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Introduction

Flexible beams have been widely used in the fields of civil engineering and mechanical engineering. For example, many arches and vaults in Italy used metallic beams to release transverse forces of ancient buildings. Besides, as the main components of compliant manipulators, flexible beams are employed in the design of sensors and positioning motion stages. Compliance analysis is performed using an energy-based Maxwell-Mohr method under the small deformation assumption [START_REF] Wu | Efficient spatial compliance analysis of general initially curved beams for mechanism synthesis and optimization[END_REF]. Song proposed a vibration control approach for a high-rise build-ing as a flexible beam and its capability is proved by experiments [START_REF] Song | Vibration control of a high-rise building structure: theory and experiment[END_REF]. A rigid-flexible manipulator is analyzed using Hamilton's principle and a model-based boundary control method is proposed to suppress vibrations [START_REF] He | Dynamical modelling and boundary vibration control of a rigid-flexible wing system[END_REF]. Several references deal with the determination of the value of the axial force and the unknown boundary conditions of both flexible beams and cables [START_REF] Kim | Estimation of cable tension force using the frequency-based system identification method[END_REF][START_REF] Geier | Accurate cable force determination using ambient vibration measurements[END_REF][START_REF] Tullini | Dynamic identification of beam axial loads using one flexural mode shape[END_REF][START_REF] Yan | Mode shape-aided tension force estimation of cable with arbitrary boundary conditions[END_REF][START_REF] Ma | A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions[END_REF][START_REF] Li | Vibration-based estimation of axial force for a beam member with uncertain boundary conditions[END_REF][START_REF] Amabili | Estimation of tensile force in tie-rods using a frequency-based identification method[END_REF]. Li proposed a highly accurate frequency-based method for determining the tension of inclined cables during the construction and service stages of cable-stayed bridges [START_REF] Ma | A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions[END_REF]. Another vibration-based estimation of axial forces is proposed in [START_REF] Li | Vibration-based estimation of axial force for a beam member with uncertain boundary conditions[END_REF], which utilizes several sensors to evaluate the axial force and stiffness at the ends of a beam. Moreover, an identification technique is developed in [START_REF] Amabili | Estimation of tensile force in tie-rods using a frequency-based identification method[END_REF] to assess the tensile force of rods in ancient buildings by measuring natural frequencies. In [START_REF] Ma | An accurate frequency-based method for identifying cable tension while considering environmental temperature variation[END_REF], environmental temperature is involved in the cable tension estimation based on frequency presented. Furthermore, measurement uncertainty is accounted for in the estimation of axial force and boundary conditions with the use of interval analysis in [START_REF] Kernicky | Dynamic identification of axial force and boundary restraints in tie rods and cables with uncertainty quantifi-cation using set inversion via interval analysis[END_REF]. In these studies, the external force applied to the flexible beam is along the central axis of the beam, which is valid for the application of the beam/rod in civil buildings because of its symmetry. As a matter of fact, in other applications such as truss structures, the external force exerted on the flexible beam may not always act along the central axis. In our previous study [START_REF] Tang | Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables[END_REF], a single-link flexible mechanism with two cables was proposed to achieve high-speed movement with a lightweight structure. The dynamic modelling without pretension in cables is derived from energy analysis using the classic extended Hamilton's principle. Besides, the mixed variational formu-lation of slender beams is widely employed to analyze the dynamic properties of geometrically nonlinear composite beams [START_REF] Asdaque | An electromechanically coupled intrinsic, mixed variational formulation for geometrically nonlinear smart composite beam[END_REF][START_REF] Yu | GEBT: A general-purpose nonlinear analysis tool for composite beams[END_REF][START_REF] Hodges | A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[END_REF].

Cables can be utilized to improve the stiffness of flexible link systems [START_REF] Tang | Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables[END_REF][START_REF] Sun | Dynamic response of spatial flexible structures subjected to controllable force based on cable-driven parallel robots[END_REF][START_REF] Dixit | Cable stiffened flexible link manipulator[END_REF]. The cable modes of vibration and their interaction with the end-effector are investigated with the dynamic stiffness matrix method in [START_REF] Dixit | Cable stiffened flexible link manipulator[END_REF][START_REF] Kim | Dynamic stiffness matrix of an inclined cable[END_REF], especially when non-negligible cable mass and elas-ticity is considered (e.g., [START_REF] Chawla | Effect of Effect of selection criterion on the kineto-static solution of a redundant cable-driven parallel robot considering cable mass and elasticity[END_REF]). Besides, a global mode analysis method is proposed to investigate the dynamic modelling of a flexible-link system with a tip mass and a flexible joint [START_REF] Wei | Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass[END_REF]. For a cable-stayed beam, it is found in [START_REF] Wang | Measured frequency for the estimation of cable force by vibration method[END_REF] that the cable-deck interaction exerts no influence on the low-order out-of-plane modal frequencies, which shows the effect of the flexible stiffness of the cablestayed beam on the natural frequency of the cables. However, only a theoretical deduction is provided without experimental verification. A localization factor is intro-duced to determine the local modes of a simple cable-stayed beam model in [START_REF] Gattulli | Localization and veering in the dynamics of cable-stayed bridges[END_REF]. The coupling interaction between the cables and the beam is well-established in the dynamic solutions without considering the effect of cable pretension on the beam. Vibration of a flexible crane cable is suppressed in two-dimensional space using boundary control strategy in [START_REF] He | Boundary vibration control of variable length crane systems in two-dimensional space with output constraints[END_REF]. In the present paper, the dynamics of the cables are neglected due to the very low mass of the cables used, while the force at the end of the flexible link, which is due to the variation of cable lengths, will be taken into account. It is worth noting that only one cable is active in suppressing the vibration of the link through cable tension under the assumption that no pretension is added to the two cables [START_REF] Tang | Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables[END_REF]. In this situation, the external force (i.e., the force applied by the cables on the beam) is actually not acting along the central axis of the flexible beam. Even though cable pretension is considered, the direction of the net force applied by the two cables at the end of the flexible link will change during the motion. Therefore, the axial force assumption made in the methods proposed in the literature cannot be directly applied to investigate the dynamic characteristics of the flexible single-link system with cables.

The pretension of cables has been taken into consideration in the literature, especially in the field of cable-stayed bridges [START_REF] Caracoglia | Effectiveness of cable networks of various configurations in suppressing stay-cable vibration[END_REF][START_REF] Giaccu | Modeling "unilateral" response in the cross-ties of a cable network: Deterministic vibration[END_REF][START_REF] Giaccu | Generalized pow-law stiffness model for nonlinear dynamics of in-plane cable networks[END_REF][START_REF] Zuo | Field observation of vertex-and rain-wind-induced stay-cable vibrations in a three-dimensional environment[END_REF]. The design of cross-ties in the cable-stayed bridges have received a particular attention. Numerical simulations and in-situ measurement records have demonstrated the validity of cross-tie configuration systems in mitigating oscillations [START_REF] Caracoglia | Effectiveness of cable networks of various configurations in suppressing stay-cable vibration[END_REF]. It has also been concluded that the performance of the cable network primarily relies on both the geometric properties of the cross-ties and their relative position on two stays of the bridge. One of the most important steps in the process of designing the cross-ties for cable network systems is to define the amount of cable pretension needed to avoid slacking [START_REF] Giaccu | Modeling "unilateral" response in the cross-ties of a cable network: Deterministic vibration[END_REF]. Several models were used to simulate cable pretension in cable-stayed bridges such as the nonlinear power-law model in [START_REF] Giaccu | Generalized pow-law stiffness model for nonlinear dynamics of in-plane cable networks[END_REF]. It was used to represent the incipient failure of cables due to snapping or slackening which has been observed in the literature (e.g., [START_REF] Zuo | Field observation of vertex-and rain-wind-induced stay-cable vibrations in a three-dimensional environment[END_REF]).

