
HAL Id: lirmm-03784821
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03784821

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Primes without Primality Testing
Pascal Giorgi, Bruno Grenet, Armelle Perret Du Cray, Daniel S. Roche

To cite this version:
Pascal Giorgi, Bruno Grenet, Armelle Perret Du Cray, Daniel S. Roche. Random Primes without Pri-
mality Testing. ISSAC 2022 - 47th International Symposium on Symbolic and Algebraic Computation,
Jul 2022, Lille, France. pp.207-215, �10.1145/3476446.3536191�. �lirmm-03784821�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03784821
https://hal.archives-ouvertes.fr

ar
X

iv
:2

20
2.

12
07

3v
1

 [
cs

.S
C

]
 2

4
Fe

b
20

22

Random primes without primality testing

Pascal Giorgi
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
pascal.giorgi@lirmm.fr

Bruno Grenet
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
bruno.grenet@lirmm.fr

Armelle Perret du Cray
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
armelle.perret-du-cray@lirmm.fr

Daniel S. Roche
United States Naval Academy
Annapolis, Maryland, U.S.A

roche@usna.edu

February 25, 2022

Abstract

Numerous algorithms call for computation over the integers modulo a ran-

domly-chosen large prime. In some cases, the quasi-cubic complexity of selecting

a randomprime can dominate the total running time. We propose a new variant of

the classic D5 algorithm for “dynamic evaluation”, applied to a randomly-chosen

(composite) integer. Unlike the D5 principle which has been used in the past to

compute over a direct product of fields, our method is simpler as it only requires

following a single path a�er any modulus splits. �e transformation we propose

can apply to any algorithm in the algebraic RAM model, even allowing random-

ization. �e resulting transformed algorithm avoids any primality tests and will,

with constant positive probability, have the same result as the original computa-

tionmodulo a randomly-chosen prime. As an application, we demonstrate how to

compute the exact number of nonzero terms in an unknown integer polynomial

in quasi-linear time. We also show how the same algorithmic transformation tech-

nique can be used for computing modulo random irreducible polynomials over a

finite field.

1 Introduction

Consider the following situation which arises commonly in exact computational prob-
lems: We have a problem over the integersℤ to solve, but perhaps due to intermediate
expression swell or the need for exact divisions, solving direcly inℤ or ℚ is infeasible.
�ere may be fast algorithms for this problem over a finite field, say modulo a prime
p, but then some (unknown) conditions on the prime p must be met in order for the
solution over Fp to coincide with the actual integer solution. Typically, p must not be
a divisor of some unknown (but bounded) large value.

1

http://arxiv.org/abs/2202.12073v1

�en a classical approach, called the big-prime technique, is to randomly choose a
large prime p, with sufficient bit-length to overcome any non-divisibility conditions
with high probability, solve the problem over Fp , and return the result; see [12, Chap-
ter 5].

When the computation itself is expensive, we can ignore the cost of prime number
generation for practical purposes; the running time to compute p will be dwarfed
by the computations within Fp that follow. But as the computation becomes more
efficient, and particularly for algorithms that have quasi-linear complexity, the cost
of prime number generation is more significant, and may be a performance bo�leneck
in theory and/or in practice.

�e most efficient Monte Carlo method to generate a random prime number is
to sample random integers of the required size and then test them for primality. To
find a b-bit prime, using fast arithmetic, each primality test costs Õ(b2) time, and
because the density of primes among all b-bit numbers is proportional to 1/b, the
total cost of prime generation in this way is Õ(b3). Faster practical techniques by
[28, 19] incorporate many clever ideas but do not improve on this cubic complexity
bound; see [36, Chapter 10].

In summary: the cubic cost of generating a large probable-prime may dominate
the total cost of the big-prime method when the needed primes are quite large and
the mod-p algorithm is quite fast. �e aim of this paper is to tackle this issue with a
general technique that uses random moduli, not necessarily prime, with various extra
checks along the way, to provably get the same result in many cases as would be
achieved by explicitly generating a random prime.

An analogous situation occurs for polynomials over finite fields: if the original
problem is in a fixed finite field Fq , then in many cases one needs to compute over
an extension field Fqk for k sufficiently large. �is then poses the challenge of com-

puting a random irreducible degree-k polynomial in Fq[x], which again takes at least
quasi-cubic time using the best current methods. We will show that our same basic al-
gorithm transformation technique for integers applies in this case as well, with similar
probability bounds.

1.1 Algorithmic transformation technique

Our method builds on the long line of techniques known as dynamic evaluation, or
the D5 principle [6]. �is is a very general technique which has since been employed
for a wide range of computational problems [9, 27, 10, 29, 5, 32, 7, 16, 33]. For our
purposes the idea is to start computing modulo a possibly-composite m, and “split”
the evaluation with an efficient GCD computation whenever we need to test for zero
or perform a division.

Like the recent directed evaluation technique proposed by van der Hoeven and
Lecerf [16], we opt to first take the larger-size branch in any GCD spli�ing. But unlike
their method (and prior work) which is ultimately focused on recovering the correct
result over the original product of fields, here the goal is only to have an answer which
is consistent with what it would have been in some randomly-chosen finite field. For
that reason, we can ignore the smaller branch of any split, avoiding the reconstruction
process altogether.

2

In terms of running time, the key observation is that GCDs can be computed in
quasi-linear bit complexity using the half-GCD algorithm of [30, 4], and therefore this
transformation has the same so�-oh bit complexity as it would to compute over an
actual prime of the desired size. We save because there is no longer a need to actually
generate (and test for) the random prime.

Proving the probabilistic correctness of this approach is the main challenge and
contribution of our paper. First we need good estimates on the probability that a
random integer has a large prime factor. In our technique, having a single prime
factor p � m where p2 ≥ m is necessary and sufficient.

Second, and more challengingly, we need to allow for a general model of computa-
tion where the algorithmmay sample uniformly from the random field it is computing
over, and probabilistic correctness over a randomly-chosen field Fp should carry over
to probabilistic correctness of our methodwith random not-necessarily-primemoduli.

To our knowledge, previous applications of the D5 principle have considered only
computational models which are deterministic and do not allow random sampling of
field elements. van der Hoeven and Lecerf [16] suggest that this can be overcome
by providing the deterministic computation tree with a “pool” of pre-selected random
field elements, and the recent paper of Neiger, Salvy, Schost, and Villard [31] mentions
this limitation and also skirts around it by providing pre-selected “random” choices
as additional algorithm inputs.

But this pre-selection does not really make sense in our se�ing, where the ini-
tial modulus m itself is randomly chosen as well, as we must do in order to avoid
“unlucky” choices of the underlying finite field Fp . Which is to say, for any fixed,
pre-selected value of m and “random” elements modulo m, there is no way to argue
that the result will be correct with high probability; but it is also impossible to choose
uniform-random elements modulo m or p without knowing the modulus in advance.
Instead, we take care to actually allow randomization within the transformed algo-
rithm, and prove that probabilistic correctness modulo most sufficiently large primes
p does indeed imply probabilistic correctness modulo a large-enough random integer
m (and equivalently with random extension fields over a fixed finite field).

