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Complement Avoidance in Binary Words

James Currie1 L’ubomı́ra Dvořáková2 Pascal Ochem3

Daniela Opočenská4 Narad Rampersad5 Jeffrey Shallit6

March 14, 2023

Abstract

The complement x of a binary word x is obtained by changing each 0 in x to 1 and
vice versa. We study infinite binary words w that avoid sufficiently large complemen-
tary factors; that is, if x is a factor of w, then x is not a factor of w. In particular, we
classify such words according to their critical exponents.

1 Introduction

Let x be a finite nonempty binary word. We write x for the complementary word, image of
the morphism that maps 0 → 1 and 1 → 0, and we write xR for the reversal (mirror image)
of x. We say y is a factor of a (one-sided) infinite word w if w = xyz for a finite word x and
an infinite word z. In this paper, we are interested in the construction of and properties of
infinite binary words w avoiding complementary factors: that is, if x is a nonempty factor of
w, then x is not. This is not a new notion; for example, complement avoidance in de Bruijn
words was studied by Sawada et al. [20].

Evidently it is impossible for an infinite word to avoid complementary factors of all
lengths, except in the trivial cases 0ω = 000 · · · and 1ω = 111 · · · . A natural question then
poses itself: are there such infinite words if the set of exceptions is restricted in some way,
say by length or by cardinality? And what is the repetition threshold of such infinite words?
We now turn to repetitions.
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We say that a finite word w = w[1..n] has period p ≥ 1 if w[i] = w[i+p] for 1 ≤ i ≤ n−p.
The smallest period of a word w is called the period, and we write it as per(w). The exponent
of a finite word w, written exp(w) is defined to be |w|/ per(w). For a real number α, we say
a word (finite or infinite) is α-free if the exponent of all its nonempty factors is < α. We say
a word is α+-free if the exponent of all its nonempty factors is ≤ α. A word that is 2-free
is also called squarefree, and a word that is 3-free is also called cubefree. A word that is
2+-free is also called overlap-free.

The critical exponent of a finite or infinite word x is the supremum, over all nonempty
finite factors w of x, of exp(w); it is written ce(x). The repetition threshold for a language L
of infinite words is defined to be the infimum, over all x ∈ L, of ce(x).

The repetition thresholds for various classes of words have been studied extensively. To
name just a few classes, Dejean [8] determined the repetition threshold for all words over a
3-letter alphabet, and conjectured its value for larger alphabets. Her conjecture attracted
a lot of attention, and was finally resolved by Rao [18] and Currie and Rampersad [7],
independently.

Other classes that have been studied include the Sturmian words, studied by Carpi and
de Luca [4, Prop. 15]; the palindromes, studied in [22]; the rich words, studied by Currie et
al. [5]; the balanced words, studied by Rampersad et al. [17] and Dvořáková et al. [11]; and
the complementary symmetric Rote words, studied by Dvořáková et al. [10]. Other related
works include [13, 1, 12, 19, 16].

In this paper we study the repetition threshold for two classes of infinite words:

• CALℓ, the binary words for which there is no length-ℓ word x such that both x and x
appear as factors;

• CANn, the binary words for which there are at most n distinct words x such that both
x and x appear as factors.

It turns out that there is an interesting and subtle hierarchy, depending on the values of ℓ
and n.

Our work is very similar in flavor to that of [21], which found a similar hierarchy con-
cerning critical exponents and sizes of squares avoided. The hierarchy for complementary
factors, as we will see, however, is significantly more complex.

We will need the following famous infinite words.

• The Fibonacci word f = 0100101001001010010100100 · · · , fixed point of the morphism
0 → 01, 1 → 0. See, for example, [3].

• The word p = 0121021010210121010210121 · · · , fixed point of the morphism ϕ sending
0 → 01, 1 → 21, 2 → 0. This is sequence A287072 in the OEIS. Its properties were
recently studied in [6].