In the present study, a linear elastic model is adopted for the cables, where a pretension is active only when the cable is in tension (denoted as a unilateral feature in [START_REF] Giaccu | Modeling "unilateral" response in the cross-ties of a cable network: Deterministic vibration[END_REF]). Generally, cable pretension is maintained to increase the stiffness of the flexible link system. However, bulking effect of the flexible beam should be carefully considered when high cable pretension is used because of structural instability. The maximum cable pretension is limited by the critical bearing capacity of a rod or beam with respect to buckling. The exact solutions to buckling study of rods with various boundary conditions are investigated in [START_REF] Bazant | Structural stability[END_REF][START_REF] Wang | Exact solutions for buckling of structural members[END_REF]. Experimental research of simple supported thin-walled columns was presented with the aim of evaluating critical forces in [START_REF] Debski | Buckling and postbuckling behaviour of thin-walled composite channel section column[END_REF]. To improve the measuring accuracy, a testing procedure was proposed through the correction of the lateral load to avoid plastic deformation [START_REF] Blostotsky | Improving the reliability of measuring critical buckling load in sway mode frames[END_REF]. In addition, a non-destructive method of predicting the critical buckling force of thin-walled columns was investigated in [START_REF] Boscato | Experimental and numerical investigation on dynamic properties of thin-walled GFRP buckled columns[END_REF] based on the fundamental frequency. Another study on the experimental determination of buckling load of beams with various end connections was conducted in [START_REF] Go | Experimental determination of the buckling load of a straight structural member by using dynamic parameters[END_REF]. Furthermore, critical buckling loading for beams or columns with initial cracks is studied in the literature [START_REF] Bilgehan | Comparison of ANFIS and NN models-With a study in critical buckling load estimation[END_REF][START_REF] Fan | Stability of a cracked Timoshenko beam-column by modified Fourier series[END_REF]. In practice, the existence of cracks is prevalent for structural components in engineering and causes a lower buckling load than designed critical values [START_REF] Jiki | Buckling analysis of pre-cracked beam-columns by Liapunov's second method[END_REF]. Nevertheless, the present paper will concentrate on the analysis of intact beams and cables used in a flexible mechanism.

On the one hand, the issue of the buckling load determination for flexible beams with various boundary conditions has been resolved and experimentally validated in the literature. Usually, an external load is applied on one end of a beam, which leads to the occurrence of buckling phenomenon once the load exceeds the critical buckling load. Regarding the single-link flexible mechanism in our previous work, the addi-tion of two cables has been verified to improve the performance of the system in terms of natural frequency [START_REF] Tang | Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables[END_REF]. On the other hand, the cable pretension will affect the complexity of the critical buckling load determination in the cable-stiffened flexible beam considered in the present paper. Cables play a crucial part in both forming a cable-beam structure and exerting pretensions on the beam. To avoid the buckling effect, it is fundamental to estimate the maximum cable pretension for achieving an admissible mechanism motion accuracy. Therefore, the main contribution of this paper is to develop a method that can predict the buckling load for a single-link flexible mechanism with two pretensioned cables. By employing von Ká rmá n nonlinearity due to the cable pretension, a transcendental equation for solving the buckling load is obtained from the dynamical modelling using the extended Hamilton's principle. Moreover, the identical equation is obtained by identifying the structural instability occurring when the lateral stiffness reduces to zero. To further validate the proposed method, a simulation model in ANSYS is built and the resulting buckling loads turn out to be in good agreement with those obtained with the proposed method. More importantly, the analytical and simulation results are both verified by practical experiments on a physical testbed consisting of one flexible beam and two cables.

This paper studies a single-link flexible mechanism with cables for designing a lightweight industrial manipulator with admissible accu-racy [START_REF] Tang | Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables[END_REF][START_REF] Subedi | Dynamic modeling of planar multi-link flexible manipulators[END_REF]. Other potential applications of the flexible mechanisms with pretensioned cables include suppressing the vibration of satellite solar panels [START_REF] Sun | Dynamic response of spatial flexible structures subjected to controllable force based on cable-driven parallel robots[END_REF] in aerospace, flexible wings [START_REF] He | Dynamical modelling and boundary vibration control of a rigid-flexible wing system[END_REF][START_REF] Porez | A hybrid dynamic model for bio-inspired soft robots: application to a flapping-wing micro air vehicle[END_REF][START_REF] Lau | Inverse dynamics of multilink cable-driven manipulators with the consideration of joint interaction forces and moments[END_REF] in the field of bio-inspired design and cable-driven rehabilitation devices [START_REF] Bottin | Design and Operation Improvements for CADEL Cable-Driven Elbow Assisting Device[END_REF][START_REF] Tang | Design and analysis of a gait rehabilitation cable robot with pairwise cable arrangement[END_REF][START_REF] Abdolshah | Optimizing stiffness and dexterity of planar adaptive cable-driven parallel robots[END_REF][START_REF] Shi | Dimensional synthesis of a gait rehabilitation cable-suspended robot on minimum 2-norm tensions[END_REF] as well as multilink cable-driven manipulators [START_REF] Seriani | Workspace optimization for a planar cable-suspended direct-driven robot[END_REF].

The following of this paper is organized as follows. The governing equations of motion are obtained as partial differential equations by the Hamilton's principle in Sect. 2. Critical cable pretension yielding beam buckling is investigated on the basis of this dynamic modelling in Sect. 3. Lateral stiffness of the single flexible beam with two cables is deduced in Sect. 4. Simulation of a single-link flexible mechanism is implemented both with and without cables, and the results are discussed in Sect. 5. The testbed is set up and experimental verification is implemented in Sect. 6 while Sect.7 concludes the paper.

Dynamic modelling considering cable pre-tension

A single-link flexible mechanism includes a rotational motor, a flexible link, a lightweight rigid link and a tip payload as well as two pretensioned cables as described in Fig. 1. The detailed kinematics model of this mechanism is described in previous research [START_REF] Tang | Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables[END_REF], which is introduced briefly here for the sake of completeness. Jm, θ and τ are three parameters of the rotational motor, which denote the moment of inertia, the angular displacement (positive in anticlockwise direction) and the applied torque. The flexible link is assumed to have a uniform cross-section with bending stiffness EI as well as a length L with density per unit lengthρ. The tip mass with inertial properties, namely payload mass mp and moment of inertia Jp, is added to study the effect of a grasped object and consequently is attached to the distal end of the flexible link. Due to the nearly small deformation along the z-axis direction (i.e., the direction of gravity) of the global frame, the bending deformation in the x-y plane is only considered in Fig. 1. Each cable is connected to the tip mass and to the distal end of the rigid link with a length equal to 2D. The global inertial frame of the single-link flexible mechanism is referred to as 𝑜 -𝑥𝑦 frame, and the relative frame 𝑜 -𝑥′𝑦′ is defined with the 𝑥′axis along the neutral axis of the undeformed link. The magnitudes of the two cable pretensions are denoted as t1 and t2. The actual location of a point on the flexible link is introduced by a rigid location from the undeformed link and a transversal deflection due to the bending flexibility. The rigid position vector of a point on the link is denoted as 𝐫 rl . The transversal deflection vector with respect to the relative reference frame is defined as 𝐫 t R = [0, 𝑣(𝑠, 𝑡)] T , which is related to the rigid displacement of the point s and time t. Consequently, the location of the point on the link with respect to the global frame is given as follows