Our optimization to compute on only one branch in fact adds new wrinkles to
the challenge of proving correctness. As a small illustration, consider a very simple
algebraic algorithm which simply chooses a random field element and tests whether
it is zero. Over F2 there should clearly be a 12 probability of each outcome. But if we
instead compute with initial modulus m = 30 and use our “largest branch” spli�ing
technique, whenever 2 divides the final modulus, there is only a 13 chance of ge�ing
zero over F2. �e reason this can occur is that the branches, and hence the choice of
which modulus to use at the end, may themselves depend on previous random choices.
In fact it is not hard to construct pathological algorithmic examples which are usually
correct modulo some certain-sized primes p, but usually incorrect modulom whenm
is a multiple of p. Overcoming such issues in a proven and generic way is a major
challenge of the present investigation.

3

1.2 Application to sparsity determination

As an important application of our technique to avoid primality testing in randomized
computation, and indeed our original motivation for this work, we develop a new
algorithm to compute the sparsity of an unknown black-box polynomial.

�is Monte Carlo randomized algorithm uses samples of a modular black box, via
which an unknown sparse integer polynomial f ∈ ℤ[x1, … , xn] can be evaluated for
any chosen modulusm ∈ ℕ and point (�1, … , �n) ∈ [0, m)n , as well as boundsH and D
on the height andmax degree, respectively, to determine the number of nonzero terms
#f in the unknown polynomial, correct with high probability. �e bit complexity
(accounting for black box evaluations) is so�ly-linear in the size f ; see �eorem 5.2
for a precise statement.

�is problem is closely related to themore general problem of sparse interpolation
[3, 23, 22, 11, 18, 20, 2, 15, 1, 17], where all coefficients and exponents of f are to be
recovered. O�entimes such algorithms assume they are given an upper bound T ≥ #f
and have running time proportional to this T , so having a fast way to determine #f
exactly can be valuable in practice.

Our method mostly follows the early termination strategy by Kaltofen and Lee
[21], which was the first efficient sparse interpolation algorithm not to require an a

priori upper bound T ≥ #f . We save on the running time by explicitly stopping the
algorithm early as soon as #f is learned, and avoiding costly later steps which require
special field structure.

Moreover, while the algorithm of [21] works over a more general domain, its bit
complexity over ℤ is exponentially large; thus, a “big prime” technique is commonly
employed; see [24, 20, 18]. But now that we have reduced the arithmetic complexity
to quasi-linear, the cubic bit-cost of large prime generation becomes significant. �is
is where our new algorithm transformation technique comes into play: we use our
new methods to obtain the same results as if working modulo a random prime, while
actually computing modulo a random composite number with at most twice the bit
length.

1.3 Summary of contributions

�e main results of this paper are:

• A new variant of the D5 principle which focuses on computing modulo random
primes rather than in a given product of fields (Section 4.1);

• A careful analysis which shows that any algorithm which is probably correct
for most random, sufficiently-large primes, can be solved without the cost of
prime number generation using our new technique (Section 4.3);

• A new algorithm with nearly-optimal bit complexity to determine the number
of nonzero terms of an unknown sparse integer polynomial (Section 5); and

• An adaptation of the same techniques to computingmodulo random irreducible
polynomials over finite fields without irreducibility testing (Section 6).

4

2 Prime density and counting bounds

In this section we review some mostly-known results on the number of primes in
intervals with certain properties, that will be needed for the probabilistic analysis of
our main results.

�roughout, we use the notation [a, b) to denote the set of integers n satisfying
a ≤ n < b, and we use the term b-bit integer to mean an integer in the range [2b−1, 2b).
Note that there are 2b−1 integers with bit-length b.
Definition 2.1. For any positive integers m and b, we say m is b-fat if m has a prime

divisor p ≥ 2b .
�is follows the definition of M-fat in the classic paper of Karp and Rabin [25],

except that we focus only on power-of-two bounds.
We first prove that at least half of all 2b-bit integers have a prime factor with at

least b bits, largely following [25, Lemma 8], which in turn is based on bounds from
Rosser and Schoenfeld [34].

Lemma 2.2. For any b ≥ 1, the number of (2b)-bit integers which are b-fat is at least
22b−2.
Proof. �e claim is verified numerically for 1 ≤ b ≤ 6.

If b ≥ 7, then Lemma 8 of [25] tells us that the number of b-fat integers in the
range [1, 22b] is at least 22b−1.

We need to show that at least half of the b-fat integers are in top half of this range.
For any prime p with p ≥ 2b , consider the multiples of p in the range [1, 22b]. By

definition, all such multiples are b-fat. Let k ∈ ℕ so that kp is the largest multiple
of p less than 22b−1. �us exactly k multiples of p have bit-length strictly less than
2b. And because 2kp < 22b , there are at least k multiples of p with exactly 2b bits.
Incorporating the fact that 22b is never a multiple of p, we see that at least half of the
multiples of p in the range [1, 22b] have bit-length exactly 2b.

Because any number less than 22b can only be divisible by at most one prime
p ≥ 2b, the sets of multiples for 2b ≤ p < 22b in fact form a partition of the b-fat
numbers with at most 2b bits. �erefore, summing over all sets in this partition, we
see that the total number of b-fat integers with 2b bits is at least 22b−2.

Many algorithms which perform computations modulo a random prime in fact
need to avoid a certain number of unlucky or “bad” primes. Here we give an upper
bound on the chance that a b-fat number is divisible by a large bad prime. �e proof
is trivially just dividing the range by p.
Lemma 2.3. For any b ≥ 1 and prime p ≥ 2b , at most 2b−1 integers with bit-length 2b
are multiples of p.

3 Computational model

Our main result is a transformation which, roughly speaking, takes any algorithm in
the algebraic RAM model for any chosen prime p, and converts it into a randomized

5

algorithm in the (non-algebraic) RAM model that produces the same output most of
the time while avoiding prime number generation.

Here we must take care to define the requirements on the initial algebraic algo-
rithm. Prior work such as [6, 5, 16] considered more general se�ings beyond comput-
ing in random finite fields, but in fairly restricted models of deterministic algebraic
computation such as straight-line programs or computational trees. Here we have a
more restricted algebraic se�ing but a more general computational one, allowing for
loops, memory, and pseudorandom integer or field element generation.

3.1 Modular PRNGs

We define amodular pseudo-random number generator, or modular PRNG, as a pair of
deterministic algorithms:

• RandMod(s, m) → x takes a fixed-length state s and any positive integer m
and produces a pseudorandom value x uniformly distributed from the range
[0, m).

• RandUpdate(s) → s′ takes the current state and produces a value (with the
same bit-length) for the next state.

(In practice there would also be an initialization procedure which takes a smaller
seed value to produce the initial state, but this detail is unimportant for our discussion.
�at is, we treat the seed as synonymous with the initial state s.)