The paper is organized as follows. In Section 2, we introduce the class CALℓ mentioned
above and we establish the hierarchy alluded to previously. Section 3 does the same thing
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for the class CANn. In both cases we need some critical exponent calculations, which are
carried out in Section 4. Finally, in Section 5 we study finite words avoiding complementary
factors and determine under what conditions there are exponentially many such words.

2 The class CALℓ

In this section, we investigate the repetition threshold for the class CALℓ, the binary words
w with the property that if x is a length-ℓ factor of w, then x is not. We will need two
additional morphisms: the Thue-Morse morphism µ, which maps 0 → 01 and 1 → 10, and
the morphism ψ, defined as follows:

0 → 011001

1 → 0

2 → 01101.

Lemma 1. Suppose x is an infinite binary word avoiding (7/3)-powers. Then x contains
infinitely many (and hence, arbitrarily large) complementary factors.

Proof. By a result of Karhumäki and Shallit [14], every infinite binary word avoiding e-powers
for e ≤ 7

3
contains µn(0) as a factor for all n ≥ 1. Such a word is of the form µn−1(01) =

µn−1(0)µn−1(1), and these two terms are complementary factors of length 2n−1.

By Lemma 1, the lower limit on the repetition threshold is 7
3
. For ℓ = 1 the only such

words are 0ω and 1ω. For ℓ = 2 the only such words are 0ω, 1ω, 10ω, and 01ω. Larger ℓ are
handled in Theorem 3 below, but to prove it we first need to provide some terminology and
a lemma from [15]. A morphism f : Σ∗ → ∆∗ is called q-uniform if |f(a)| = q for all a ∈ Σ,
and is called synchronizing if for all a, b, c ∈ Σ and u, v ∈ ∆∗, if f(ab) = uf(c)v, then either
u = ε and a = c, or v = ε and b = c. The following result is quoted almost verbatim from
[15, Lemma 23]:

Lemma 2. Let a, b ∈ R satisfy 1 < a < b. Let α ∈ {a, a+} and β ∈ {b, b+}. Let h : Σ∗ → ∆∗

be a synchronizing q-uniform morphism. Set

t = max

(

2b

b− a
,
2(q − 1)(2b− 1)

q(b− 1)

)

.

If h(w) is β-free for every α-free word w with |w| ≤ t, then h(z) is β-free for every α-free
word z ∈ Σ∗.

We will use this lemma as follows: through an exhaustive search, we find an appropriate
uniform morphism from {0, 1, 2}∗ → {0, 1}∗, and then we apply this morphism to an arbitrary
ternary squarefree word. Then we use the fact that there are uncountably many infinite
ternary squarefree words, and exponentially many finite ternary squarefree words [23].

We are now ready to state and prove our result on avoiding complementary factors.
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Theorem 3. There exists an infinite β+-free binary word containing no complementary
factors of length ≥ ℓ, for the following pairs (ℓ, β). Moreover, this list of pairs is optimal.

(a) (3, 2 + α), where α = (1 +
√
5)/2.

(b) (5, 3)

(c) (7, 8
3
)

(d) (8, 5
2
)

(e) (11, γ′), where γ′
.
= 2.4808627161472369 is the critical exponent of p.

(f) (13, 7
3
).

Proof.

(a) (3, 2 + α) is achieved by any Sturmian word x with slope [0, 3, 1, 1, 1, 1, . . .] = (5 −√
5)/10. As is well-known, a Sturmian word has exactly n+ 1 factors of length n, and

these factors are independent of the intercept of the Sturmian word. For intercept 0, the
first 6 symbols are 001000, and so the four factors of x of length 3 are 001, 010, 100, 000,
and no complement of these words appears as a factor of x.

On the other hand, we know from the proof of Proposition 15 of [4] that the critical
exponent of x is 2 +α. Thus, since we can choose the intercept of a Sturmian word to
be any real in [0, 1], there are uncountably many binary words in CAL3 with critical
exponent 2 + α.

This is best possible, as shown in Theorem 16.