𝐫 fl = [ cos𝜃 -sin𝜃 sin𝜃 cos𝜃 ] ([ 𝑠 0 ] + [ 0 𝑣(𝑠, 𝑡) ]). (1) 
The potential energy of the system includes the potential energy of the flexible Euler-Bernoulli beam 𝑉 L , due to bending and the axial compression force exerted by an identical pre-tension 𝑇 pre in the two cables, and the potential energy of the cables. It is worth noting that the presence of a compression force F is produced by the two cable pretensions, which was not considered in the previous work [START_REF] Tang | Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables[END_REF] and exerts substantial influence on the beam potential energy. The axial strain of a flexible beam is expressed by the von Ká rmá n nonlinearity through the nonlinear equation 𝜀 𝑥 = -𝑦𝑣 ′ + (𝑣 ′ ) 2 /2 [START_REF] Sinir | Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with nonuniform cross-section[END_REF], where 𝑣 ′ = ∂𝑣/ ∂𝑠. Under the assumption that the transversal deformation 𝑣 of the Euler-Bernoulli beam is small, the potential energy of the link from the cable pretension is given by taking into account the von Ká rmá n nonlinearity as

𝑉 L = 𝐸𝐼 2𝐿 3 ∫ ( 𝜕 2 𝑣 𝜕𝜁 2 ) 2 1 0 d𝜁 + 1 2𝐿 ∫ 𝐹 ( ∂𝑣 𝜕𝜁 ) 2 1 0 d𝜁, (2) 
where 𝑠 = 𝜁𝐿, 𝜁 ∈ [0,1], and F denotes the axial compression force on the flexible beam (i.e., F < 0) during the vibration of the beam. In accordance with the geometry of the layout shown in Fig. 1, the force F can be written as 𝐹 = 2𝑇 pre 𝐿/√𝐷 2 + 𝐿 2 . According to [START_REF] Wang | Measured frequency for the estimation of cable force by vibration method[END_REF], the tension variation 𝜏 ac,𝑖 of the i-th cable due to the traversal displacement 𝑣 is given as

𝜏 ac,𝑖 = 𝑘𝑣(𝐿, 𝑡)𝐷/√𝐷 2 + 𝐿 2 , 𝑖 = 1,2. (3) 
Moreover, each cable is modelled as a massless spring with an elastic coefficient 𝑘 and a uniform cross-section. Under the assumption that both cables work at a given instant of time under the identical pretension 𝑇 pre = 𝑘∆𝐿(𝑡)| 𝑡=0

, the potential energy of the two cables is 

𝑉 C | 𝑡=0 = 𝑘 (∆𝐿(𝑡)| 𝑡=0 ) 2 = 𝑇 pre 2 𝑘 , ∆𝐿(𝑡)| 𝑡=0 = √𝐷 2 + 𝐿 2 -𝐿 free , (4. 
𝑉 C | 𝑡>0 = 𝑘 2 (∆𝐿(𝑡)| 𝑡=0 -∆𝐿(𝑡)| 𝑡>0,𝑠 ) 2 + 𝑘 2 (∆𝐿(𝑡)| 𝑡=0 + ∆𝐿(𝑡)| 𝑡>0,𝑒 ) 2 , if ∆𝐿(𝑡)| 𝑡=0 > ∆𝐿(𝑡)| 𝑡>0,𝑠 > 0. (4.b)
where ∆𝐿(𝑡)| 𝑡>0,𝑒 denotes the approximate additional change of the extended cable length and is equal to √(‖𝑣| 𝑠=𝐿 ‖ + 𝐷) 2 + 𝐿 2 -√𝐷 2 + 𝐿 2 while ∆𝐿(𝑡)| 𝑡>0,𝑠 is the retracted length of the other cable which is equal to √𝐷 2 + 𝐿 2 -√(𝐷 -‖𝑣| 𝑠=𝐿 ‖) 2 + 𝐿 2 . Additionally, 𝐿 free is the free length. It is assumed to be identical for the two cables. Since the transversal deformation 𝑣| 𝑠=𝐿 is small, the following expression is approximately obtained by neglecting the higher order terms of the transversal deformation expression.

∆𝐿(𝑡)| 𝑡>0,𝑒 = ∆𝐿(𝑡)| 𝑡>0,𝑠 = 𝐷 √(𝐷 2 + 𝐿 2 ) ‖𝑣(𝐿, 𝑡)‖. (5) 
Substituting Eq. (4.a) and Eq. ( 5) into Eq. (4.b) yields

𝑉 C | 𝑡>0 = 𝑇 pre 2 𝑘 + 𝑘𝐷 2 (𝐷 2 + 𝐿 2 ) 𝑣 2 | 𝑠=𝐿 , if 𝑇 pre 𝑘 > 𝐷 √(𝐷 2 + 𝐿 2 ) ‖𝑣| 𝑠=𝐿 ‖, (6) 
where the inequality in Eq. ( 6) is a constraint between the lateral displacement and the pretension. When it is not valid, the cable tension will vanish because of the unidirectional nature of the cable force. Hence, the entire potential energy of the single-link flexible mechanism system with cables is expressed as

𝑉(𝑠, 𝑡) = 𝑉 L + 𝑉 C | 𝑡>0 . ( 7 
)
In the following, the extended Hamilton's principle is applied to the single-link flexible mechanism as follows

∫ (δ𝑇 -δ𝑉 + δ𝑊)𝑑𝑡 𝑡 2 𝑡 1 = 0, (8) 
where δ𝑇 and δ𝑊 are the variation of the kinetic energy and the virtual work from the rotational motor torque (Appendix A).

Subsequently, the variation of the potential energy in Eq. ( 7) is expressed as

𝛿𝑉 = 𝛿𝑉 L + 𝛿𝑉 C | 𝑡>0 . (9) 
The two terms in the right hand side of Eq. ( 9) are written as

𝛿𝑉 L = - 𝐸𝐼 𝐿 3 [( 𝜕 2 𝑣 𝜕𝜁 2 ) 𝛿 ( 𝜕𝑣 𝜕𝜁 )| 𝜁=0 𝜁=1 -( 𝜕 3 𝑣 𝜕𝜁 3 ) 𝛿𝑣| 𝜁=0 𝜁=1 + ∫ 𝜕 4 𝑣 𝜕𝜁 4 𝛿𝑣 1 0 d𝜁] - 𝐹 𝐿 [ 𝜕𝑣 𝜕𝜁 𝛿𝑣| 𝜁=0 𝜁=1 -∫ 𝜕 2 𝑣 𝜕𝜁 2 1 0 𝛿𝑣d𝜁] d𝜁, (10) 
𝛿𝑉 C | 𝑡>0 = - 2𝑘𝐷 2 𝐷 2 + 𝐿 2 𝑣| 𝑠=𝐿 𝛿𝑣| 𝑠=𝐿 . (11) 
After several mathematical manipulations (detailed in Appendix A), the dynamic model is developed by combining Eqs. ( 8) -( 11)