Conceptually, both of these functions should be indistinguishable from random.
More precisely, define r (s, i, m) as the i’th output modulo m from initial state s, that
is,

RandMod(RandUpdate(⋯ (RandUpdate⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
i times

(s))), m).

�en, even with an oracle to compute r (s, i′, m′) for any tuple (i’,m’) not both
equal to (i, m), it should be infeasible to distinguish r (s, i, m) from a truly random
output modulo m.

3.2 Algebraic RAM with integer I/O

Our model of computation is a classical random access machine (RAM), with an “in-
teger side” and an “arithmetic side”. �e integer side is a normal RAM machine with
instructions involving integer inputs and outputs, and the arithmetic side involves
only the following computations with elements of an arbitrary field:

• Ring arithmetic: +, −, ×
• Multiplicative inverse (which in turn allows exact division)

• Pseudo-random generation of a field element

6

�emultiplicative inverse computationmay fail, e.g., on division by zero, in which
case the algorithm returns the special symbol ⊥.

�ere are also two special instructions which take input from one side and output
to the other side:

• Conversion of an integer to a field element

• Zero-testing of any field element

Note that zero-testing and subtraction obviously allow equality comparisons be-
tween field elements, but not ordering them.

We restrict the inputs and outputs to be integers (or output of ⊥ on error). �is is
necessary for our use case where the inputs are actually integers which are then re-
ducedmodulo p, but in any case is not a restriction due to the integer-to-field-element
conversion instruction.

For computations over prime fields, we can formally define an algorithm in our
algebraic RAM model as having:

• Parameters: prime p and initial Modular PRNG state s
• Input: x ∈ ℤn

• Output: y ∈ ℤ⋃{⊥}
• Program: A series of integer instructions as in a normal RAM model and arith-
metic instructions as defined above, along with labels, conditional branches,
and memory load/store operations

We write p,s(x) for the output y of algorithm with field Fp and initial PRNG
state s.

Note that some abuses of the RAM model are possible, particularly for algebraic
algorithms, by using arbitrarily large integers. Rather than avoid such abuses by, e.g.,
using a word RAM model, we merely note that our transformations do not affect the
integer side operations at all, and thus would in principle work the same under any
such model restrictions. Indeed, our work applies over most algebraic computational
models we know of, such as straight-line programs, branching programs, multi-tape
Turing machines, or the closely-related BSS model.

4 Algorithm transformation for randomprimefields

Recall the general idea of our approach, building on [6, 16]: Given an algorithm

which works over any prime field, we transform it into a transformed version that
instead samples a possibly-composite modulus m which probably contains a large
prime factor p ≥

√m. Any time a comparison or multiplicative inverse occurs, first
performs a GCD of the operand with the current modulus m. If a nontrivial factor k
of m is found, then the (unknown) large prime factor of m must divide max(k,m/k).
Update the modulus accordingly and continue.

7

We first fully present our algorithmic transformation, then examine some thorny
issues related to the use of pseudorandom numbers in the algorithms, and finally
prove the correctness and performance bounds which are the main results of this
paper.

4.1 Transformation procedure

We begin with the crucial subroutine Algorithm 1 (NewModulus), which shows how
to update the modulus while carefully ensuring no significant blow-up in bit or arith-
metic complexity.

Algorithm 1: NewModulus(a,m)

Input: Integer a ∈ ℤ and modulus m ∈ ℕ
Output: New modulus m′ ∈ ℕ
g1 ← gcd(a,m)

if g21 > m then
return g1

else

b ← g⌊log2m⌋1 mod m
g2 ← gcd(b,m)

returnm/g2

Lemma 4.1. Given any a,m ∈ ℤ, the integer m′ ∈ ℕ returned by NewModulus(a,m)

has the following properties:

• m′ � m
• a is either zero or invertible modulo m′

• If p is a prime with p2 > m and p � m, then p � m′ also

Proof. Let a,m ∈ ℤ be arbitrary and g1, b, g2 as in the algorithm.
For the first property, we see that the integer returned is either g1 or m/g2, both

of which are always divisors of m.
For the second property, consider two cases. First, if g21 > m and thus m′ = g1 is

returned, then g1 � a, so a is zero modulom′.
Otherwise, let q ≥ 2 be any common factor of a and m (if one exists). By the

definition of gcd, q � g1. Now let k ≥ 1 such that qk is the largest power of q that

divides m. Because q ≥ 2, k ≤ log2m, and therefore qk � g⌊log2 m⌋1 . From the gcd

algorithm, this means that qk � g2, and thus q does not divide m/g2. Hence a and
m/g2 do not share any common factor, i.e., gcd(a,m′) = 1 as required.

For the third property, assume m has a prime factor p with p2 > m. If p � g1,
then g21 > m and the new modulus m′ = g1 returned in the first case is be divisible
by p. Otherwise, if p does not divide g1, then p does not divide g2 either, and hence
p � m/g2.
Lemma 4.2. For any a ∈ ℤ and m ∈ ℕ, the worst-case bit complexity of Algorithm

NewModulus(a,m) is Õ(log a + logm).

8

Proof. �e bit complexity is dominated by the two GCD computations and the modu-
lar exponentiation to compute b. Using the asymptotically fast Half-GCD algorithm
[35, 37], and binary powering for the modular exponentiation, all three steps have bit
cost within the stated bound.

We now proceed to incorporate the NewModulus subroutine into the algorithm
transformation procedure. Algorithm will be in the model of an algebraic RAM
from Section 3.2. We also require a companion procedure which takes any input
x ∈ ℤn for and deterministically produces a positive integer b, which should be
a minimal bit-length of primes to ensure that produces correct results on input x
with high probability. (In most applications we can imagine, is a simple function of
the input sizes and bit-lengths.)

Algorithm 2 details the construction of the transformed algorithm based on

and .

Algorithm 2: produced from and

Input: Input x ∈ ℤn and PRNG initial state s
Output: y ∈ ℤ⋃{⊥}
b ← (x)

m ← pseudorandom (2b)-bit integer stored in memory
Proceed with identical instructions of, except:

• All conversions from integers to algebraic values are replaced by explicit
reduction modulom.

• All additions, subtractions, and multiplications on the “algebraic side” are
replaced by integer arithmetic followed by explicit reduction modulo m.

• Any random field element generation instructions are replaced by sampling
a number in the range [0, m) using the modular PRNG.

• All zero tests and multiplicative inverses on the “algebraic side” for some
value a first call NewModulus(a,m), update the modulus accordingly, and
then perform either a divisible-by-m test or modular inverse computation,
respectively.

Observe that the transformed algorithm no longer works in the algebraic RAM
model, but handles explicit integers only. More precisely, each algebraic operation in
 is replaced with a constant number of arithmetic or gcd computations on integers
with bit-length at most 2b.

