �e algorithm has three sources of failure at each iteration. First, the

algorithm may fail to produce a triple (p, q, !) satisfying the conditions. By Fact 2.2,

this probability is at most �. Second, the number of collisions of (f − f ∗) mod xp − 1

may be too large. Fact 2.1 and our choice of � guarantee that with probability at least

1 − �, the number of collisions is at most 1
3 t where t ≤ T is the true sparsity of (f − f ∗).
11

�ird, some coefficients of (f − f ∗) mod xp − 1may vanish modulo q. Fact 2.2 and our
choice of � guarantee that this probability is at most �. �erefore, each iteration fails

with probability at most 3� = 1/3 ⌈log T ⌉, whence the algorithm fails with probability

at most 1
3 .

We now prove that, assuming that none of these possible failures happens, f ∗ = f
at the end of the algorithm. Fact 3.1 proves that Line 5 correctly computes the expo-

nents of (f − f ∗) mod xp − 1. Fact 3.2 proves that Lines 7 and 8 correctly compute the

sparse representations of (f − f ∗) mod ⟨xp − 1, q2k⟩ and its shi�ed counterpart. �ere-

fore, since k is large enough, Fact 3.3 ensures that Line 9 computes all the collision-

free terms of (f − f ∗) plus some erroneous terms. By assumption, the number of colli-

sions of (f − f ∗) mod xp − 1 is at most 1
3 t . Since collisions involve at least two terms,

the number of colliding terms in (f − f ∗) mod xp − 1 is at most t
6 . �erefore, the ten-

tative terms at Line 9 contain at least 2
3 t correct terms and at most 1

6 t incorrect terms.

In other words, the number of terms in (f − f ∗) at the end of the iteration is at mostt − 2
3 t + 1

6 t = 1
2 t . A�er logT iterations, f = f ∗.

To improve the success probability, we repeat the algorithm 48�/ log e times and

return the majority polynomial. Let C be the number of repetitions that produce the

correct polynomial. Since each repetition is correct with probability at least 2
3 , E[C] =

32�
log e . �erefore, by Chernoff bound, the probability that the correct polynomial is

produced by less than half of the repetitions is Pr[C ≤
24�
log e] = Pr[C ≤ (1 − 1

4)E[C]] ≤
exp(−(14)

2E[C]/2) = 1
2� .

Complexity. Each iteration require 3T probes to the MBB (with the current value ofT). Hence the total number of probes is < 6T . �e evaluations of f ∗ at powers of !
and !k require Õ(t log p) = Õ(T log logDH) operations in Fq or ℤ/q2kℤ by Fact 3.2.

Apart from the evaluations, Line 5 requires Õ(p) = Õ(T logDH) operations in Fq
using Fact 3.1 and Lines 7 and 8 require Õ(T log p) = Õ(T log logDH) operations in

ℤ/q2kℤ using Fact 3.2.

�e bit cost of each arithmetic operation is Õ(log q) = Õ(log(T logD) + log logH))
for those in Fq , and Õ(k log q) = Õ(logD + logH) for those in ℤ/q2kℤ. If the MBB is

implemented with an SLP, the overall bit complexity, dominated by the evaluations of

the SLP, is Õ(LT (logD + logH)). Note that computing p, q, ! and !k is cheap, sincep, q are rather small.

Our algorithm is randomized of Monte Carlo type since it may return an incorrect

answer, in addition to fail. To get a Las Vegas variant, the algorithm should only be al-

lowed to fail. For, we need a verification procedure that itself is a Las Vegas algorithm.

�e problem to solve is then: Given an MBB for a polynomial f and a sparse polyno-

mial f ∗, determine whether f = f ∗. Bläser et al. [8] provide deterministic algorithms

for this task but with polynomial, and not quasi-linear complexity. Another approach

relies on the same tools as Ben-Or–Tiwari algorithm. If both f and f ∗ have sparsity
at most T and degree at most D, and ! is an element of order at least D, then f − f ∗
vanishes on 1, !, . . . , !2T−1 if and only if f = f ∗ (cf. for instance [3]). It is deterministic

as long as an element of large order can be computed deterministically.