∫ 𝐴 1 𝛿𝜃d𝑡 𝑡 2 𝑡 1 + ∫ ∫ 𝐴 2 𝛿𝑣 1 0 d𝜁𝑑𝑡 𝑡 2 𝑡 1 + ∫ 𝐴 3 𝛿 ( 𝜕𝑣 𝜕𝑠 )| 𝑠=𝐿 d𝑡 𝑡 2 𝑡 1 + ∫ 𝐴 4 𝛿𝑣| 𝑠=𝐿 d𝑡 𝑡 2 𝑡 1 + ∫ (-𝐸𝐼 [( 𝜕 2 𝑣 𝜕𝑠 2 ) 𝛿 ( 𝜕𝑣 𝜕𝑠 )| 𝑠=0 -𝐹 𝜕𝑣 𝜕𝑠 𝛿𝑣| 𝑠=0 + ( 𝜕 3 𝑣 𝜕𝑠 3 ) 𝛿𝑣| 𝑠=0 ]) d𝑡 𝑡 2 𝑡 1 = 0. ( 12 
)
The terms 𝐴 𝑖 in Eq. ( 12) are given by 

𝐴 1 = 𝐽 m ( d 2 𝜃 d𝑡 2 ) + 𝜏 + 𝐽 p ( d 2 𝜃 d𝑡 2 + 𝜕 3 𝑣 𝜕𝑠𝜕𝑡 2 | 𝑠=𝐿 ) + 𝑚 p (𝐿 2 + 𝑣 2 | 𝑠=𝐿 ) ( d 2 𝜃 d𝑡 2 ) + ∫ 𝜌ζ𝐿 2 ( 𝜕 2 𝑣 𝜕𝑡 2 ) 𝑑𝜁
𝐸𝐼 𝜕 4 𝑣 𝜕𝑠 4 + 𝜌 [𝑠 (

d 2 𝜃 d𝑡 2 ) + 𝑣 ( d𝜃 d𝑡 ) 2 + ( 𝜕 2 𝑣 𝜕𝑡 2 )] -𝐹 𝜕 2 𝑣 𝜕𝑠 2 = 0, (15) 
𝐸𝐼 ( 𝜕 2 𝑣 𝜕𝑠 2 )| 𝑠=𝐿 + 𝐽 p ( d 2 𝜃 d𝑡 2 + 𝜕 3 𝑣 𝜕𝑠𝜕𝑡 2 | 𝑠=𝐿 ) = 0, (16) 
𝑚 p 𝐿 ( d 2 𝜃 d𝑡 2 ) + 𝑚 p ( 𝜕 2 𝑣 𝜕𝑡 2 )| 𝑠=𝐿 -𝐸𝐼 ( 𝜕 3 𝑣 𝜕𝑠 3 )| 𝑠=𝐿 + 𝐹 𝜕𝑣 𝜕𝑠 | 𝑠=𝐿 + 2𝑘𝐷 2 𝐷 2 + 𝐿 2 𝑣| 𝑠=𝐿 = 0. (17) 
Since the proximal end of the flexible link is fixed to the rotational axis, the beam is clamped at s = 0 and the resulting boundary conditions are expressed as follows

𝑣| 𝑠=0 = 0, 𝜕𝑣 𝜕𝑠 | 𝑠=0 = 0. (18) 
Moreover, another boundary condition at s = L is obtained in Eqs. ( 16) and [START_REF] Sun | Dynamic response of spatial flexible structures subjected to controllable force based on cable-driven parallel robots[END_REF], which represent the moment and force constraints of the cable-stiffened flexible beam respectively.

Critical cable pretension for buckling phenomenon

For the small amplitude free oscillation of the cable-stiffened beam, the lateral deformation 𝑣(𝑠, 𝑡) is assumed to be separable in space and time as follow,

𝑣(𝑠, 𝑡) = Ψ(𝑠) sin(𝜔𝑡) (19) 
where Ψ(𝑠) is a function of the location s of the curvilinear points and 𝜔 is a pulsation that has to be determined. By substituting of Eq. ( 19) into Eq. ( 15), the following equation is obtained

𝐸𝐼 d 4 Ψ d𝑠 4 sin(𝜔𝑡) -𝜌Ψ(𝑠)𝜔 2 sin(𝜔𝑡) -𝐹 d 2 Ψ d𝑠 2 sin(𝜔𝑡) = 0, (20) 
where d𝜃 d𝑡 and d 2 𝜃 d𝑡 2 are set to zero since the free oscillation begins when the motor stops rotating. Compared to [START_REF] Tang | Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables[END_REF], the last term is added due to the applied axial beam compression force induced by the cable pretensions. Considering the generalized case, Eq. ( 20) leads to

𝐸𝐼 d 4 Ψ(𝑠) d𝑠 4 -𝜔 2 𝜌Ψ(𝑠) -𝐹 d 2 Ψ(𝑠) d𝑠 2 = 0. ( 21 
)
The buckling of the flexible beam occurs when the cable tensions attain the critical values, which causes the beam instability with a timeindependent equilibrium of Eq. ( 21) as detailed in [START_REF] Lee | A generalized treatment of the energetics of translating continua, part II: beams and fluid conveying pipes[END_REF]. Moreover, the first natural frequency of the cable-stiffened beam is equal to zero when the critical cable pretension is applied [START_REF] Tang | Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary conditions[END_REF]. In order to avoid structural instability, it is thus of significant importance to determine the critical cable pretension before discussing the effect of pretension on the dynamic characteristics of a cable-stiffened flexible beam.
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Referring to [START_REF] Lee | A generalized treatment of the energetics of translating continua, part II: beams and fluid conveying pipes[END_REF], when the structural buckling occurs, the first natural frequency of the system is equal to zero. Accordingly, the timeindependent equilibrium of the system is written as

𝐸𝐼 d 4 Ψ(𝑠) d𝑠 4 -𝐹 d 2 Ψ(𝑠) d𝑠 2 = 0. (22) 
Subsequently, recalling that the axial compression load satisfies F < 0, the characteristic eigenvalue equation of Eq. ( 22) is deduced as

𝐸𝐼𝑟 4 -𝐹𝑟 2 = 0, (23) 
and the solutions are

𝑟 1 = 𝑟 2 = 0, 𝑟 3 = 𝑖√ -𝐹 𝐸𝐼 , 𝑟 4 = -𝑖√ -𝐹

𝐸𝐼

, where i denotes the imaginary unit. Thus, the general solution of Eq. ( 23) is obtained as

Ψ(𝑠) = 𝐶 1 + 𝐶 2 𝑠 + 𝐶 3 sin(𝛽𝑠) + 𝐶 4 cos(𝛽𝑠) , (24) 
where 𝛽 = √ -𝐹 𝐸𝐼 . Substituting Eq. ( 24) into the boundary constraints Eqs. ( 16) and ( 18), the following equation system is obtained

[ 0 0 𝐹 sin(𝛽𝐿) 1 0 0 0 1 𝛽 𝐹 cos(𝛽𝐿) 1 0 ] [ 𝐶 1 𝐶 2 𝐶 3 𝐶 4 ] = 𝟎 3×1 . ( 25 
)
After mathematical manipulations, the unknown vector is obtained as

[𝐶 1 𝐶 2 𝐶 3 𝐶 4 ] T = 𝐶 3 [tan(𝛽𝐿) -𝛽 1 -tan(𝛽𝐿)] T .
Moreover, it can be deduced from Eqs. ( 17) and ( 24) that