4.2 Correlated PRNGs

A technical detail of our analysis requires a tight relationship between the random
choices made by and for the same input and seed value. Even using the same
PRNG for both algorithms, there is no reason to think that a random sample in

9

modulo a prime p would have any relationship to a corresponding random sample in
 modulo a multiple m of p.

We achieve this by defining a pair of modular PRNGs — one for and one for
— both based on the same underlying high-quality PRNG, and having the desired cor-
relation property. �e constructions are based on three key insights. First, in defining
the transformed algorithm above, we are careful to sample the initial modulus m
inside the algorithm, rather than taking it as input. Second, the PRNG for the algebraic
algorithm also samples a random modulus m even though this is not directly used
in the computations, in order to match random outputs between and. �ird, our
correlated PRNG construction doubles the state size so that this modulus m is cho-
sen completely independently from the future sampled random values; this allows us
later to translate probabilistic correctness modulo p in to probabilistic correctness
modulom in .

Before describing the PRNGs in detail, it is important to stress that this is purely
a proof technique. While these PRNG constructions are efficient and realizable, their
need is motivated only by the probabilistic analysis that follows; in reality, we could
just use any normal high-quality PRNG and achieve the same results except for some
pathological algorithms would not arise in practice.

For what follows, we assume the existence of a high-quality modular PRNG G as
defined in Section 3.1.

We begin by describing the PRNG for the transformed algorithm of Algorithm 2,
which we call G′.

We will use two simultaneous instances of the underlying modular PRNG G, and
therefore double the state size so that the seed for G′ can be wri�en s = (s0, s1). �e
first instance with initial state s0 is used only to generate the initial modulusm on the
first step.

A�erwards, a random sample modulo some integer t ∈ ℕ is generated as follows.
If t � m, then G′ first generates a random integer modulom using G with the second
part of the current state s1, and then reduces the result againmodulo t before returning
it. Because t � m, this is indistinguishable from (though less efficient than) randomly
choosing an integer modulo t directly.

Otherwise, if t is not a divisor of the original modulus m, then G′ simply calls G
directly with the current state s1 and the requested modulus.

�e PRNG G′ for the algebraic algorithm is almost identical to G′, except that
the value ofm is only used inside the PRNG. Indeed, for a random seed and run of the
algorithm modulo some prime p, it is unlikely that p � m, and then this construction
doesn’t change the results at all compared to using G with the second part of the state
s1 alone.

�e need for this strange PRNG construction is the correlation that exists between
 andwhenever the seed s = (s0, s1) is the same for both, as captured in the follow-
ing lemma:

Lemma 4.3. Let s = (s0, s1) be a PRNG state for G′ orG′,m be the initial 2b-bit random
value chosen using s0, and p,m′ ∈ ℕ such that p � m′ and m′ � m. Writing r as the
pseudorandom result from G′ with current state s modulo p, and r as the result from G′

with the same state s and larger modulus m′, then we have r ≡ r mod p.

10

�e proof follows directly from the PRNG definitions above and the divisibility
conditions given.

Besides this correlation property, we also need to know that using this constructed
PRNG in the algebraic algorithm does not affect the probabilistic correctness. Note
that the assumption on the underlying PRNGG is an idealistic one, as any PRNGwith
fixed seed length cannot actually produce uniformly random values in an arbitrary
range.

Lemma 4.4. If the underlying PRNG G produces uniformly random values for any

sequence of moduli, then for any fixed value of s0, the constructed modular PRNG G′

also produces uniformly random values for any sequence of moduli.

Proof. Let s0 be a fixed first half of the seed. �e value of s0 purely determines what
m is chosen, so let m ∈ ℕ be that arbitrary value.

Now consider any modulus t given to G′. If t does not divide m, then G′ returns
a value from the underlying PRNG G, which by assumption is uniformly random.

Otherwise, if t � m, then G is first sampled for some random value r in [0, m). By
assumption r takes on any value in this range with probability 1m . �en because t is
a divisor of m, reducing r mod t produces each value in [0, t) with probability 1t .

From this, we can draw a crucial conclusion on the probabilistic correctness of
when only s1 is varied.
Corollary 4.5. For some prime p and input x, suppose produces a given output y
with probability 1 − � when provided an ideal perfectly-random number generator. �en

if the underlying PRNG G is uniformly random and for any fixed value of s0, returns

y with the same probability 1 − �, where the probability is over all choices of s1 only.

4.3 Analysis

We now proceed to the main result of our paper: for any algebraic algorithm that
produces correct results with high probability for primes of bit-length at least that
given by , Algorithm 2 produces a randomized algorithm which, with constant
probability, produces the same correct results with the same number of steps. �at
is, we can achieve (probabilistically) the same results as computing modulo random
primes, without actually needing to ever conduct a primality test.

To prove this probabilistic near-equivalence, first define a run of an algorithm as
the sequence of internal memory states for given inputs and seed value (and in the
case of an algebraic algorithm, choice of field).

We first show that any run of the transformed algorithm is equivalent to a run
of the original with the same input and seed for some choice of p. Here and for
the remainder of this section, we assume that and use the constructed PRNGs
G′ and G′ as defined in Section 4.2.

Lemma 4.6. For any input x and seed s, consider the resulting run of . If m′ is the

final stored value of m in this run, then for any prime factor p of m′, an identical run of

 is produced over Fp with the same input x and seed s, where all algebraic values from
the run of are reduced modulo p.

11

Proof. Consider thememory states at some point in the programwhere they are equiv-
alent between the two runs. We show that, no ma�er the next instruction in , the
memory states a�er that instruction (and the corresponding instruction(s) in ac-
cording to Algorithm 2) are the still equivalent.

Any arithmetic-side operations are unchanged in Algorithm 2.
Because reduction modulo p is a homomorphism, any algebraic additions, subtrac-

tions, or multiplications also maintain equivalence.
Let m be the original modulus chosen at the beginning of . From the first point

of Lemma 4.1, we know that m′ � m, and therefore p � m also. �e same is true for
any intermediate value of m in the run.

�is means that any conversion operation in , reducing an integer modulo p,
will be mod-p equivalent to the corresponding operation in , reducing modulo the
current value of m.

Considering zero-test instructions, let a (resp. a) be the value of some algebraic
value in the run of (resp.). If a = 0 in Fp , then p � a. �en, because p divides
every modulus value m in the run, a is not invertible modulo m. �en according to
the second point in Lemma 4.1, a is zero mod m, and the zero test will have the same
result.

By the same reasoning, any multiplicative inverse instruction will also be equiva-
lent between the runs of and , or in the case the denominator is zero, both runs
will result in ⊥.

Finally, by using the correlated PRNGs defined in Section 4.2, we can apply Lemma 4.3
to conclude that any random field element generation instruction also results in equiv-
alent outputs at the same step of both runs.

�is covers all possible types of instructions and completes the proof.

If the original algorithm is deterministic, this equivalence of runs is enough to
prove correctness of . Indeed, this has been the assumption in most prior works
on the D5 principle, which also o�en employ simpler models of computation such as
straight-line programs or deterministic computation trees.