12

For a polynomial over ℤ, we must evaluate f and f ∗ modulo some integer m to

avoid expression swell. As before, we can produce a triple (p, q, !) such that ! is ap-PRU in Fq. Since ! should have order ≥ D, we take a random prime p ≥ D, andq ≥ H so that the coefficients do not vanish modulo q. �is can be done in time

polylog(D + H). �en, evaluating f ∗ on 1, !, . . . , !2T−1 requires 2T probes to the MBB

for f , and O(T logD) operations in Fq for f ∗. If f is represented by an SLP of lengthL, the bit complexity becomes Õ(LT log(D + H) + T log(D) log(D + H)). Note that this

complexity is quadratic in logD.
Altogether, we obtain a Las Vegas algorithm using O(T) probes, O(T logD) opera-

tions in Fq and polylog(D+H) bit operations, with a constant probability of failure. If f
is represented by an SLP, the bit complexity is Õ(LT log(D + H) + T log(D) log(D + H)).

Using repetition, we obtain an algorithm that never fails, with the same expected com-

plexity.

It is an intriguing open question whether a quasi-linear Las Vegas algorithm exists.

In particular, can we verify an equality f = f ∗ where f is given by an SLP and f ∗ is
sparse, in quasi-linear time?

4 Exact division

Given two sparse polynomials f and g such that g divides f , the problem of computing

f /g can be seen as a sparse interpolation of a specific SLP that has a single division.

As shown in Giorgi et al. [19] some sparse interpolation algorithms can be carefully

adapted to produce division algorithms if there is no remainder. As the interpolation

algorithms they rely on, these division algorithms are not quasi-linear in the input

plus the output bit-size. In this section we show how to adapt of our quasi-linear

interpolation algorithm to derive fast sparse polynomial exact division. As a result,

we obtain the first quasi-linear exact division algorithm for sparse polynomial over

the integers.

�ere are three main difficulties in adapting our interpolation algorithm. First, no

bound is given for #(f /g) except the potentially exponential degree one. Second, we

do not know the height of f /g while the interpolation algorithm depends on it. Last,

to evaluate the quotient f /g at a root of unity !, we compute both f (!) and g(!) and

perform the division. Hence, ! must not be a root of g.

To overcome the first difficulty, we use the same method as Giorgi et al. [18, 19].

We guess a sparsity bound for the quotient, interpolate a candidate quotient assuming

the bound, and check its correctness a posteriori with a probabilistic verification. In

case of failure we double the sparsity bound and start again.

Besides verifying products of sparse polynomials, we will also need in our algo-

rithm an efficient verification of sparse polynomial product modulo a binomial. Such

algorithms have been recently proposed by some of the authors in [20], and we recall

the useful results below.

Fact 4.1 (Giorgi et al. [20]). �ere exists a Monte Carlo algorithm that, given three t-

sparse degree-D polynomials f , g, ℎ ∈ ℤ[x] of height ≤ H , and � ≥ 1, verify if f = gℎ.

�e algorithm can give a wrong answer with probability at most 1
2� when f ≠ gℎ. Its bit

13

complexity is Õ(t(logD + logH + �) + �4).
�ere exists a Monte Carlo algorithm that similarly tests if f = gℎ mod xD − 1, with

the same error probability and bit complexity Õ(t� logD + t logH + �4 log3 D).
A similar guess and check method can be used to determine an appropriate bound

for the height of the quotient: Start with a small bound and increase it when nec-

essary. Indeed, Line 7 of algorithm Interpolate mbb correctly computes the poly-

nomial modulo xp − 1 as soon as q2k is greater than its height. �ere, verifying the

sparse product modulo xp−1 allows us to determine if the bound on the height is large

enough. �is method is necessary as the bound we have for the height is exponential.

Fact 4.2 (Giorgi et al. [19]). Let f , g, q ∈ ℤ[x] be three sparse polynomials such thatf = gq. �en the height Hq of q satisfies Hq ≤ (Hg + 1)⌈
t−1
2 ⌉Hf where t = #q and Hf , Hg

are the respective heights of f and g.

For the last difficulty, we want g(!) ≠ 0 for any pth primitive root of unity ! in Fq .

�at is, we want g to be coprime with the pth cyclotomic polynomial Φp = ∑p−1
i=0 x i in

Fq[x]. Inℤ[x], if p is a prime larger than #g such that g mod xp −1 ≠ 0, then g and Φp

are coprime. If p is taken at random and large enough, namely p = Ω(#g log(deg g)),

Fact 2.1 ensures that g mod xp − 1 ≠ 0 with good probability. �en, g and Φp are

coprime in Fq[x] if and only if q does not divide their resultant, an integer bounded

by (#g ⋅ Hg)
p−1 where Hg is the height of g. We can therefore choose two primes p

and q so that g and Φp are coprime in Fq[x] with good probability, using Fact 2.2.

We first describe an algorithm to compute an exact quotient with a given bound

on its sparsity but no precise bound on its height.

