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Abstract
Understanding the geographic distribution of species is a key concern in conservation. By pairing
species occurrences with environmental features, researchers can model the relationship between an
environment and the species which may be found there. To advance research in this area, a large-scale
machine learning competition called GeoLifeCLEF 2022 was organized. It relied on a dataset of 1.6
million observations from 17K species of animals and plants. These observations were paired with
high-resolution remote sensing imagery, land cover data, and altitude, in addition to traditional low-
resolution climate and soil variables. The main goal of the challenge was to better understand how to
leverage remote sensing data to predict the presence of species at a given location. This paper presents an
overview of the competition, synthesizes the approaches used by the participating groups, and analyzes
the main results. In particular, we highlight the ability of remote sensing imagery and convolutional
neural networks to improve predictive performance, complementary to traditional approaches.

Keywords
LifeCLEF, evaluation, benchmark, biodiversity, presence-only data, environmental data, remote sensing
imagery, multi-modal data, species distribution, species distribution models

1. Introduction

In order to make informed conservation decisions, it is essential to understand where different
species live. Citizen science projects now generate millions of geo-located species observations
every year, covering tens of thousands of species. But how can these point observations be used
to predict what species might be found at a new location?

A common approach is to build a species distribution model (SDM) [1], which uses a location’s
environmental covariates (e.g., temperature, elevation, land cover) to predict whether a species
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Figure 1: Illustration of the patches corresponding to observation 10171444 on the Pic Saint-Loup
mountain, France. Each species observation is paired with high-resolution covariates (clockwise from
top left: RGB imagery, NIR imagery, land cover, altitude).

is likely to be found there. Once trained, the model can be used to make predictions for any
location where those covariates are available.

Developing an SDM requires a dataset where each species observation is paired with a
collection of environmental covariates. However, many existing SDM datasets are both highly
specialized and not readily accessible, having been assembled by scientists studying particular
species or regions. In addition, the provided environmental covariates are typically coarse, with
resolutions ranging from hundreds of meters to kilometers per pixel.

In this work, we present the results of the GeoLifeCLEF 2022 competition which is part of the
LifeCLEF evaluation campaign [2] and co-hosted in Ninth Workshop on Fine-Grained Visual
Categorization (FGVC9)1 at CVPR 2022. This competition is the fifth GeoLifeCLEF challenge. In
the first two editions, GeoLifeCLEF 2018 [3] and GeoLifeCLEF 2019 [4], each observation was
associated only with environmental features given as vectors or patches extracted around the
observation. Like the two last year’s campaigns (GeoLifeCLEF 2020 [5] and GeoLifeCLEF 2021
[6]), GeoLifeCLEF 2022 is aimed at bridging the previously mentioned gaps by (i) sharing a
large-scale dataset of observations paired with high-resolution covariates and (ii) defining a
common evaluation methodology to measure the predictive performance of models trained on
this dataset. The dataset contains over 1.6 million observations of plant and animal species.
Each observation is paired with high-resolution remote sensing imagery—see Figure 1—as
well as traditional environmental covariates (i.e., climate and soil variables). To the best of
our knowledge, GeoLifeCLEF dataset is the largest publicly available dataset to pair remote
sensing imagery with species observations. Our hope is that this analysis-ready dataset and
associated evaluation methodology will (i) make SDM and related problems more accessible to
machine learning researchers and (ii) facilitate novel research in large-scale, high-resolution,

1https://sites.google.com/view/fgvc9

https://sites.google.com/view/fgvc9


(a) US

(b) France

Figure 2: Observations distribution over the US and France. Training observation data points are shown
in blue while test data points are shown in red.

and remote-sensing-based species distribution modeling.

2. Dataset and evaluation protocol presentation

Data collection. The dataset used for the 2022 edition is a cleaned-up version of the data
of the two previous years. A detailed description of the original GeoLifeCLEF 2020 dataset is
provided in [7]. The following modifications were made for the 2022 version:

• Removed observations of species from kingdom different from Plantae and Animalia
(29,240 observations, 2,072 species).

• Completed species metadata with genus, family, and kingdom information from GBIF.
• Kept only one observation when it is duplicated—same latitude, longitude, and species

(110,556 observations removed).
• Removed all observations at exactly the same location—same latitude and longitude,

different species (103,887 observations removed).
• Removed observations from species only present in the test set (208 observations, 188

species).
• Removed species with strictly less than 3 observations in the train set (13,336 observations,

9,913 species).
• species_id updated (not aligned with GeoLifeCLEF 2020 and 2021), in the end, 17,037

species are retained.
• Updated all altitude patches:

– Re-extraction of patches using bi-cubic interpolation instead of bi-linear interpola-
tion.