𝐹𝐶 2 + 2𝐷 2 𝑘 𝐷 2 + 𝐿 2 (𝐶 1 + 𝐶 2 𝐿) = 0. (26) 
which, by means of the above vector, can be written as

{-𝛽𝐹 + 2𝐷 2 𝑘 𝐷 2 + 𝐿 2 [tan(𝛽𝐿) -𝛽𝐿]} 𝐶 3 = 0. ( 27 
)
From the non-trivial solution of Eq. ( 27), the eigenvalue equation is obtained when the unknown 𝐶 3 is supposed to be nonzero. In fact, the following transcendental equation on the critical axial compression load is obtained by setting the first expression in Eq. ( 27) to zero

cot(𝛽𝐿) = 2𝜆𝑘 (2𝜆𝑘𝐿 + 𝐹)𝛽 , (28) 
where 𝜆 = 𝐷 2 /(𝐷 2 + 𝐿 2 ). It is worth noting that the critical force for the flexible beam with cables is related to both the geometric parameters (e.g., D and L) and the material properties of both the flexible beam and the cables (e.g., EI and k). Obviously, the coupling effect of the cable-beam interaction is also exhibited in Eq. ( 28). Moreover, it should be noted that the mass of the tip mass is not included in Eq. ( 28), which indicates that the tip mass does not affect the value of the buckling force in the framework of this study and is validated in the simulation experiments in Sect.5. In comparison to the classical formula of the critical axial compression force from Euler formulation, namely 𝐹 = 𝜋 2 𝐸𝐼/(𝜇𝐿) 2 with the factor 𝜇 = 2 in the fixed-free end connection scenario, it leads to cos(𝛽𝐿) = 0 in agreement with Eq. ( 28) when D is set to zero (i.e., 𝜆 = 0). The critical force for the single flexible beam with cables is determined by the first intersection point of the expressions on both sides of Eq. [START_REF] Giaccu | Generalized pow-law stiffness model for nonlinear dynamics of in-plane cable networks[END_REF]. For example, the geometric and physical parameters of a specific flexible beam with cables are summarized in Tab. 1. As shown in Fig. 2, the critical buckling force can be determined with an arror. Consequently, the fsolve function in Matlab is utilized to solve the nonlinear equation of Eq. ( 28) and the critical force is identified as -9.87 N. As a result, the pretension of the cables can be calculated by 𝐹 = 2𝑇 pre 𝐿/√𝐷 2 + 𝐿 2 as 𝑇 pre = 5 N based on the initial system configuration. For the purpose of investigation of the effect of geometric and material parameters on the critical cable pretension, a non-dimensional parameter is defined as 𝐷 * = 𝐷/𝐿. As a result, different values of 𝐷 * reveal the effects of various cable layouts/inclinations. Following [START_REF] Irvine | Cable structures[END_REF][START_REF] Warnitchar | A non-linear dynamic model for cables and its application to a cable-structure system[END_REF][START_REF] Driscoll | Development and validation of a lumped-mass dynamics model of a deep-sea ROV system[END_REF], the cable spring coefficient is 𝑘 = 𝐸 c 𝐴 c /𝐿 c , where 𝐸 c is the elastic modulus and 𝐴 c the cross-sectional area along with the cable stretched length 𝐿 c = 𝐿 √ 𝐷 * 2 + 1. The relationship between the critical force F and 𝐷 * is depicted in Fig. 3, where the considered cable materials are Nylon, Steel and Polyethylene whose elastic modulus are given in Tab. 2. It is clearly observed that the critical force F is equal to 1.22 N with 𝐷 * = 0 for all three types of cables. As mentioned before, the magnitude of the critical force 𝐹| 𝐷 * =0 merely depends on the length and the bending stiffness of the flexible beam. Moreover, the critical force soars as 𝐷 * increases and then decreases as shown in Fig. 3. Recalling Eq. ( 28), the latter is simplified as cot(𝛽𝐿) = 2𝜆| 𝐷 * →inf 𝑘| 𝐷 * =inf (2𝜆| 𝐷 * →inf 𝑘| 𝐷 * →inf 𝐿+𝐹)𝛽 = 0 with 𝜆| 𝐷 * →inf = 1 and 𝑘| 𝐷 * →inf = 0. As a consequence, it is readily observed that the critical force under the extreme condition 𝐷 * → inf is equal to 𝐹| 𝐷 * →𝑖𝑛𝑓 = 𝜋 2 𝐸𝐼/(2𝐿) 2 . However, it is difficult to derive the analytical solution formulation of 𝐷 * to the maximum critical force because of the transcendental relationship between 𝛽𝐿 and 𝜆𝑘 in Eq. ( 28). Overall, it can be noted that a large cable elastic modulus corresponds to a large critical force for the same value of 𝐷 * but the maximum critical force is obtained with a relatively small 𝐷 * for the three presented cable materials. It is also worth noting that the cables cannot be modelled as massless springs when 𝐷 * becomes very large. Indeed, sagging effect due to the cable own mass and torsional stiffness should be carefully tackled in the case of long cables [START_REF] Merlet | Some properties of the Irvine cable model and their use for the kinematic analysis of cable-driven parallel robots[END_REF][START_REF] Buckham | Development of a finite element cable model for use in low-tension dynamics simulation[END_REF]. Moreover, another non-dimensional parameter is defined as 𝜒 = 𝐸𝐼 𝐸 c 𝐴 c 𝐿 2 . It is the ratio of the beam flexural stiffness over the cable axial stiffness. The resultant critical forces with respect to 𝜒 varying within a technical relevant range of [0.5, 2.5] × 10 -4 are presented in Fig. 4. Similar to 𝐷 * , the beam material plays a significant role in the buckling phenomenon of this flexible beam with cables. It can be observed that the force monotonically increases as 𝜒 becomes larger for various 𝐷 * . Indeed, a large 𝜒 corresponds to a beam made of a material with high elastic modulus and a larger buckling load is thus required to make the system unstable. For example, three types of common metallic materials for the beam as listed in Tab. 3 are discussed with the cables made of Nylon. The three vertical lines shown in Fig. 4 stand for the three materials of the beams, namely a steel beam in green, a copper beam in black and an aluminum beam in violet. The intersection points of the vertical lines and each curve are referred to as the critical forces with corresponding material and 𝐷 * given in Table 4. The obtained magnitudes of the critical forces with 𝐷 * = 0 are consistent with those from the classical beam equation 𝐹 = 𝜋 2 𝐸𝐼/(2𝐿) 2 . More importantly, the results reveal that the influence of 𝐷 * decreases for a more compliant beam since the relative values of critical forces for two 𝐷 * shrink as 𝜒 reduces. In other words, the critical force of the cable-stiffened beam asymptotically approaches that of the cantilever beam for vanishing 𝜒 (i.e., the beam flexural stiffness is much lower than the axial cable stiffness). As depicted in Fig. 4, the effect of the parameter D* on the critical force of the flexible system is important as well. Taking the flexible beam made of steel as an example, a group of different values of parameter D* are selected and the corresponding critical forces together with the cable tensions are shown in Fig. 5. Both the critical force and the cable tension increase quickly in the beginning. The effect of D* on the critical buckling load is negligible when D* becomes larger than 0.2. However, the cable tension related to the critical force will increase gradually since the angle between the cable and the beam has a considerable influence on the determination of the cable tension. 