�e algorithm can return an erroneous polynomial by adding false terms. How-

ever this polynomial cannot be much larger than the correct polynomial.

Lemma 4.3. Algorithm Bounded sparsity division always returns a polynomial with

at most 2T terms and height at most T ⋅ tH where t and H are the actual sparsity and

height of the quotient we intend to compute.

Proof. For the sparsity, Line 6 uses a Vandermonde system to interpolate a sparse poly-

nomial of sparsity at most T and cannot compute more than T monomials. �erefore,

as T is divided by 2 every time we add new terms to ℎ, the result has at most 2T terms.

For the height, only erroneous terms can have coefficients larger thanH . However

those terms necessarily come from collisions. Hence at each iteration, the sum of the

erroneous terms is at most equal to the sum of the terms of f /g − ℎ. Initially, ℎ = 0

and the sum is bounded by tH . At each iteration, erroneous terms can at most double

the sum. A�er ⌈logT ⌉ iteration, the sum is bounded by T ⋅ tH and so is the height of

ℎ.

�eorem 4.4. Algorithm Bounded sparsity division works as specified. Its bit com-

plexity is Õ((T + #f + #g)(logD + logH)) where D = deg(f) and H bounds the height of

f , g and f /g.

For any � ≥ 1, O(�) repetitions of the algorithm improve the success probability to

1 − 1
2� .

14

Algorithm 3: Bounded sparsity division

Input : two sparse polynomials f , g ∈ ℤ[x] such that f has degree D and g

divides f ; an integer T

Output : f /g with probability at least 2
3 , if T ≥ #(f /g)

1 Hmax ← (1 + Hg)
⌈ 12 (T−1)⌉ ⋅ Hf where Hf , Hg are the heights of f and g

2 � ← 1
15 (⌈logT ⌉ + ⌈log logHmax ⌉); C ← Hmax ⋅ #gHg

3 � ← max(258

�2
, 5� (max(T , #g) − 1) lnD, 4

√
96
� ln C)

4 ℎ ← 0; H0 ← Hg + 1

5 while T ≥ 1 do

6 Compute ℎp = (f /g − ℎ) mod ⟨xp − 1, q2k⟩ as in Interpolate mbb, where� < p < 2�, q ≤ �6 and k = ⌈max(12 logq(2H0Hf), logq D)⌉
7 Test if f mod xp − 1 = g × (ℎp + ℎ) mod xp − 1, with error probability ≤ 1

� ,

using Fact 4.1

8 if the test returns true then

9 Compute tentative terms of f /g − ℎ

10 Add the terms of height ≤ Hmax to ℎ

11 T ← ⌊T /2⌋
12 else H0 ← H 2

0

13 return r

Correctness. �e algorithm may fail for five distinct reasons. �e first three reasons

are the same as in Interpolate mbb: It may fail to compute the triple (p, q, !) required

to compute ℎp ; �e prime p may cause too many collisions in f /g − ℎ mod (xp − 1);

some terms of f /g − ℎ mod (xp − 1) may vanish modulo q. �e two other sources of

failure are specific to this algorithm: One of the powers of ! or !k may be a root of

g; �e test at Line 7 may fail to detect an error.

�e choice of � ≥ 4
√

96� ln C implies � ≥ 5
√

48� ln(C2�). Facts 2.1 and 2.2 ensure that,
with probability at least 1 − 3�, the algorithm successfully produces a triple (p, q, !)
such that p does not cause too many collisions and q does not divide an unknown

integer of value at most Cp . If p does not cause too many collisions, g mod xp − 1 ≠ 0.

Since #g < p, g and Φp = ∑p−1i=0 x i are coprime in ℤ[x]. �e resultant of g and Φp is

at most (#gHg)
p . Moreover, since Hmax bounds the height of both ℎ and f /g using

Fact 4.2, and since p > T , the height of (f /g − ℎ) mod xp − 1 is at most H p
max . Hence

with probability at least 1 − �, q does not divide the resultant of g and Φp nor any

coefficient of (f /g − ℎ) mod xp − 1. In particular, g and Φp remain coprime in Fq and
so in ℤ/q2kℤ since p-PRU in ℤ/q2k are also p-PRU in Fq .

Altogether, the four following properties hold with probability at least 1 − 4�: �e

algorithm succeeds in producing two primes p, q and ! ∈ Fq ; g and Φp are coprime

in Fq[x] and in ℤ/q2kℤ; �ere are few collisions in f /g − ℎmodulo xp − 1; q does not

divide any of the coefficients of (f /g − ℎ) mod xp − 1.