– An issue which resulted in artifacts on a few altitude patches from past years was
also fixed.
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Figure 3: Distribution of observations across species highlighting the long-tail class-imbalance of the
dataset.

The final GeoLifeCLEF 2022 dataset consists of 1,663,996 observations covering 17,037 plants
and animal species distributed across US (975,357 observations, 14,135 species) and France
(688,539 observations, 4,858 species), as shown in Figure 2. The number of observations of
each species is not uniform and follows a long-tail distribution shown in Figure 3. Each
species observation is paired with high-resolution covariates (RGB-NIR imagery, land cover,
and altitude) as illustrated in Figure 1. These high-resolution covariates are re-sampled to a
spatial resolution of 1 meter per pixel and provided as 256× 256 images covering a 256m ×
256m square centered on each observation. RGB-NIR imagery come from the 2009-2011 cycle of
the National Agriculture Imagery Program (NAIP) for the US2, and from the BD-ORTHO® 2.0
and ORTHO-HR® 1.0 databases from the IGN for France3. Land cover data originates from the
National Land Cover Database (NLCD) [8] for the US and from CESBIO4 for France. All elevation
data comes from the NASA Shuttle Radar Topography Mission (SRTM)5. In addition, the dataset
also includes traditional coarser resolution covariates: 19 bio-climatic rasters (30arcsec2/pixel,
i.e., 1km2/pixel, from WorldClim [9]) and 8 pedologic rasters (250m2/pixel, from SoilGrids [10]).
The details of these rasters are given in Table 1.

Train-test split. The full set of occurrences was split into training and testing sets using
a spatial block holdout procedure as illustrated in Figure 4. This limits the effect of spatial
auto-correlation in the data [11]. Using this splitting procedure, a model cannot perform well by
simply interpolating between training samples. The split was based on a global grid of 5km
× 5km quadrats. 2.5% of these quadrats were randomly sampled and the observations falling
in those formed the test set. 10% of those observations were used for the public leaderboard
on Kaggle while the remaining 90% allowed to compute the private leaderboard providing the
final results of the challenge. Similarly, another 2.5% of the quadrats were randomly sampled
to provide an official validation set. The remaining quadrats and their associated observations
were assigned to the training set.

2https://www.fsa.usda.gov
3https://geoservices.ign.fr
4http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-s2-2016/
5https://lpdaac.usgs.gov/products/srtmgl1v003/

https://www.fsa.usda.gov
https://geoservices.ign.fr
http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-s2-2016/
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Table 1
Summary of the low-resolution environmental variable rasters provided. The first 19 rows correspond to
the bio-climatic variables from WorldClim [9]. The last 8 rows correspond to the pedologic variables
from SoilGrid [10].

Name Description Resolution
bio_1 Annual Mean Temperature 30 arcsec
bio_2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 30 arcsec
bio_3 Isothermality (bio_2/bio_7) (* 100) 30 arcsec
bio_4 Temperature Seasonality (standard deviation *100) 30 arcsec
bio_5 Max Temperature of Warmest Month 30 arcsec
bio_6 Min Temperature of Coldest Month 30 arcsec
bio_7 Temperature Annual Range (bio_5-bio_6) 30 arcsec
bio_8 Mean Temperature of Wettest Quarter 30 arcsec
bio_9 Mean Temperature of Driest Quarter 30 arcsec

bio_10 Mean Temperature of Warmest Quarter 30 arcsec
bio_11 Mean Temperature of Coldest Quarter 30 arcsec
bio_12 Annual Precipitation 30 arcsec
bio_13 Precipitation of Wettest Month 30 arcsec
bio_14 Precipitation of Driest Month 30 arcsec
bio_15 Precipitation Seasonality (Coefficient of Variation) 30 arcsec
bio_16 Precipitation of Wettest Quarter 30 arcsec
bio_17 Precipitation of Driest Quarter 30 arcsec
bio_18 Precipitation of Warmest Quarter 30 arcsec
bio_19 Precipitation of Coldest Quarter 30 arcsec
orcdrc Soil organic carbon content (g/kg at 15cm depth) 250 m
phihox Ph x 10 in H20 (at 15cm depth) 250 m
cecsol cation exchange capacity of soil in cmolc/kg 15cm depth 250 m

bdticm Absolute depth to bedrock in cm 250 m
clyppt Clay (0-2 micro meter) mass fraction at 15cm depth 250 m
sltppt Silt mass fraction at 15cm depth 250 m

sndppt Sand mass fraction at 15cm depth 250 m
bldfie Bulk density in kg/m3 at 15cm depth 250 m