Lateral stiffness

The lateral instability of a flexible column or beam depends on its axial loading. The critical buckling force is defined as the exact value of the axial loading that makes the column laterally unstable. Referring to [START_REF] Debski | Buckling and postbuckling behaviour of thin-walled composite channel section column[END_REF][START_REF] Liu | Storey-based stability analysis of multi-storey unbraced frames[END_REF][START_REF] Xu | Stability of multi-storey unbraced steel frames subjected to variable loading[END_REF], the lateral stability capacity of an unbraced column and beams can be assessed using lateral stiffness with the definition of lateral resistance subjected to variable lateral forces. Moreover, the critical buckling load can be identified when the lateral stiffness of the column is equal to zero. The post-buckling of a clamped rod is investigated with the Ramberg-Osgood constitutive law in [START_REF] Chen | Accurate analytical approximation to post-buckling of column with Ramberg-Osgood constitutive law[END_REF], which is applied to design column structures under large deformation. Different from the unbraced columns, this paper focuses on a more complex structure by considering the influence of the cables on a flexible beam. Hence, the lateral stiffness for the flexible single column with two cables is deduced in this section.

The beam-column connection rigidity plays a significant role in estimating the critical buckling loads of columns. The concept of the endfixity factor is introduced to define the relative stiffness at a connection end [START_REF] Liu | Storey-based stability analysis of multi-storey unbraced frames[END_REF][START_REF] Xu | Stability of multi-storey unbraced steel frames subjected to variable loading[END_REF]. For a clamped end, the value of the end-fixity factor is equal to zero while it is unity for a free end or an ideally pinned connection end. Regarding the system in the current study, the lateral stiffness expression of a flexible single beam with the axial loads from the cable pretension is given as

k l = -𝐹𝛽cos(𝛽𝐿) -(𝛽𝐿)cos(𝛽𝐿) + sin(𝛽𝐿) , (29) 
where k l denotes the lateral stiffness of the flexible beam and the axial compression load F together with the variable 𝛽 defined in Eq. [START_REF] Gattulli | Localization and veering in the dynamics of cable-stayed bridges[END_REF].

For the sake of brevity, the detailed derivation of this equation is omitted here. Next, the contribution of the cables to the lateral stiffness of the system is taken into account and integrated with an improved formulation.

As illustrated in Fig. 6, a lateral deflection 𝑣 is caused by the different cable tensions at the tip end of the flexible beam. In fact, the lateral deformation is very small and can be considered as elastic bending (it is exaggerated for illustration purposes in Fig. 6). At the initial instant, two cable pretensions are equal to an identical force 𝑇 pre . After adding the cable tensions, a lateral deflection occurs such that the tensions begin to vary correspondingly. Under the assumption of the massless spring with a constant elastic coefficient, the tension variations of the upper and lower cables can be obtained as

δ𝑇 c1 = 𝑇 1 -𝑇 pre , δ𝑇 c2 = 𝑇 2 -𝑇 pre . (30) 
According to Eq. ( 3), the two cable tension variations are given as

δ𝑇 c1 = -𝑘√𝜆|𝑣|, δ𝑇 c2 = 𝑘√𝜆|𝑣|, (31) 
where 𝜆 = 𝐷 2 /(𝐷 2 + 𝐿 2 ) and 𝑣 denotes a small lateral displacement shown in Fig. 6. Consequently, the lateral components of the cable tensions along the y-axis direction (i.e., lateral direction) can be deduced using trigonometric relationship as Fig. 9. Linear extrapolation for identification of the critical buckling force.

Experimental verification

The experimental testbed is shown in Fig. 10. One end of each cable is attached at the tip end of a flexible link made of steel, whereas the other cable end is connected to a force sensor (HBM U9C) through a pulley. There is a mobile frame supported by a wheel jack to adjust the cable tensions. The beam and the two pulleys are mounted on the mobile frame, while the force sensors are located at the base. In the experimental setup, the variations of the tensions in the two cables are measured by means of the force sensors and recorded with the use of a data acquisition equipment (Beckhoff CX5100). The height of the mobile frame can be adjusted with the actuation of the wheel jack and therefore the cable tensions will change accordingly due to the constant length of the cables.

To verify the effect of the location of the pulleys on the critical buckling force of the flexible link system, a set of five distinct points denoted as {1#,2#,3#,4#,5#} are selected with specific distances depicted in Fig. 11. It can be noted that the pair of pulleys are always fixed symmetrically to the vertical middle plane of the beam. The tip mass is split in two identical masses attached on both sides of the free end of the beam. Under the assumption that the tip mass is a rigid body with length of 0.01 m, the value of the actual beam length in the experiment is taken as L = 0.59 m. Subsequently, the cable spring coefficient can be calculated by 𝑘 = 𝐸𝐴/𝐿 C where 𝐿 C denotes the length of the cable from the cable attachment at the tip mass to the anchor point at the force sensor. The value of the free length of the i-th cable is set to 𝐿 C𝑖 = 𝐿 C𝑖1 + 𝐿 C𝑖2 in which 𝐿 C𝑖1 is the cable length in the horizontal plane shown in Fig. 11 and 𝐿 C𝑖2 is the cable length between the pulley and the force sensor. In this paper, 𝐿 C𝑖2 is equal to 0.21 m in the experiments and the cable free length 𝐿 C𝑖 is equal to 𝐿 C𝑖1 + 0.21. For example, in the case of pulleys at position 1#, the free lengths of both cables are 𝐿 C = 0.9 m. As a result, the corresponding spring coefficient is obtained as 𝑘 = 2470 N/m. According to Eq.( 28) in Sect. 3, the theoretical buckling load of the system at position 1# is 9.82 N and therefore the maximum pretension is constrained to be lower than 5 N. Based on the simulation model in Fig. 7, the critical buckling load is estimated as being equal to 9.98 N, which is slightly larger than the value obtained with the proposed analytical method. As depicted in Fig. 12, the variations of the cable tensions are recorded for five locations of the pulleys. A similar trend is followed in all five scenarios. At first, the two cable tensions increase with almost the same value under the actuation of the wheel jack. During this stage, it can be clearly observed that a small oscillation of the cable tensions happens due to the compliance of the beam. In particular, these vibrations take place more obviously when the location of the pulley is closer to the middle plane of the beam, namely for a small D. It can be explained by the fact that a large angle between the beam and the cables makes the system stiffer. As the cable tensions increase, the difference between the two cable tensions increases correspondingly, which means that the beam bending becomes more significant. When -15 -cable tensions become very high, a nonlinear relationship between the two cable tensions can be seen. Taking the pulley location 1# as an example, four typical instants {a, b, c, d} during the loading are presented in Fig. 13. The corresponding snapshots of the non-buckling or buckling beam together with the specified tensions are shown in Fig. 14. From Fig. 13 and Fig. 14, the following observations can be made on the buckling of the flexible single beam with two cables. Tension oscillation exists before the instant (a), which is mainly due to both the assembly errors and instability of the initial cable elongation. During the period from instant (a) to the instant before (b), the two cable tensions change with almost identical values and the flexible beam remains straight like at the instant (a). Then, the tension curve starts to deviate from the 45° straight line and the tension difference rises as the loading continues (e.g., 0.2 N at the instant (b) and 0.7 N at the instant (c)). However, the flexible beam still remains straight at instant (b), while it begins to buckle from instant (c) on. It is worth noting that the beam deflection is larger at the points near the middle section of the beam at instants (c) and (d). In comparison, the maximum lateral deflection of the middle point at instant (c) is smaller than that at instant (d). It indicates that a higher tension deviation results in a large lateral deflection of the beam. Although the lateral deviations can be readily measured by means of a laser displacement sensor, it remains difficult to determine the exact value of the critical buckling force associated with the pulley location 1#. Nevertheless, it has been discovered that using a small lateral force, the flexible beam can change easily to the mirror shape with reference to its initial middle plane at the instant (c). Moreover, the beam deformation at the instant (d) is larger than that at instant (c), where the axial force (i.e., 10.45 N) from the two cable tensions is higher than the critical buckling force determined by the simulation and the proposed method.