By contrast, we want to allow to be randomized. First, we affirm that any
deterministic property of the output is preserved a�er our transformation to in the
following lemma, which follows directly from Lemma 4.6.

Lemma 4.7. Suppose x ∈ ℤn is an input for, and Y ⊆ ℤ⋃{⊥} is a family of outputs,

such that for any prime p and random seed s, the output of on input x is always a

member of Y . �en the output of on input x is always a member of Y as well.

�emore difficult case is whenmay return incorrect values. �ere are two types
of causes for an incorrect result: when the prime p is one of a small set of “unlucky”
values, or when randomly-sampled field elements in the algorithm are unlucky and
produce and incorrect result. Althoughmany actual algorithms only have one of these
two types of failure, we account for both types in order to have themost general result.

For convenience of exposition, wewill capture these failuremodes in the following
definition:

12

Definition 4.8. Let x ∈ ℤn be any input for , k ∈ ℕ and � ∈ ℝ with 0 ≤ � < 1. We

say that is (k, �)-correct for input x if, for all but at most k primes p with p ≥ 2(x),

running on x produces a correct output with probability at least 1 − �.
�e following theorem, which is the main result of our paper, combines the preva-

lence of b-fat integers with the run-equivalence of to prove probabilistic correct-
ness.

�eorem 4.9. Let x ∈ ℤn , k ∈ ℕ, and � ∈ ℝ with 0 ≤ � < 1
2 , and write b = (x). If

is (k, �)-correct for input x, then the probability that produces the correct output for

input x is at least
1

2
−

k
2b−2 −

�
2
.

Proof. Let m be the initial prime modulus chosen uniformly in the range [22b−1, 22b)
by. Two things can makem an unlucky choice: if it has no large prime divisor (i.e.,
if it is not b-fat), or if its largest prime divisor is one of the k unlucky primes that
cause to fail.

Lemma 2.2 tells us that the probability of the former is at most 1
2 . And, disjointly,

the probability that m does have a large prime factor but it is one of the k unlucky
choices for is at most k/2b−1.

�erefore, over all choices of the first part of the PRNG initial state s0, at least
1/2 − k/2b−2 of them lead to an m with a prime factor p ≥ 2b which is not one of the
k “unlucky” primes for on this input.

For such “lucky” choices of s0 and thereby m, because p2 > m, from Lemma 4.1
we know that p will always divide the updated modulusm a�er any call to NewMod-

ulus, and in particular, p will divide the final modulus m′. We can therefore apply
Lemma 4.6 with the same p for all possible runs of with the same s0.

Finally, considering the remaining part of the PRNG initial state s1, Corollary 4.5
tells us that in these cases produces the correct result with probability at least 1− �,
conditional on the previously-derived chance that m is “lucky”.

When combinedwith an efficient verification algorithm,�eorem 4.9 immediately
yields a Las Vegas randomized algorithm.

But without an efficient verifier, the result seems to be not very useful: it proves
that is a Monte Carlo randomized algorithm with success probability strictly less
than one-half.

Still, we can combine �eorem 4.9 with the preceding Lemma 4.7 in the case of
algorithms which have one-sided error, meaning that, for any prime p and initial
PRNG state s, the output y from is never larger (or, equivalently, never smaller)
than the correct answer.

Corollary 4.10. Let � > 0 such that, for any input x, algorithm is (k, �)-correct where
1 − � − k/2(x)−1 < �. If furthermore has only one-sided error, then the correct output

can be determined with high probability a�er O(1�) runs of .

Proof. Because of one-sided error, you can repeatedly run and take the maximum
(resp. minimum) result if the output of never larger (resp. smaller) than the correct
output.

13

5 Computing the sparsity of integer polynomials

Sparse polynomial interpolation is an important and well-studied problem in com-
puter algebra: Given an unknown polynomial f ∈ R[x1,… , xn] through a blackbox
or a Straight Line Program (SLP), one wants to recover the non-zero coefficients of
f and their corresponding exponents. Of course, the main goal is to have an algo-
rithm with a complexity that is quasi-linear in the bit-length of the output, that is
Õ(nt(log d + log ℎ)), where t = #f is the number of non-zero terms, d the maximal
degree and ℎ the height, i.e., largest absolute value of any coefficient.

�e fastest algorithm for this task are of two kinds, depending of the model in
which the polynomial is given. For Straight Line Programs, following the determin-
istic polynomial time algorithm of Garg and Schost [11], many improvements have
been made through randomization to reach a quasi-linear complexity in every param-
eter of f , i.e., t , log d and log ℎ [17]. For a polynomial given instead by a black box for
its evaluation, following the seminal papers of Ben-Or and Tiwari [3] and Kaltofen
and Yagati [23], we have now reached a quasi-linear complexity in the sparsity of f ,
see Arnold’s PhD thesis [1]. Note that an algorithm with quasi-linear complexity in
all the parameters of f in this model is still not available.

One of the main ingredients of these algorithms is that they require bounds for
every parameter (t, d, ℎ) of f . A few works considered to replace these bounds with
explicit randomized algorithms. As outlined in [22, 1], one can calculate such a degree
bound in polynomial time but this might dominate the cost of the interpolation. �e
situation is clearly different for the sparsity parameter as interpolation with early ter-
mination exists [21]. �is is only the case with Prony-style interpolation, popularized
by Ben-Or and Tiwari [3] for polynomials given as a blackbox.

In this work we will consider the model of Modular Blackbox (MBB) that allows
to control the size of the evaluation of the polynomial. In particular, this is of great
interest to efficiently deal with sparse polynomials over the integers as one evaluation
might be exponentially large than the polynomial itself.

Kronecker substitution [26] is a fairly classical tool to reduce multivariate prob-
lems to univariate ones. It is easy to see that this transformation does not change the
size of the polynomial and its sparsity. �erefore, we will only focus on the univariate
case here for simplicity of presentation.

5.1 Sparsity over a sufficiently large field

First we develop aMonte Carlo algorithm to compute #f over a sufficiently-large finite
field Fq . For this, we can use Ben-Or and Tiwari [3] and the extension of Kaltofen and
Lee [21] that study the probability that some early zeros appear during the course of
the Berlekamp-Massey algorithm.