Evaluation metric. For each occurrence in the test set, the goal of the task was to return a
candidate set of species likely to be present at that location. Due to the presence-only [12] nature
of the observation data used during the evaluation of the methods, for each location in the test
set, we only have the knowledge of the presence of one species—the one observed—among the
different ones which can actually be found all together at that point. To measure the precision
of the predicted sets while accommodating with this limited knowledge, a simple set-valued
classification [13] metric was chosen as the main evaluation criterion: top-30 error rate. Each
observation 𝑖 is associated with a single ground-truth label 𝑦𝑖 corresponding to the observed
species. For each observation, the submissions provided 30 candidate labels 𝑦𝑖,1, 𝑦𝑖,2, . . . , 𝑦𝑖,30.
The top-30 error rate is then computed using

Top-30 error rate =
1

𝑁

𝑁∑︁
𝑖=1

𝑒𝑖 where 𝑒𝑖 =

{︃
1 if ∀𝑘 ∈ {1, . . . , 30}, 𝑦𝑖,𝑘 ̸= 𝑦𝑖

0 otherwise



Figure 4: Observations located around Montpellier, France. Training observation data points are shown
in blue while test data points are shown in red.

Note that this evaluation metric does not try to correct the sampling bias [14] inherent to
present-only observation data (linked to the density of population, etc.). The absolute value of
the resulting figures should thus be taken with care. Nevertheless, this metric does allow to
compare the different approaches and to determine which type of input data and of models are
useful for the species presence detection task.

Course of the challenge. The training and test data were publicly shared on 9th March 2022
through the Kaggle platform6. Any research team wishing to participate in the evaluation could
register on the platform and download the data. Each team could submit up to 3 submissions
per day to compete on the public leaderboard. A submission takes the form of a CSV file
containing the top-30 predictions of the method being evaluated for all observations in the
test set. For each submission, the top-30 error rate was first computed only on a subset of the
test set to produce the public leaderboard which was visible to all the participants while the
competition was still running. Once the submission phase was closed (25th May 2022), only 5
submissions per team were retained to compute the private leaderboard using the rest of the
test set. These submissions were either hand-picked by the team or automatically chosen as
the 5 best performing submissions on the public leaderboard. The participants could then see
the final scores of all the other participants on the private leaderboard as well as their final
ranking. Each participant was asked to provide a working note, i.e., a detailed report containing
all technical information required to reproduce the results of the submissions. All LifeCLEF
working notes were reviewed by at least two members of the LifeCLEF organizing committee to
ensure a sufficient level of quality and reproducibility.

3. Baseline methods

Four baselines were provided by the organizers of the challenge to serve as comparison references
for the participants while developing their own methods. They consisted in:

• Top-30 most present species: a constant predictor returning always the same list of
6https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9/

https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9/


the most present species, i.e., the ones having the most occurrences in the training set.
• RF on environmental variables: a random forest (RF) model [15] trained on environ-

mental feature vectors only, i.e., on the 27 climatic and soil variables extracted at the
position of the observation (using scikit-learn [16] implementation with 100 trees of max
depth 16).

• CNN on 3-channels patches: a ResNet-50 [17] convolution neural network (CNN)
trained on the high-resolution 256 × 256 patches using PyTorch [18]. Two different
baselines are provided:

– CNN on RGB patches: standard ResNet-50 pre-trained on ImageNet taken from
Pytorch Hub7 finetuned using stochastic gradient descent (SGD) with a learning
rate of 0.01, a Nesterov momentum of 0.9, a batch size of 32, and early stropping on
top-30 error rate. Standard data augmentation was used: a random rotation of 45°, a
random crop of size 224× 224, and random flipping (both horizontal and vertical).

– CNN on RG+NIR patches: same method (and same hyperparameters) than for
RGB patches but with input images where the blue channel has been replaced by
the near-infrared patch.