To summarize, the three buckling loads obtained respectively from the analytical method, the simulation and the experiments are com-pared in Tab. 6. It should be noted that the maximum cable pretension from the experiment results is approximated as the average of two cables tensions at the instant (c). Accordingly, the buckling load of the cable-beam system in the pulley configuration 1# is calculated as 8.94 N. The relative errors with respect to the experimental value of buckling loads are 9.8% for the analytical value and 11.6% for the simulation. The discrepancy may result from the inaccuracy of the experimental assembly where the flexible beam is connected to two cables. 

Conclusions

In this paper, the extended Hamilton's principle is adopted to develop the dynamical model of a single-link flexible system with two pretensioned cables. A transcendental equation involving bending stiffness and length of the beam as well as spring coefficient and locations of the cables is obtained for the determination of the buckling load. Analytical results show that the buckling load for several specific cable configurations is consistent with that from classic formula of a flexible beam with the fixed-free end connections. The transcendental equation is also derived from the concept of lateral stiffness. Buckling phenomenon occurs once the value of lateral stiffness reduces to zero. The complete lateral stiffness is composed by the flexible link stiffness and the one induced by the pretensioned cables. The variation of the buckling load with respect to the location of the two cable pulleys based on the dynamical model is demonstrated by the ANSYS simulations. In addition, the variation of the kinetic energy from the rotational motor is 𝛿𝑇 m = 𝐽 m ( 𝑑 2 𝜃 𝑑𝑡 2 ) 𝛿𝜃 and the variation of the motor torque virtual work is δ𝑊 = 𝜏𝛿𝜃. Using Eqs. (A.5) and (A.8) together with Eqs. ( 10) and ( 11), the dynamical model described in the expression of Eq. ( 12) is deduced with Eq. ( 8) for four variations {𝛿𝜃, 𝛿𝑣, 𝛿𝑣| 𝑠=𝐿 , 𝛿 ( 
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 4 Fig. 4. Change of the critical force F with respect to 𝜒 (beam length L = 0.6 m and cables made of Nylon).
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 5 Fig. 5. Critical force and cable tension with respect to D* (beam length L = 0.6 m and cables made of Nylon).
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 12 Fig. 12. Changes in the cable tensions associated with five pulley locations during loading. Fig. 13. Changes in the cable tensions associated with the pulley location 1#.

Fig. 14 .

 14 Fig. 14. Buckling phenomenon of the flexible beam with cables during loading.

  ,T 2 )=(0.9,0.9) N (T 1 ,T 2 )=(4.9,4.2) N 𝛿𝑇 P = {𝑚 p [(𝐿 2 + 𝑣

  The last term in Eq.[START_REF] Kernicky | Dynamic identification of axial force and boundary restraints in tie rods and cables with uncertainty quantifi-cation using set inversion via interval analysis[END_REF] is always equal to zero as a result of the boundary conditions mentioned below at 𝑠 = 0. Since the four variations 𝛿𝜃, 𝛿𝑣, 𝛿 ( 𝑠=𝐿 are independent, the expressions of 𝐴 1 , 𝐴 2 , 𝐴 3 , and 𝐴 4 in Eq. (13) are all equal to zero.

	𝐴 3 = 𝐸𝐼 ( 𝐴 4 = 𝑚 p 𝐿 ( 𝜕 2 𝑣 𝜕𝑠 2 )| 𝑠=𝐿 d 2 𝜃 d𝑡 2 ) + 𝑚 p ( + 𝐽 p ( 𝜕 2 𝑣 d 2 𝜃 d𝑡 2 + 𝜕𝑡 2 )| 𝑠=𝐿 𝜕 3 𝑣 𝜕𝑠𝜕𝑡 2 | 𝑠=𝐿 -𝐸𝐼 ( 𝜕 3 𝑣 ), 𝜕𝑠 3 )|	𝑠=𝐿	+ 𝐹	𝜕𝑣 𝜕𝑠	|	𝑠=𝐿	+	2𝑘𝐷 2 𝐷 2 + 𝐿 2 𝑣| 𝑠=𝐿 .	(13)
				𝜕𝑣 𝜕𝑠	)|								
	Hence, the dynamical model of a single-link flexible mechanism with two pretensioned cables is given by
	𝐽 m (	d 2 𝜃 d𝑡 2 ) + 𝜏 + 𝐽 p ( + ∫ 𝜌𝐿𝑣 ( d 2 𝜃 d𝑡 2 + 𝜕 3 𝑣 𝜕𝑠𝜕𝑡 2 | 𝑠=𝐿 𝜕𝑣 𝜕𝑡 ) 𝑑𝜁 1 0 ( ) + 𝑚 p (𝐿 2 + 𝑣 2 | 𝑠=𝐿 ) ( d𝜃 d𝑡 ) + ∫ 𝜌𝐿[(ζ𝐿) 2 + 𝑣 2 ] d 2 𝜃 d𝑡 2 ) + ∫ 𝜌ζ𝐿 2 ( 1 0 1 0 𝑑𝜁 ( d 2 𝜃 d𝑡 2 ) + 𝑚 p 𝑣| 𝑠=𝐿 ( 𝜕 2 𝑣 𝜕𝑡 2 ) 𝑑𝜁 𝜕𝑣 + 𝑚 p 𝐿 ( 𝜕𝑡 )| 𝑠=𝐿 ( d𝜃 𝜕 2 𝑣 𝜕𝑡 2 )| d𝑡 ) = 0, 𝑠=𝐿
				+ ∫ 𝜌𝐿𝑣 ( 1 0	𝜕𝑣 𝜕𝑡	) 𝑑𝜁	(	d𝜃 d𝑡	) + ∫ 𝜌𝐿[(ζ𝐿) 2 + 𝑣 2 ] 1 0	𝑑𝜁 (	1 0 d𝑡 2 ) + 𝑚 p 𝑣| 𝑠=𝐿 ( d 2 𝜃	𝜕𝑣 𝜕𝑡	)|	𝑠=𝐿	+ 𝑚 p 𝐿 ( ( d𝜃 d𝑡 ),	𝜕 2 𝑣 𝜕𝑡 2 )| 𝑠=𝐿
	𝐴 2 =	𝐸𝐼 𝐿 3	𝜕 4 𝑣 𝜕𝜁 4 + 𝜌𝐿 [𝜁𝐿 (	d 2 𝜃 d𝑡 2 ) + 𝑣 ( d𝜃 d𝑡	) 2	+ (	𝜕 2 𝑣 𝜕𝑡 2 )] -	𝐹 𝐿	𝜕 2 𝑣 𝜕𝜁 2 ,

𝑠=𝐿 and 𝛿𝑣|

Table 1 .