Taking a random � ∈ Fq and ai = f (� i) ∈ Fq , it is shown that for s = 1,… , t
all Hankel matrices Hs = [ai+j]s−1i,j=0 are non-singular with a probability greater than

1 −
Dt(t−1)(t+1)

3q ; see [21, 14, 1]. �e so-called early termination strategy for sparse

interpolation is then to run the Berlekamp-Massey algorithm on the infinite sequence
(a0, a1, a2,…) and to stop the algorithm whenever a zero discrepancy occurs. It is

14

showed in [21] that the zero discrepancy corresponds exactly to hi�ing a singular
Hankel matrix Hs . Since the sequence (a1, a2,…) corresponds to the evaluation of a t-
sparse polynomial at a geometric sequence, theminimal generatorΛ of the recurrence
sequence (a0, a1, a2,…) has degree exactly #f [3].
Fact 5.1. Given a blackbox for f ∈ Fq[X] with q ≥ 16D4 where D > deg f , there exists a
Monte Carlo algorithm that computes an integer t such that t ≤ #f . With probability at

least 1 − 1
48 , we have t = #f exactly. �e computation requires 2t probes to the modular

blackbox and Õ(t) arithmetic operations in Fq .
We note that there is nothing special about the constant 16; this just arises from

what we need later, and it is convenient to have a very low probability of error.
If f were given by a straight-line program instead of a blackbox, the same algo-

rithm may be employed with bit complexity Õ(L#f log q), where L is the length of the
SLP.

Correctness comes from the previous discussion on the probability that theHankel
matrices Hs are non-singular up to s = t ; see [21, �eorem 9] for a complete proof.
For the complexity, we can use the fast iterative order basis algorithm of [13] since
the Berlekamp-Massey algorithm is related to Padé approximant involving the series
∑i>0 aix i [8]. �e algorithm iPM-basis from [13] provides a fast iterative variant for
Padé approximation that can incorporate the early termination strategy (looking for
a zero constant term in the residual, denoted Fv).

One may remark that the algorithm of Fact 5.1 is a one-sided randomized algo-
rithm; the returned value t never exceeds the true sparsity #f .

5.2 Sparsity over the integers

Now suppose f ∈ ℤ[x] is an integer polynomial given via a modular blackbox, along
with bounds D,H such that deg f < D and each coefficient of f is bounded by H in
absolute value. We want to use the techniques of Section 4 to adapt the algorithm of
Fact 5.1 to find the sparsity of f .

�e first question is how to incorporate the modular blackbox into the algebraic
RAM model of Section 3.2. We will say that the algebraic RAM is endowed with an
additional instruction to probe theMBB: given any algebraic value � , the MBB instruc-
tion returns a new algebraic value for f (�). In the original algorithm , each MBB
evaluation will be modulo p, and in the transformed algorithm, evaluations will be
modulo the current value of m.

Observe that this functionality is exactly what is already specified in the defini-
tion of a modular black box. Importantly, we do not require the MBB to be given
in any particular computational model (such as algebraic RAM), and the instruction
transformations described in Algorithm 2 will not apply inside the blackbox itself.

�e next question is how large the prime p should be to ensure correctness with
high probability. Fact 5.1 gives a lower bound for p so that the mod-p algorithm suc-
ceeds, but we also need to ensure that the sparsity of f modulo p is the same as the
actual value of #f over the integers. �is will be true as long as none of the coefficients
of f vanish modulo p. �en we simply observe that, with bounds D,H on the degree

15

and height of f respectively, the number of “bad primes” which cause the sparsity to
drop modulo p is at most D log2 H .

Set b = ⌈4 + 4 log2 D + log2 log2 H⌉. �en any p ≥ 2b satisfies the condition of
Fact 5.1, so we can say the algorithm is (D log2 H, 1

48)-correct by Definition 4.8. �e
following theorem, our main result for this section, follows immediately a�er observ-
ing that D log2 H /2b−2 < 1

4 .

�eorem 5.2. Given a MBB for f ∈ ℤ[x] and bounds D,H with deg f < D and each

coefficient of f is at most H in absolute value, there exists a Monte Carlo randomized

algorithm that computes an integer t such that t ≤ #f . With probability at least 0.239, we
have t = #f exactly. �e computation requires 2t probes to the MBB and Õ(t) arithmetic

operations, all with moduli that have bit-length O(logD + loglogH).

Because the error is again one-sided, Corollary 4.10 applies and can be used to
make the success probability arbitrarily high.

If the MBB for f is in fact a straight-line program of length L, the total bit com-
plexity becomes Õ(Lt(logD + loglogH)). While this is technically sub-linear in the
bit-length of f itself, we note that this is somewhat “hiding” some computation in
the evaluation model itself, since to actually produce a polynomial with degree D and
height H with bounded constants, the length L of the SLP would need to be at least
Ω(logD + logH).

6 Random irreducible polynomialswithout irreduci-

bility testing

In this section, we adapt our approach to computing in a field extension of a fixed
finite field Fq . �is need arises frequently in se�ings where the base field Fq is too
small, and one needs to find more than q distinct elements in it. In that case, the
standard approach is to compute a random irreducible polynomial ' of degree s and
to work within Fqs = Fq[x]/⟨'⟩. If the algorithm that is run in Fqs is fairly fast, the

cost of producing an irreducible polynomial of degree s, Õ(s3 log q), may become
predominant.

We show how to adapt our techniques to compute modulo an arbitrary random
polynomial. Many aspects are very similar to the integer case, so we highlight only
the main differences. We begin with the polynomial counterpart of the notion of b-fat
integers given in Section 2.

Definition 6.1. For any positive integer d and finite field Fq , a polynomial f ∈ Fq[x]
is said to be d-fat if it has an irreducible factor of degree > d .
Lemma 6.2. For any d , the number of degree-2d monic polynomials over Fq that are

d-fat is at least 1
4q2d .

Proof. A monic degree-2d polynomial can have at most one monic irreducible factor
of degree > d . A given monic irreducible polynomial g of degree � > d divides exactly
q2d−� monic polynomials of degree 2d . Moreover, the number of irreducible monic
polynomials of degree � over Fq is at least q� /2� for any � [36, Lemma 19.12].

16

�erefore, there are at least q2d /2� monic degree-2d polynomials of Fq[x] that
have an irreducible factor of degree � , for � > d . Summing from � = d + 1 to 2d , there
are at least 1

2q2d (H2d − Hd) where Hn = ∑ni=1 1/i denotes the ith harmonic number.

Since 1/2(n + 1) < Hn − ln(n) − < 1/2n [38], H2d −Hd ≥ ln(2) + 1/2(2d + 1) − 1/2d ≥ 1
2

for d ≥ 2, and H2 − H1 =
1
2 . �e result follows.

Note that the bound of that lemma is smaller than in the integer version, since we
only proved that at least one fourth of the degree-2d polynomials over Fq are d-fat.
Actually, the number of monic irreducible polynomials of degree � approaches q� /�
for large values of q or � [36]. With the same proof, this shows that the fraction of
degree-2d polynomials that are d-fat approaches ln(2) ≥ 0.693 for large values of d or
q.

We now turn to the algorithm transformation. We work in the same algebraic
RAM model. We adapt the definition of an algorithm of Section 3. �e parameter p is
replaced by a parameter ' which is an irreducible degree-s polynomial over Fq . �is
requires to fix a correspondence between integers and polynomials over Fq. �is is
easily done by using the q-adic expansion of integers.