These baselines were designed to be simple to leave room for the ideas of the participants
while providing some comparison to classical models in the SDM literature using machine
learning models on tabular data [19, 20, 21] and to more recent approaches using CNNs on
image patches [22].

4. Participants and main results

52 teams participated and submitted at least one prediction file through the Kaggle8 page of the
GeoLifeCLEF 2022 challenge for a total number of submissions in the course of the competition
of 261. The final standing is shown in Figure 5.

Out of these 52 teams, 7 managed to beat the weakest non-constant baseline provided and 5
the strongest one. These 7 top participants are Sensio team, Matsushita-san from EPFL (Ecole
Polytechnique Fédérale de Lausanne) [23], New moon from CDUT (Chengdu University of
Technology), Cesar LEBLANC from LIRMM / Inria [24], Mila_gang from UdeM / Mila (Université
de Montréal / Mila, Quebec AI institute) [25], Sachith Seneviratne from UoM (University of
Melbourne), and, Juntao Jiang from ZJU (Zhejiang University) [26]. In the rest of the paper, we
will be referring to the participants using their affiliations. Figure 6 shows the standings of these
7 top participants using their affiliations. The submissions of 4 of those participants are further
developed in their individual working notes [23, 24, 25, 26]. As the winning team Sensio Team
did not submit a working notes paper but did provide some information about their method9,
this input is reported in Appendix A for completeness. However, due to the conciseness of their
feedback, they did not supply any details of the performance of their individual models, no
ablation study, nor further analysis.

7https://pytorch.org/vision/stable/models.html
8https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9
9https://www.kaggle.com/competitions/geolifeclef-2022-lifeclef-2022-fgvc9/discussion/327055

https://pytorch.org/vision/stable/models.html
https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9
https://www.kaggle.com/competitions/geolifeclef-2022-lifeclef-2022-fgvc9/discussion/327055
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Figure 5: Results of the GeoLifeCLEF 2022 task as provided by the private leaderboard of Kaggle (with
Kaggle team names). The top-30 error rates of the best submission of each participant are shown in
blue. The provided baselines are shown in orange.

5. Methods

In this section, we highlight the main methods used by the participants.

5.1. Multi-modal models

The main challenge of this competition was to find a proper way to aggregate the heterogeneous
sources of data and to deal with their respective characteristics: while RGB and NIR patches
are standard images, other data was not directly provided in this format. For instance, altitude
can not be cast in uint8 without loss of information, land cover data is a categorical variable,
bioclimatic and pedologic data have a resolution and range of their own, and, localization (GPS
coordinates) is a punctual information. Interestingly, the participants did try different means of
aggregating this heterogeneous data with more or less success and conflicting results. Figure 7
summarizes the main architectures tested in the course of GeoLifeCLEF 2022 to aggregate the
different modalities. Note that they are not mutually exclusive and that some participants
actually used several different aggregation methods at the same time.

Early input aggregation. The input patches are aggregated together resulting in a final
patch with additional channels. This patch can then be fed to a single CNN whose first layer
was adapted to accept more than three channels. In GeoLifeCLEF 2020, [27] used this approach
to train a model from scratch using most modalities available. This year, Sensio Team and
UdeM / Mila used this approach to aggregate together the RGB patches with the NIR ones. They
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Figure 6: Results of the GeoLifeCLEF 2022 task of the 7 top participants. The top-30 error rates of the
best submission of each participant are shown in blue. The provided baselines are shown in orange.

used a pre-trained model and randomly initialized the added filters for the NIR channels (no
details were provided on that regard by Sensio Team). The advantage of this method is that the
resulting model is rather simple and little compared to the other aggregation methods. On the
other hand, all the modalities have to be given as patches of the same size10. Moreover, as the
modalities are aggregated early, the model might struggle to build a relevant feature space if
these modalities are too different from one another.

Independent feature extractors. Instead of directly aggregating the modalities at the
input of the model, these modalities can go through separate networks to extract different
representations adapted for each of them. These representations can then be concatenated to
create a global multi-modal feature vector which can then be fed to a classifier—with a single or
multiple linear layers. This approach has been successfully applied during GeoLifeCLEF 2021
[28] and was yet again used for GeoLifeCLEF 2022 by top teams Sensio Team (winning solution),
EPFL and UdeM / Mila. These different teams have rather contradictory conclusions on the
effectiveness of this approach. EPFL used two feature extractors based on CNNs, one for RGB
and another one for a 3-channel patch containing NIR, altitude, and NDVI11 data. They report
some instability issues during training and a decrease in performance compared to using a single
CNN on RGB patches. Sensio Team and UdeM / Mila used one feature extractor based on a CNN
for either RGB+NIR (Sensio Team and UdeM / Mila) or NIR+GB (Sensio Team) patches and another
one based on an neural network on tabular data, a multi-layer perceptron (MLP) for Sensio

10Note that, using this approach, it is technically possible to incorporate vector data by creating constant patches as
did LIRMM / Inria to create patches from the coordinates of the observations.