If all these conditions hold, we can use Facts 3.1 and 3.2 to compute ℎp . �e choice

15

of k implies that q2k is larger than twice the height of f /g − ℎ as soon as H0 is larger

than the (unknown) height H of f /g. In that case, the equality ℎp = f /g − ℎ holds in

ℤ[x] and the test at Line 7 returns true. Computing tentative terms and updating ℎ
can then be done exactly as in Interpolate mbb.

If H0 < H , there are two possibilities. Either ℎp ≠ f /g − ℎ mod xp − 1 in ℤ[x].
With probability at least 1 − �, the test detects that and H0 is squared. Or the equality

indeed holds. �is means that the terms of f /g − ℎ that have a larger height collide

modulo xp − 1. Hence, the collision-free terms are correctly computed.

Consequently, the loop works correctly with probability 1−5�: Either the number

of terms that remain to be computed is halved, or the height bound is squared if it

was too small. At most ⌈log logH ⌉ ≤ ⌈log logHmax ⌉ iterations where the test returns
false are needed to get to a correct bound H0 ≥ H , and at most ⌈logT ⌉ iterations
where the test returns true are needed to to compute all the coefficients. �erefore the

algorithm performs atmost (⌈logT ⌉+⌈log logHmax ⌉) iterations. Its success probability
is at least 1 − 5�(⌈logT ⌉ + ⌈log logHmax ⌉) ≥ 2

3 . To improve the success probability,

we repeat the algorithm 48�/ log e times and return the majority polynomial, as in

Interpolate mbb.

Complexity. Since the number of iterations is logarithmic in the input and output

size, the complexity of the algorithm is given by the complexity of one iteration. As

in Interpolate mbb, the algorithm requires Õ(T + p) operations in Fq and Õ(T log p)
operations ℤ/q2kℤ for the evaluations of ℎ, computing the exponents modulo p and

then retrieving the coefficients and the entire exponents. �e evaluations of f /g re-

quire Õ((T + #f + #g) log p) operations in both domains by Fact 3.2 plus O(#f + #g)
operations in ℤ to reduce the initial coefficients and degree. As the height of an erro-

neous answer is at most T 2H by Lemma 4.3, the maximal value of q2k is O(T 2H + D).
�erefore arithmetic operations in ℤ/q2kℤ have bit cost Õ(logH + logD). Moreover

the choice of � ensures that p = Õ((T + #g)(logD + logH)). As q is polynomial in p

this leads to a total bit complexity of Õ((T + #f + #g)(logD + logH)).

Ourmain division algorithmusesBounded sparsity divisionwith growing spar-

sity bound until a result is found.

Algorithm 4: Exact division

Input : f , g ∈ ℤ[x], such that g divides f , � ≥ 1

Output : f /g with probability at least 1 − 1
2�+1

1 T ← 1

2 while true do

3 T ← 2T

4 Compute O(�) candidates ℎ for f /g using Algorithm 3 with sparsity

bound T and keep the most frequent one

5 Test if f = gℎ using the algorithm from Fact 4.1, se�ing its failure

probability to 1
2�+1T

6 If the test returns true, return ℎ

16

�eorem 4.5. Let f , g be sparse polynomials in ℤ[x] such that g divides f , H be a

bound on the height of f , g and f /g, and � ≥ 1. With probability at least 1 − 1
2� , Algo-

rithm Exact division returns f /g in Õ((#(f /g) + #f + #g)(logD + logH + �) + �4) bit

operations.

Proof. �e probability 1 − 1
2� concerns both the correctness and the complexity of the

algorithm. We prove that each of them holds independently with probability ≥ 1− 1
2�+1

.

�e algorithm is incorrect when f ≠ gℎ. �is happens if at some iteration, the can-

didate quotient is incorrect but the verification algorithm fails to detect it. Since each

verification fails with probability at most 1
2�+1T and values of T range over powers of

two, the algorithm is correct with probability at least 1 − 1
2�+1

.

For the complexity we first need to bound the number of iterations. Since the val-

ues of T are powers of two, the first value ≥ #(f /g) is at most 2#(f /g). As soon as T

reaches this value, the return value is actually f /g with probability at least 1 − 1
2�+1

ac-

cording to�eorem 4.4when the number of candidates is ≥ 48(�+1)/ log e. In that case,

the test which is only one-sided error, succeeds and the algorithm returns ℎ = f /g.

�at is, with probability at least 1 − 1
2�+1

, the number of iterations is O(log #(f /g)).