�e NewModulus algorithm works similarly mutatis mutandis. As input, the
algorithm takes a polynomial over Fq (or equivalently an integer that represents this
polynomial) and a modulus m ∈ Fq[x], and returns a new modulus m′ ∈ Fq[x]. �e

test “g21 > m” is replaced by a test “2 deg(g1) > deg(m)”, and “g⌊log2m⌋
1 mod m” is

replaced by “gdegm1 mod m”. �e proof of Lemma 4.1 is easily adapted. �e worst-
case bit complexity of the adapted algorithm is Õ((deg a + degm) log q).

Finally, the algorithm transformation itself is easily adapted. �e bound (x) re-
turns theminimal degree s of an extension for the algorithm to produce correct results
with high probability. �e transformed algorithm computes 2s pseudorandom in-
tegers modulo q using the modular PRNG, and interprets them as a monic degree-2s
polynomial m over Fq . Also, conversions from integers to algebraic values are done
by interpreting the integer as a polynomial over Fq and reducing it modulo m.

�e rest of the arguments are similar as in the integer case. Using the bound
of Lemma 6.2 on the density of d-fat polynomials, we obtain a similar theorem as
�eorem 4.9: If is (k, �)-correct of input x and (x) returns s, the transformed algo-
rithm produces the correct output for input x with probability at least

1

4
−

k
qs+1 −

�
4
.

Again, this error probability means the technique is only useful for one-sided Monte
Carlo algorithms, or combined with an efficient verification algorithm.

References

[1] Andrew Arnold. Sparse Polynomial Interpolation and Testing. PhD thesis, Univer-
sity ofWaterloo, 2016. URLhttp://hdl.handle.net/10012/10307.
Referenced on pages 4 and 14.

17

http://hdl.handle.net/10012/10307

[2] Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. Faster sparse multi-
variate polynomial interpolation of straight-line programs. Journal of Symbolic

Computation, 2015. ISSN 0747-7171. doi: 10.1016/j.jsc.2015.11.005. Referenced
on page 4.

[3] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse mul-
tivariate polynomial interpolation. In Proceedings of the Twentieth Annual ACM

Symposium on �eory of Computing, STOC ’88, page 301–309, New York, NY,
USA, 1988. Association for Computing Machinery. doi: 10.1145/62212.62241.
Referenced on pages 4, 14 and 15.

[4] Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun. Fast solution of toeplitz
systems of equations and computation of padé approximants. J. Algorithms, 1
(3):259–295, 1980. doi: 10.1016/0196-6774(80)90013-9. Referenced on page 3.

[5] Xavier Dahan, MarcMorenoMaza, Éric Schost, and YuzhenXie. On the complex-
ity of the d5 principle. In Transgressive Computing 2006: A conference in honor of

Jean Della Dora, pages 149–168, 2006. Referenced on pages 2 and 6.

[6] Jean Della Dora, Claire Dicrescenzo, and Dominique Duval. About a new
method for computing in algebraic number fields. In Bob F. Caviness, ed-
itor, EUROCAL ’85: European Conference on Computer Algebra Linz, Austria,

April 1–3 1985 Proceedings Vol. 2: Research Contributions, pages 289–290, Berlin,
Heidelberg, 1985. Springer Berlin Heidelberg. ISBN 978-3-540-39685-7. doi:
10.1007/3-540-15984-3 279. Referenced on pages 2, 6 and 7.

[7] Gemma Maria Diaz-Toca and Henri Lombardi. Dynamic galois theory. Journal
of Symbolic Computation, 45(12):1316–1329, 2010. doi: 10.1016/j.jsc.2010.06.012.
MEGA’2009. Referenced on page 2.

[8] Jean Louis Dornste�er. On the equivalence between Berlekamp’s and Euclid’s
algorithms. IEEE Transactions on Information �eory, 33(3):428–431, 1987. doi:
10.1109/TIT.1987.1057299. Referenced on page 15.

[9] Dominique Duval. Rational Puiseux expansions. Compositio Mathematica, 70(2):
119–154, 1989. Referenced on page 2.

[10] Dominique Duval and Jean-Claude Reynaud. Sketches and computation–ii: dy-
namic evaluation and applications. Mathematical Structures in Computer Science,
4(2):239–271, 1994. Referenced on page 2.

[11] Sanchit Garg and Éric Schost. Interpolation of polynomials given by straight-
line programs. �eoretical Computer Science, 410(27-29):2659–2662, 2009. ISSN
0304-3975. doi: 10.1016/j.tcs.2009.03.030. Referenced on pages 4 and 14.

[12] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (third

edition). Cambridge University Press, 2013. ISBN 9781107039032. Referenced on
page 2.

18

http://dx.doi.org/10.1016/j.jsc.2015.11.005
http://dx.doi.org/10.1145/62212.62241
http://dx.doi.org/10.1016/0196-6774(80)90013-9
http://dx.doi.org/10.1007/3-540-15984-3_279
http://dx.doi.org/10.1016/j.jsc.2010.06.012
http://dx.doi.org/10.1109/TIT.1987.1057299
http://dx.doi.org/10.1016/j.tcs.2009.03.030

[13] Pascal Giorgi and Romain Lebreton. Online order basis and its impact on block
Wiedemann algorithm. In Proceedings of the 2014 international symposium on

symbolic and algebraic computation, ISSAC’14, pages 202–209. ACM, 2014. doi:
10.1145/2608628.2608647. Referenced on page 15.

[14] Elena Grigorescu, Kyomin Jung, and Roni� Rubinfeld. A local decision test for
sparse polynomials. Information Processing Le�ers, 110(20):898–901, 2010. ISSN
0020-0190. doi: h�ps://doi.org/10.1016/j.ipl.2010.07.012. Referenced on page 14.

[15] Joris van der Hoeven and Grégoire Lecerf. Sparse polynomial interpolation in
practice. ACM Commun. Comput. Algebra, 48(3/4):187–191, February 2015. doi:
10.1145/2733693.2733721. Referenced on page 4.

[16] Joris van der Hoeven and Grégoire Lecerf. Directed evaluation. Journal of Com-

plexity, 60, 2020. doi: 10.1016/j.jco.2020.101498. Referenced on pages 2, 3, 6 and
7.

[17] Qiao-Long Huang. Sparse Polynomial Interpolation over Fields with Large or
Zero Characteristic. In Proceedings of the 2019 on International Symposium on

Symbolic and Algebraic Computation - ISSAC ’19, pages 219–226, Beijing, China,
2019. ACM Press. doi: 10.1145/3326229.3326250. Referenced on pages 4 and 14.

[18] Seyed Mohammad Mahdi Javadi and Michael Monagan. Parallel sparse poly-
nomial interpolation over finite fields. In Proceedings of the 4th International

Workshop on Parallel and Symbolic Computation, PASCO ’10, page 160–168,
New York, NY, USA, 2010. Association for Computing Machinery. doi:
10.1145/1837210.1837233. Referenced on page 4.

[19] Marc Joye, Pascal Paillier, and Serge Vaudenay. Efficient generation of prime
numbers. In Çetin K. Koç and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems — CHES 2000, pages 340–354, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg. Referenced on page 2.