11The normalized difference vegetation index (NDVI) is a simple measure of vegetation computed from the red
channel from RGB patches and the near-infrared data.



(a) Early input aggregation.

(b) Independent feature extractor for each modality.

+

(c) Late predictions averaging.

Figure 7: Possible architectures for multi-modal models, ranging from early to late aggregation of the
different modalities. Note that it is possible to aggregate modalities given as patches but also as vectors.

Team and a tabular ResNet [29] for UdeM / Mila. According to UdeM / Mila, this approach also
degraded the performance compared to their baseline model. It seems however that Sensio Team
managed to obtain some gains. The strength of this independent feature extractors approach is
that it is more likely to be able to properly extract the relevant information from very different
modalities. Nevertheless, it is still not clear how to properly train such a model. Moreover, the
resulting model is much bigger and has to be jointly trained. This can trigger some memory
issues. [27] carried out post-challenge experiments that provide some insights on those two
aspects.

Late predictions averaging. A straightforward and easy-to-implement aggregation ap-
proach consists in training separate models and averaging their predictions. LIRMM / Inria
successfully used this approach as their main submission by learning 8 separate CNNs (thus
solely on patches) for RGB, NIR, altitude, land cover, 3 selected temperature variables, 3 selected
precipitation variables, 3 selected pedological variables, and the coordinates of the observations.
Sensio Team also partly used this approach but rather as an ensembling method of good per-
forming models than as an explicit way to aggregate different modalities. The advantage of
this approach is its simplicity and the fact that models can be trained independently, it is thus



easy to add or remove one modality. However, the backlash is that there is no joint training of
the model and, as there is no learned fusion layer, the modalities are only weakly mixed in the
model which might harm its predictive performance.

Finally, besides these three main approaches, CDUT [30] used different ways to aggregate
the modalities using an architecture based on a Swin transformer [31]. This approach seems
promising, further experiments are necessary to measure the exact performance of such methods.

5.2. Species imbalance

Another important trait of the dataset is its imbalance shown in Figure 2: a few species account
for most of the observations, while a lot of them have only been observed a handful of times.
EPFL and ZJU tried to use specialized method for this type of data such as focal loss [32],
balanced softmax [33] or more advanced methods. These did not help improve their scores,
most likely because the test set shares the same imbalance as the training set and the evaluation
metric did take it into account (the fixed list of metrics implemented by Kaggle did not allow us
to use a class-averaged top-30 error rate).

5.3. Presence-only observation data

One last major characteristic of the dataset is that the observation data provided is presence-only
data: at a given location, we only know that one species is present and do not have access to
the complete list of species present or the ones absent. The winning team Sensio Team and EPFL
tried to address this by using a grid of squared cells to aggregate the species observed into each
cell. They then used this information in a different manner. The winning team tried to map the
30 species closest to each training point falling into its cell and used this list as the new label.
Unfortunately, in the given time, this approach only resulted in overfitting. On the other hand,
EPFL successfully used the aggregated observations as a regularization method by replacing the
label assigned to each training observation by another species from its cell 10% of the time.

5.4. Other techniques used

Participants tried out different CNN architectures such as ResNet [17], DenseNet [34], Inception-
V4 [35], and EfficientNet [36]. But also transformers such as ViT [37] tested without success by
EPFL and Swin transformer [31] by CDUT . However, the results of these latter models were
mixed.

Different approaches for model pre-training were also tested: no pre-training, pre-training
on ImageNet, and pre-training on another dataset closer to GeoLifeCLEF 2022 (by UdeM / Mila).
In the end, using models pre-trained on ImageNet gave consistently better results.

Multi-task learning has been used by two participants, EPFL and UdeM / Mila. EPFL modified
the models to predict the different levels of taxonomy, i.e., species, genus, family, and kingdom.
On the other hand, UdeM / Mila added two additional tasks beyond species prediction: land cover
semantic segmentation and country prediction. Unfortunately, both attempts were unsuccessful.