Even with false sparsity, Lemma 4.3 ensures that the size of the candidate quotients

is at most quasi-linear in the size of the actual quotient. �erefore we can apply

�eorem 4.4 to obtain the claimed complexity with probability at least 1 − 1
2�+1

.

Acknowledgements

We are grateful to the reviewers for their insightful comments.

References

[1] Amir Akbary and Kyle Hambrook. 2015. A variant of the Bombieri-Vinogradov

theorem with explicit constants and applications. Math. Comp. 84, 294 (2015),

1901–1932. doi: 10.1090/S0025-5718-2014-02919-0. Referenced on page 7.

[2] Noga Alon and Yishay Mansour. 1995. epsilon-discrepancy sets and their appli-

cation for interpolation of sparse polynomials. Inform. Process. Le�. 54, 6 (1995),

337–342. doi: 10.1016/0020-0190(95)00032-8. Referenced on page 2.

[3] Andrew Arnold. 2016. Sparse Polynomial Interpolation and Testing. Ph. D. Dis-

sertation. University of Waterloo. url: h�p://hdl.handle.net/10012/10307. Ref-

erenced on pages 3, 7 and 12.

[4] Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. 2014. Sparse interpo-

lation over finite fields via low-order roots of unity. In Proceedings of the 39th

International Symposium on Symbolic and Algebraic Computation (ISSAC’14). As-

sociation for Computing Machinery, 27–34. doi: 10.1145/2608628.2608671. Ref-

erenced on pages 3 and 7.

17

https://doi.org/10.1090/S0025-5718-2014-02919-0
https://doi.org/10.1016/0020-0190(95)00032-8
http://hdl.handle.net/10012/10307
https://doi.org/10.1145/2608628.2608671

[5] Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. 2015. Faster sparse mul-

tivariate polynomial interpolation of straight-line programs. Journal of Symbolic

Computation (2015). doi: 10.1016/j.jsc.2015.11.005. Referenced on page 3.

[6] Andrew Arnold and Daniel S. Roche. 2015. Output-Sensitive Algorithms for

Sumset and Sparse Polynomial Multiplication. In Proceedings of the 2015 ACM on

International Symposium on Symbolic and Algebraic Computation (Bath, United

Kingdom) (ISSAC ’15). ACM, 29–36. doi: 10.1145/2755996.2756653. Referenced

on pages 3, 5, 7 and 10.

[7] Michael Ben-Or and Prasoon Tiwari. 1988. A Deterministic Algorithm for Sparse

Multivariate Polynomial Interpolation. In Proceedings of the Twentieth Annual

ACM Symposium on �eory of Computing (Chicago, Illinois, USA) (STOC ’88).

Association for Computing Machinery, 301–309. doi: 10.1145/62212.62241. Ref-

erenced on pages 2 and 5.

[8] Markus Bläser, Moritz Hardt, Richard J. Lipton, and Nisheeth K. Vishnoi. 2009.

Deterministically Testing Sparse Polynomial Identities of UnboundedDegree. In-

form. Process. Le�. 109, 3 (2009), 187–192. doi: 10.1016/j.ipl.2008.09.029. Refer-

enced on page 12.

[9] Leo I. Bluestein. 1970. A Linear Filtering Approach to the Computation of Dis-

crete Fourier Transform. IEEE Transactions on Audio and Electroacoustics 18, 4

(1970), 451–455. doi: 10.1109/TAU.1970.1162132. Referenced on page 9.

[10] Markus Bläser and Gorav Jindal. 2014. A new deterministic algorithm for sparse

multivariate polynomial interpolation. In Proceedings of the 39th International

Symposium on Symbolic and Algebraic Computation. Association for Computing

Machinery, New York, NY, USA. doi: 10.1145/2608628.2608648. Referenced on

page 2.

[11] Alin Bostan, Grégoire Lecerf, and Éric Schost. 2003. Tellegen’s Principle into

Practice. In Proceedings of the 2003 International Symposium on Symbolic and

Algebraic Computation (Philadelphia, PA, USA) (ISSAC ’03). ACM, 37–44. doi:

10.1145/860854.860870. Referenced on page 10.

[12] Annie Cuyt and Wen-shin Lee. 2011. Sparse interpolation of multivariate ra-

tional functions. �eoretical Computer Science 412, 16 (2011), 1445–1456. doi:

10.1016/j.tcs.2010.11.050. Referenced on page 2.

[13] Jean-Louis Dornste�er. 1987. On the Equivalence Between Berlekamp’s and Eu-

clid’s Algorithms. IEEE Transactions on Information �eory 33, 3 (1987), 428–431.

doi: 10.1109/TIT.1987.1057299. Referenced on page 9.