 1 Geometric and physical parameters of a flexible-link mechanism with Nylon cables and the flexible link made of steel.

	Item	Parameter	Value
	Link bending stiffness (N • m 2 )	EI	0.1775
	Link length (m)	L	0.6
	Rigid link length (m)	𝐷	0.1
	Spring coefficient of cables (N/m)	𝑘	3700

Table 2

 2 Elastic modulus of nylon, steel and polyethylene for cables (Unit: GPa).

	Material	Nylon	Steel	Polyethylene
	Elastic Modulus	2.83	207	1.1

Table 3

 3 Elastic modulus of copper, steel and aluminum for the beam (Unit: GPa).

	Material	Steel	Copper	Aluminum
	Elastic Modulus	207	110	69

Table 4

 4 Critical force for beams made of steel, copper and aluminum (Unit: N).

	𝐷 *	Steel	Critical force Copper	Aluminum
	0	1.21	0.64	0.40
	0.17			

Table 5

 5 Feasible pairs of tensions for the determination of the critical force.

	Simulation No.	1	2	3	4	5
	Pretension (N)	4.92	4.94	4.96	4.98	5.0
	Axial load (N)	9.702	9.742	9.781	9.821	9.860
	Lateral external force (N)	0.005	0.004	0.002	0.0015	0.001
	Lateral deflection (m)	4.96×10 -5 4.06×10 -5 2.1×10 -5 1.63×10 -5 1.27×10 -5
	Lateral stiffness (N/m)	100.7	98.6	95.2	92.2	78.5

Table 6

 6 Comparison of buckling loads and the maximum cable pretension at position 1# (Unit: N).

	Method	Buckling load	Max. cable pretension
	Analytical	9.82	5
	Simulation	9.98	5.08
	Experiment	8.94	4.55
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Based on Eqs. [START_REF] Bazant | Structural stability[END_REF] to [START_REF] Debski | Buckling and postbuckling behaviour of thin-walled composite channel section column[END_REF], the corresponding components of lateral stiffnesses provided by the two cables are

Therefore, the complete lateral stiffness expression for the flexible single link with two cables can be rewritten as In accordance with the Storey-buckling method for determining the critical buckling load, once the lateral stiffness of the beam with cables reduces to zero, the buckling phenomenon is about to occur. After several mathematical manipulations (Appendix B), the formulation to predict the critical buckling load is the same as Eq. ( 28), which further demonstrates the effectiveness of the method proposed in Section 4. More importantly, the dynamic modelling using the extended Hamilton's principle can be applied to further investigate a dynamic charac-terization through modal analysis for the single-link flexible system with two cables besides the determination of buckling loads.

Simulation

In this section, a series of simulations are implemented in ANSYS with the aim of validating the method proposed in the previous sections. A finite element model of the single-link flexible system with two cables is created in ANSYS as illustrated in Fig. 7. In accordance with the previous assumption, the cables are represented by two massless springs with an identical elastic coefficient 𝑘. It is worth noting that, in ANSYS, the springs are set to tension only to mimic the unilateral nature of cable forces. A tip mass is attached to the free end of the flexible beam. However, the rigid link of Fig. 1 is neglected and replaced by a frame to mount both the beam and the cables. Considering that the mechanism moves in the horizontal plane and the fact that it has negligible deflection against gravity due to the high stiffness along the vertical plane, the effect of gravity is neglected as well. As expected, the tip mass does not exert any influence on the determination of the critical buckling force in the simulation, which is consistent with the conclusions on the basis of Eq. [START_REF] Giaccu | Generalized pow-law stiffness model for nonlinear dynamics of in-plane cable networks[END_REF]. More importantly, the critical bucking force of the flexible link system with cables is obtained based on the eigenvalue buckling module of ANSYS. The resulting D* obtained from the simulations are compared with those obtained using Eq. ( 28) of the proposed method. The relative error of the critical buckling forces is defined as (𝐹 simulation -𝐹 calculation )/ 𝐹 simulation . As shown in Fig. 8, it can be clearly observed that the forces match very well in the given range of values of the non-dimensional parameter D* defined in Section 2, whereas the relative errors grow and stay around 2% with D* larger than 0.1. The simplicity of von Ká rmá n nonlinearity in Eq. ( 2) without considering the width of the beam may account for the discrepancy between the results from the proposed method and the simulations. Furthermore, the reduction of the critical force as D* reaches a higher value has been validated, which is in good agreement with the calculated results depicted in Fig. 8(b). In addition, the value of the tip mass is changed to testify its effect on the evaluation of critical buckling loads. It turns out that the buckling load is not affected by the tip payload, which is consistent with the analytical results. Therefore, the simulation results demonstrate the validity of the proposed method for predicting the critical buckling force in this system, which also gives a more conservative cable pretension values compared to the simulation results in order to avoid the occurrence of buckling phenomenon of a flexible beam with cables. In addition, a procedure, similar to the buckling force identification method presented in [START_REF] Debski | Buckling and postbuckling behaviour of thin-walled composite channel section column[END_REF], is accomplished with the simulation model in ANSYS. The basic principle is to determine the critical forces using a linear extrapolation when the lateral stiffness of the tip end of the beam reaches zero. The main procedure can be summarized as follows:

(1) Select several different sets (5 sets here) of cable pretensions, which are lower but close to the theoretical maximum cable tension corresponding to buckling;

(2) Impose a constant force in the x-axis direction of the global frame (shown in Fig. 7) at the tip end of the beam. This force is selected according to the pretension value;

(3) Measure the correspondent lateral displacement and calculate the lateral stiffness of the system at the tip end; (4) Predict the critical buckling force using a linear extrapolation as the lateral stiffness is equal to zero. Before implementing the simulation testing, it should be acknowledged that the aforementioned procedure obtains an approximate force due to the simplicity of the linear fitting between the lateral stiffness and the axial loading at the beam. However, the accuracy of the procedure can be improved by the adjustment of the lateral forces for different loadings. As for the configuration with the pulley located at D = 0.1 m, the specification of the procedure and the results are summarized in Table . 5. Based on the least-squares fitting theory, a linear fitting line as shown in Fig. 9 is determined as F al =10.39 -0.006542×k l with the root mean square error equal to 0.02882. Finally, the critical buckling force for the present configuration is estimated to be 10.39 N. The relative error between the identified force and the calculated force is obtained as 5.6%. Additionally, the relative error between the identified force and the obtained force from the eigenvalue buckling module of ANSYS is 2.8%, which suggests that the above-mentioned procedure is a feasible method to predict the approximate critical buckling load. However, it also needs to be noticed that this approach highly depends on the measurement accuracy of both the lateral external force and the lateral deflection, which hinder the experimental demonstration in practice due to the cable compliance and hybrid compliance associated with the flexible beam. More importantly, the detailed expression of the obtained linear fitting line varies in accordance with the predefined lateral external forces and the cable pretensions. As a result, this procedure has been applied as a supplementary method to validate the critical buckling force of the flexible link with two cables only in the simulation environment.

Finally, experiments are conducted on a physical testbed. Buckling of the flexible beam is documented and presented with several snapshots. Further research will focus on the effect of cable pretensions on the dynamic characteristics of the single-link flexible system with two cables within the critical buckling loads.
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Appendix A

According to Eq. ( 1), the position vector of a point s on the link with respect to the inertial frame is given by

Then, the kinetic energy of the single flexible link is obtained as

and the partial derivative of the position vector 𝐫 fl with respect to time t is calculated from Eq. (A. By combination, Eq. (A.7) can be simplified to

Appendix B

When the axial compression force is selected as the critical buckling load, the value of the lateral stiffness expression Eq. ( 34) is equal to zero, i.e., If sin(𝛽𝐿) ≠ 0, then Eq. (B.3) leads to Eq. ( 28).