[20] Erich Kaltofen. Fi�een years a�er DSC and WLSS2: What parallel compu-
tations I do today [invited lecture at PASCO 2010]. In Proceedings of the

4th International Workshop on Parallel and Symbolic Computation, PASCO ’10,
pages 10–17, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0067-4. doi:
10.1145/1837210.1837213. Referenced on page 4.

[21] Erich Kaltofen andWen-shin Lee. Early termination in sparse interpolation algo-
rithms. Journal of Symbolic Computation, 36(3-4):365–400, 2003. ISSN 0747-7171.
doi: 10.1016/S0747-7171(03)00088-9. ISSAC 2002. Referenced on pages 4, 14 and
15.

[22] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By
Black Boxes for �eir Evaluations: Greatest Common Divisors, Factorization,
Separation of Numerators and Denominators. Journal of Symbolic Computation,
9(3):301–320, 1990. doi: 10.1016/S0747-7171(08)80015-6. Referenced on pages 4
and 14.

19

http://dx.doi.org/10.1145/2608628.2608647
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2010.07.012
http://dx.doi.org/10.1145/2733693.2733721
http://dx.doi.org/10.1016/j.jco.2020.101498
http://dx.doi.org/10.1145/3326229.3326250
http://dx.doi.org/10.1145/1837210.1837233
http://dx.doi.org/10.1145/1837210.1837213
http://dx.doi.org/10.1016/S0747-7171(03)00088-9
http://dx.doi.org/10.1016/S0747-7171(08)80015-6

[23] Erich Kaltofen and Lakshman Yagati. Improved sparse multivariate polynomial
interpolation algorithms. In P. Gianni, editor, Proc. ISSAC, pages 467–474, 1988.
doi: 10.1007/3-540-51084-2 44. Referenced on pages 4 and 14.

[24] Erich Kaltofen, Yagati N. Lakshman, and John-Michael Wiley. Modular rational
sparse multivariate polynomial interpolation. In Proceedings of the international

symposium on Symbolic and algebraic computation, ISSAC ’90, pages 135–139,
Tokyo, Japan, 1990. ACM Press. doi: 10.1145/96877.96912. Referenced on page 4.

[25] Richard M. Karp and Michael O. Rabin. Efficient randomized pa�ern-matching
algorithms. IBM Journal of Research and Development, 31(2):249–260, 1987. doi:
10.1147/rd.312.0249. Referenced on page 5.

[26] Leopold Kronecker. Grundzüge einer arithmetischen theorie der algebraischen
grössen. Journal für die reine und angewandte Mathematik, 92:1–122, 1882. Ref-
erenced on page 14.

[27] Daniel Lazard. A new method for solving algebraic systems of posi-
tive dimension. Discrete Applied Mathematics, 33(1):147–160, 1991. doi:
10.1016/0166-218X(91)90113-B. Referenced on page 2.

[28] Ueli M. Maurer. Fast generation of prime numbers and secure public-key
cryptographic parameters. Journal of Cryptology, 8(3):123–155, 1995. doi:
10.1007/BF00202269. Referenced on page 2.

[29] Marc Moreno Maza and Renaud Rioboo. Polynomial gcd computations over
towers of algebraic extensions. In Applied Algebra, Algebraic Algorithms and

Error-Correcting Codes, pages 365–382, Berlin, Heidelberg, 1995. Springer Berlin
Heidelberg. doi: 10.1007/3-540-60114-7 28. Referenced on page 2.

[30] Robert T. Moenck. Fast computation of gcds. In Proceedings of the 5th Annual

ACM Symposium on �eory of Computing, April 30 - May 2, 1973, Austin, Texas,

USA, pages 142–151. ACM, 1973. doi: 10.1145/800125.804045. Referenced on
page 3.

[31] Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard.
Faster modular composition. CoRR, abs/2110.08354, 2021. URL
https://arxiv.org/abs/2110.08354. Referenced on page 3.

[32] Masayuki Noro. Modular dynamic evaluation. In Proceedings of the 2006 Inter-

national Symposium on Symbolic and Algebraic Computation, ISSAC ’06, page
262–268, New York, NY, USA, 2006. Association for Computing Machinery. doi:
10.1145/1145768.1145812. Referenced on page 2.

[33] Adrien Poteaux and Martin Weimann. Computing puiseux series: a fast divide
and conquer algorithm. Annales Henri Lebesgue, 2021. Referenced on page 2.

[34] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for
some functions of prime numbers. Ill. J. Math., 6:64–94, 1962. URL
http://projecteuclid.org/euclid.ijm/1255631807 . Refer-
enced on page 5.

20

http://dx.doi.org/10.1007/3-540-51084-2_44
http://dx.doi.org/10.1145/96877.96912
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1016/0166-218X(91)90113-B
http://dx.doi.org/10.1007/BF00202269
http://dx.doi.org/10.1007/3-540-60114-7_28
http://dx.doi.org/10.1145/800125.804045
https://arxiv.org/abs/2110.08354
http://dx.doi.org/10.1145/1145768.1145812
http://projecteuclid.org/euclid.ijm/1255631807

[35] Arnold Schönhage. Schnelle berechnung von ke�enbruchentwicklungen. Acta
Informatica, 1(2):139–144, Jun 1971. doi: 10.1007/BF00289520. Referenced on
page 9.

[36] Victor Shoup. AComputational Introduction to Number�eory and Algebra. Cam-
bridge University Press, 2008. ISBN 978-0-521-51644-0. Referenced on pages 2,
16 and 17.

[37] Damien Stehlé and Paul Zimmermann. A binary recursive gcd algo-
rithm. In Duncan Buell, editor, Algorithmic Number �eory: 6th Interna-

tional Symposium, ANTS-VI, Burlington, VT, USA, June 13-18, 2004, Proceed-

ings, pages 411–425, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. doi:
10.1007/978-3-540-24847-7 31. Referenced on page 9.

[38] Robert M. Young. 75.9 Euler’s Constant. �e Mathematical Gaze�e, 75(472):187–
190, 1991. doi: 10.2307/3620251. Referenced on page 17.

21

http://dx.doi.org/10.1007/BF00289520
http://dx.doi.org/10.1007/978-3-540-24847-7_31
http://dx.doi.org/10.2307/3620251

	1 Introduction
	1.1 Algorithmic transformation technique
	1.2 Application to sparsity determination
	1.3 Summary of contributions

	2 Prime density and counting bounds
	3 Computational model
	3.1 Modular PRNGs
	3.2 Algebraic RAM with integer I/O

	4 Algorithm transformation for random prime fields
	4.1 Transformation procedure
	4.2 Correlated PRNGs
	4.3 Analysis

	5 Computing the sparsity of integer polynomials
	5.1 Sparsity over a sufficiently large field
	5.2 Sparsity over the integers

	6 Random irreducible polynomials without irreducibility testing
	References