While most participants used a single model for both countries, US and France, ZJU used
two separate models. EPFL tried both approaches and did not notice any difference in predictive
performance.



Finally, EPFL, instead of solely using the raw input data, computed the NDVI, a classical
vegetative index, using the red channel of RGB patches and the NIR patches. However, as their
modality aggregation approach was not fully successful, it is unclear whether it is better to
compute explicitly this index or to let the model learn to compute it if it manages to do so and
finds it relevant for the task.

6. Conclusion and perspectives

The 2022 edition of GeoLifeCLEF has shown a growing interest from the machine learning
community towards the challenge. Several dozen people/research groups conducted experiments
on the provided dataset and 7 of them managed to obtain better performances than the basic
models provided by the organizers. Several participants expressed their satisfaction at having
participated and emphasized the fact that this challenge had allowed them to address new
issues with respect to their past experience in machine learning. The following two aspects, in
particular, were highlighted:

1. the design and use of multi-modal networks requiring to mix structured with unstructured
data, and finding effective solutions to capture features specific to each modality as well
as interactions across modalities.

2. the design of new methods to tackle the presence-only problem which is rarely discussed
in the machine learning community.

The challenge has thus allowed the experimentation of new approaches, some of which will be
the subject of subsequent publications by the participants.

One way to improve the challenge would be to include presence/absence data as an additional
test set (and possibly validation set). Having only presence-only occurrences in the test set
indeed makes the evaluation of methods more difficult, especially to define an appropriate
evaluation metric. The top-𝐾 error has indeed the defect to depend on the parameter 𝐾 and
not taking into account the variability of the number of species.
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A. Winners solution summary

As the winners did not submit a working notes paper but described their method in the “Dis-
cussion” tab on the Kaggle page of the competition12, we summarize it here for archiving and
referencing purposes.

A.1. Solution description

The final solution, illustrated in Figure 8, consisted of an ensemble—averaging of the predictions—
of three models:

1. A bi-modal network with NIR+GB on a pre-trained ResNet-34 [17] stacking its final layer
to an MLP with 3 layers taking as input the environmental vectors, latitude, longitude,
country, altitude mean, max-min altitude, and “dothot” encoding (this is how they called
the softmax-onehot encoding) of land covers. These two models were connected to the
final classification layer.

2. Another bi-modal network similar to the previous with the same MLP but where the
ResNet-34 was replaced by a pre-trained MobileNetV3-large [38] taking RGB+NIR as
input. After the concatenation of the outputs of these two models, an extra linear layer of
size 2,048 with dropout and ReLU was added before the final classification layer of size
17K.

3. A random forest with 32 trees and a depth of 12 using the same inputs as the previous
MLPs with, in addition, the 25th, 50th, and 75th percentiles of each of the R, G, B, and

12https://www.kaggle.com/competitions/geolifeclef-2022-lifeclef-2022-fgvc9/discussion/327055

https://www.kaggle.com/competitions/geolifeclef-2022-lifeclef-2022-fgvc9/discussion/327055


NIR layers. In total, 81 input features were used. The whole training set (training and
validation subsets) was moreover used for fitting the final model.

The first two models used data augmentation to train the CNN models: random vertical
and horizontal flips, rotations, and 5-10% of brightness and contrast. Test-time augmentation
(TTA) was also used by averaging the mean predictions of 5 random image transformations for
each sample. Finally, adding validation data to train data was tried. It improved slightly the
performance but probably it could have been done better.

A.2. Inconclusive tests

Aggregating close labels to obtain multi-label observations was tried in different ways and
using different loss functions but none improved the performance compared to single labels.
However, the participants believe that there has to be a way to make it work.

Other architectures for the CNN models and training from scratch were tried. For instance,
the participants also tried using 3 different CNNs for (i) RGB+NIR, (ii) altitude, and (iii) land
cover patches before aggregating their outputs to the MLP on tabular data. None of these gave
better results but the participants think there is room for some of those ideas to improve the
performance of their solution. Also, they tried using gradient boosting trees [39] but with 17K
classes, it did not fit the amount of RAM available to them.



Figure 8: Winning solution summary figure provided by Sensio team. Credits: Enric Domingo.

https://www.linkedin.com/posts/e-domingo_geolifeclef-kaggle-ml-activity-6935271949359067136-1HnT?utm_source=linkedin_share&utm_medium=member_desktop_web
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