[14] Sanchit Garg and Éric Schost. 2009. Interpolation of polynomials given by

straight-line programs. �eoretical Computer Science 410, 27-29 (2009), 2659–

2662. doi: 10.1016/j.tcs.2009.03.030. Referenced on pages 2 and 5.

18

https://doi.org/10.1016/j.jsc.2015.11.005
https://doi.org/10.1145/2755996.2756653
https://doi.org/10.1145/62212.62241
https://doi.org/10.1016/j.ipl.2008.09.029
https://doi.org/10.1109/TAU.1970.1162132
https://doi.org/10.1145/2608628.2608648
https://doi.org/10.1145/860854.860870
https://doi.org/10.1016/j.tcs.2010.11.050
https://doi.org/10.1109/TIT.1987.1057299
https://doi.org/10.1016/j.tcs.2009.03.030

[15] Mickaël Gastineau and Jacques Laskar. 2015. Parallel sparse multivariate poly-

nomial division. In Proceedings of the 2015 International Workshop on Parallel

Symbolic Computation (PASCO ’15). Association for Computing Machinery, New

York, NY, USA, 25–33. doi: 10.1145/2790282.2790285. Referenced on page 3.

[16] Mark Giesbrecht and Daniel S. Roche. 2011. Diversification improves interpo-

lation. In Proceedings of the 36th international symposium on Symbolic and alge-

braic computation - ISSAC ’11. ACM Press, San Jose, California, USA, 123. doi:

10.1145/1993886.1993909. Referenced on page 2.

[17] Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, and Daniel S. Roche. 2022.

Random primes in arithmetic progressions. arXiv: 2202.05955. Referenced on

page 7.

[18] Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray. 2020. Essentially

optimal sparse polynomial multiplication. In Proceedings of the 45th Interna-

tional Symposium on Symbolic and Algebraic Computation (Kalamata, Greece)

(ISSAC’20). 202–209. doi: 10.1145/3373207.3404026. Referenced on pages 4, 6

and 13.

[19] Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray. 2021. On exact divi-

sion and divisibility testing for sparse polynomials. In Proceedings of the 2021

on International Symposium on Symbolic and Algebraic Computation (ISSAC’21).

163–170. doi: 10.1145/3452143.3465539. Referenced on pages 4, 13 and 14.

[20] Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray. 2022. Polynomial mod-

ular product verification and its implications. Journal of Symbolic Computation

(2022), to appear. Referenced on pages 4, 6 and 13.

[21] Dima Yu Grigoriev, Marek Karpinski, and Michael F. Singer. 1990. Fast paral-

lel algorithms for sparse multivariate polynomial interpolation over finite fields.

SIAM J. Comput. 19, 6 (1990), 1059–1063. doi: 10.1137/0219073. Referenced on

page 2.

[22] Joris van der Hoeven. 2020. Probably faster multiplication of sparse polynomials.

(2020). hal: hal-02473830. Referenced on page 3.

[23] Joris van der Hoeven and Grégoire Lecerf. 2015. Sparse Polynomial Interpolation

in Practice. ACM Communications in Computer Algebra 48, 3/4 (2015), 187–191.

doi: 10.1145/2733693.2733721. Referenced on pages 2, 3 and 5.

[24] Joris van der Hoeven and Grégoire Lecerf. 2019. Sparse polynomial interpolation.

Exploring fast heuristic algorithms over finite fields. (2019). hal: hal-02382117.

Referenced on page 3.

[25] Joris van der Hoeven and Grégoire Lecerf. 2021. On sparse interpolation of ratio-

nal functions and gcds. ACM Communications in Computer Algebra 55, 1 (2021),

1–12. doi: 10.1145/3466895.3466896. Referenced on page 2.

19

https://doi.org/10.1145/2790282.2790285
https://doi.org/10.1145/1993886.1993909
https://arxiv.org/abs/2202.05955
https://doi.org/10.1145/3373207.3404026
https://doi.org/10.1145/3452143.3465539
https://doi.org/10.1137/0219073
https://hal.archives-ouvertes.fr/hal-02473830
https://doi.org/10.1145/2733693.2733721
https://hal.archives-ouvertes.fr/hal-02382117
https://doi.org/10.1145/3466895.3466896

[26] Ming-Deh A. Huang and Ashwin J. Rao. 1999. Interpolation of Sparse Multivari-

ate Polynomials over Large Finite Fields with Applications. Journal of Algorithms

33, 2 (1999), 204–228. doi: 10.1006/jagm.1999.1045. Referenced on page 2.

[27] Qiao-Long Huang. 2019. Sparse Polynomial Interpolation over Fields with Large

or Zero Characteristic. In Proceedings of the 2019 on International Symposium

on Symbolic and Algebraic Computation (ISSAC ’19). ACM Press, Beijing, China,

219–226. doi: 10.1145/3326229.3326250. Referenced on pages 3, 5 and 10.

[28] Qiao-Long Huang. 2020. Sparse Polynomial Interpolation Based on Derivative.

(2020). arXiv: 2002.03708. Referenced on pages 3 and 5.

[29] Qiao-Long Huang. 2021. Sparse polynomial interpolation based on diversifica-

tion. Science China Mathematics (2021). doi: 10.1007/s11425-020-1791-5. Refer-

enced on pages 2 and 5.

[30] Qiao-Long Huang and Xiao-Shan Gao. 2019. Revisit Sparse Polynomial In-

terpolation Based on Randomized Kronecker Substitution. In Computer Alge-

bra in Scientific Computing. Springer International Publishing, 215–235. doi:

10.1007/978-3-030-26831-2 15. Referenced on pages 2 and 10.

[31] Qiao-Long Huang and Xiao-Shan Gao. 2020. Faster interpolation algorithms for

sparsemultivariate polynomials given by straight-line programs. Journal of Sym-

bolic Computation 101 (2020), 367–386. doi: 10.1016/j.jsc.2019.10.005. Referenced

on pages 3, 5 and 7.

[32] Seyed Mohammad Mahdi Javadi and Michael Monagan. 2010. Parallel sparse

polynomial interpolation over finite fields. In Proceedings of the 4th Inter-

national Workshop on Parallel and Symbolic Computation (PASCO ’10). As-

sociation for Computing Machinery, New York, NY, USA, 160–168. doi:

10.1145/1837210.1837233. Referenced on page 2.

[33] Stephen C. Johnson. 1974. Sparse polynomial arithmetic. SIGSAM Bulletin 8, 3

(1974), 63–71. doi: 10.1145/1086837.1086847. Referenced on page 3.

[34] Erich L. Kaltofen and Wen-shin Lee. 2003. Early termination in sparse interpo-

lation algorithms. Journal of Symbolic Computation 36, 3-4 (2003), 365–400. doi:

10.1016/S0747-7171(03)00088-9. Referenced on page 2.

[35] Erich L. Kaltofen. 2010. Fi�een years a�er DSC and WLSS2: What parallel com-

putations I do today [invited lecture at PASCO 2010]. In Proceedings of the 4th

International Workshop on Parallel and Symbolic Computation (Grenoble, France)

(PASCO ’10). ACM, 10–17. doi: 10.1145/1837210.1837213. Referenced on page 4.

[36] Erich L. Kaltofen, Yagati N. Lakshman, and John-Michael Wiley. 1990. Modular

rational sparse multivariate polynomial interpolation. In Proceedings of the in-

ternational symposium on Symbolic and algebraic computation (ISSAC ’90). ACM

Press, Tokyo, Japan, 135–139. doi: 10.1145/96877.96912. Referenced on page 3.

20

https://doi.org/10.1006/jagm.1999.1045
https://doi.org/10.1145/3326229.3326250
https://arxiv.org/abs/2002.03708
https://doi.org/10.1007/s11425-020-1791-5
https://doi.org/10.1007/978-3-030-26831-2_15
https://doi.org/10.1016/j.jsc.2019.10.005
https://doi.org/10.1145/1837210.1837233
https://doi.org/10.1145/1086837.1086847
https://doi.org/10.1016/S0747-7171(03)00088-9
https://doi.org/10.1145/1837210.1837213
https://doi.org/10.1145/96877.96912

[37] Erich L. Kaltofen and Michael Nehring. 2011. Supersparse black box rational

function interpolation. In Proceedings of the 36th international symposium on

Symbolic and algebraic computation. Association for ComputingMachinery, New

York, NY, USA, 177–186. doi: 10.1145/1993886.1993916. Referenced on page 2.

[38] Erich L. Kaltofen and Lakshman Yagati. 1988. Improved Sparse Multivariate

Polynomial Interpolation Algorithms. In Symbolic and Algebraic Computation.

Springer Berlin Heidelberg, 467–474. doi: 10.1007/3-540-51084-2 44. Referenced

on pages 2 and 10.

[39] Erich L. Kaltofen and Zhengfeng Yang. 2007. On exact and approximate interpo-

lation of sparse rational functions. In Proceedings of the 2007 international sym-

posium on Symbolic and algebraic computation (ISSAC ’07). ACM Press, Waterloo,

Ontario, Canada, 203. doi: 10.1145/1277548.1277577. Referenced on page 2.

[40] Leopold Kronecker. 1882. Grundzüge einer arithmetischen�eorie der algebrais-

chen Grössen. Journal für die reine und angewandte Mathematik 92 (1882), 1–122.

Referenced on page 4.

[41] Yishay Mansour. 1995. Randomized Interpolation and Approximation of

Sparse Polynomials. SIAM J. Comput. 24, 2 (1995), 357–368. doi:

10.1137/S0097539792239291. Referenced on page 2.

[42] MichaelMonagan and Roman Pearce. 2007. Polynomial Division Using Dynamic

Arrays, Heaps, and Packed Exponent Vectors. In Computer Algebra in Scientific

Computing (CASC ’07). 295–315. doi: 10.1007/978-3-540-75187-8 23. Referenced

on page 3.

[43] Michael Monagan and Roman Pearce. 2009. Parallel sparse polynomial

multiplication using heaps. In Proceedings of the 2009 International Sympo-

sium on Symbolic and Algebraic Computation (ISSAC’09). 263–270. doi:

10.1145/1576702.1576739. Referenced on page 3.

[44] Michael Monagan and Roman Pearce. 2011. Sparse polynomial division using a

heap. Journal of Symbolic Computation 46, 7 (2011). doi: 10.1016/j.jsc.2010.08.014.

Referenced on page 3.

[45] Hirokazu Murao and Tetsuro Fujise. 1996. Modular Algorithm for Sparse Mul-

tivariate Polynomial Interpolationand its Parallel Implementation. Journal of

Symbolic Computation 21, 4-6 (1996), 377–396. doi: 10.1006/jsco.1996.0020. Ref-

erenced on page 2.

[46] Vasileios Nakos. 2020. Nearly Optimal Sparse Polynomial Multiplication.

IEEE Transactions on Information �eory 66, 11 (2020), 7231–7236. doi:

10.1109/TIT.2020.2989385. Referenced on page 3.

[47] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In Advances in Cryptology – EUROCRYPT ’99 (Lecture Notes

in Computer Science), Jacques Stern (Ed.). Springer, Berlin, Heidelberg, 223–238.

doi: 10.1007/3-540-48910-X 16. Referenced on page 5.

21

https://doi.org/10.1145/1993886.1993916
https://doi.org/10.1007/3-540-51084-2_44
https://doi.org/10.1145/1277548.1277577
https://doi.org/10.1137/S0097539792239291
https://doi.org/10.1007/978-3-540-75187-8_23
https://doi.org/10.1145/1576702.1576739
https://doi.org/10.1016/j.jsc.2010.08.014
https://doi.org/10.1006/jsco.1996.0020
https://doi.org/10.1109/TIT.2020.2989385
https://doi.org/10.1007/3-540-48910-X_16

[48] Daniel S. Roche. 2018. What Can (and Can’t) we Do with Sparse Polynomials?. In

Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic

Computation (ISSAC’18). ACM, 25–30. doi: 10.1145/3208976.3209027. Referenced

on page 3.

[49] Bruno Rousselet. 1985. Estimations du type Brun-Titchmarsh. Groupe d’étude

en théorie analytique des nombres 1, 37 (1985), 1. Referenced on page 6.

[50] Arnold Schönhage. 1971. Schnelle Berechnung von Ke�enbruchentwicklungen.

Acta Informatica 1 (06 1971), 139–144. doi: 10.1007/BF00289520. Referenced on

page 9.

[51] Alisa Sedunova. 2018. A partial Bombieri–Vinogradov theoremwith explicit con-

stants. Publications mathématiques de Besançon. Algèbre et théorie des nombres

(2018), 101–110. doi: 10.5802/pmb.24. Referenced on page 7.

[52] Richard Zippel. 1990. Interpolating polynomials from their values. Journal of

Symbolic Computation 9, 3 (1990), 375–403. doi: 10.1016/S0747-7171(08)80018-1.

Referenced on page 2.

22

https://doi.org/10.1145/3208976.3209027
https://doi.org/10.1007/BF00289520
https://doi.org/10.5802/pmb.24
https://doi.org/10.1016/S0747-7171(08)80018-1

	1 Introduction
	1.1 Summary of results
	1.2 Main ideas
	1.3 Outline of the paper

	2 Number-theoretic preliminaries
	2.1 Prime number generation
	2.2 Generators of prime-order subgroups

	3 Univariate Interpolation
	4 Exact division
	References