(b) (5, 3) is achieved by applying the 17-uniform morphism h1 defined by

0 → 01000101000101001

1 → 01000101000100100

2 → 01000101000100010,

to any ternary squarefree word w. It is easy, by checking all squarefree words of length
5, to ensure that h1(w) contains no complementary factors of length ≥ 6. To verify the
3+-freeness of these words, we use Lemma 2 with α = 2, β = 3+, q = 17, t = 6, and
check that the morphism is indeed synchronizing and that the image of every ternary
squarefree word of length ≤ 6 is 3+-free. This gives uncountably many infinite binary
words and exponentially many finite binary words with the desired avoidance property.

We use this same technique to verify the β+-freeness of every word in this paper that
is obtained with a uniform morphism.

To see that this result is optimal, backtracking easily shows that the longest word that
contains no complementary factors of length ≥ 6 and no cubes is of length 50, and one
example is

00101001001101001001101001101001001101001101001001.
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(c) (7, 8
3
) is achieved by applying the 36-uniform morphism

0 → 001001010011001010010011001001010011

1 → 001001010010011001010011001010010011

2 → 001001010010011001001010011001010011,

to any ternary squarefree word. This gives uncountably many infinite binary words
and exponentially many finite binary words.

The longest word that contains no complementary factors of length ≥ 7 and no 8
3
-

powers is of length 51 and one example is

001001100100110010100110010011001010011001010010100.

(d) (8, 5
2
) is achieved by applying the morphism ξ, defined as follows

0 → 01

1 → 0110

2 → 1,

to the infinite word p mentioned above.

The proof that the critical exponent of ξ(p) is 5/2 is given in Section 4 starting from
Section 4.6.

The longest binary word containing no complementary factors of length ≥ 10 and no
5
2
-powers is of length 75 and one example is

001011010011001011010011011001011010011001011010011011001011010011011001100.

(e) (11, γ′) is achieved by the word ψ(p). In Section 4 we show that the critical exponent
of ψ(p) is the same as that for p.

For ℓ = 12 and e = γ′, the optimality is proved as follows. Let z = 1001011001. We
can check that ψ(p) avoids z and contains z, zR, and zR. Let x be the prefix of length
40 of ψ(p). A computer check shows that there is no infinite 5

2
-free binary word with

ℓ ≤ 12 that avoids simultaneously x, x, xR, and xR.

By symmetry, we consider a bi-infinite 5
2
-free binary word w with ℓ ≤ 12 that con-

tains x. Let X be the set containing the complements of the factors of length 12 of x.
Thus ℓ ≤ 12 means that w avoids X .

We compute the set S of factors f such that efg is 5
2
-free and avoids X and |e| = |f | =

|g| = 100. We compute the set S ′ of factors of ψ(p) of length 100. We verify that
S = S ′. This means that w = ψ(v) for some bi-infinite ternary word v. Moreover,
by considering the pre-images by ψ of w = ψ(v) and ψ(p), this implies that v and p

have the same set of factors of length 100/max(|ψ(0)|, |ψ(1)|, |ψ(2)|) = 16. In partic-
ular, v avoids the set {00, 11, 22, 20, 212, 0101, 02102, 121012, 01021010, 21021012102}
mentioned in [6, Theorem 14].
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Also, v is cube-free since w is 5
2
-free. By [6, Theorem 14], we know that v has the

same set of factors as p. Thus w has the same set of factors as ψ(p). So, the critical
exponent of ψ(p) is optimal for ℓ = 12.

(f) (13, 7
3
) is achieved by applying the 69-uniform morphism

0 → 001001100101101001100101100100110100110010110100110010011010011001011

1 → 001001100101101001100100110100110010110100110010110010011010011001011

2 → 001001100101101001100100110100110010110010011010011001011010011001011

to any ternary squarefree word. This gives uncountably many infinite binary words
and exponentially many finite binary words.

By Proposition 1, if e = 7
3
, then there are arbitrarily long complemented words.

3 The class CANn

One could also try to minimize the total number n of complemented words that appear.
Obviously n has to be even. Recall that CANn denotes the set of binary words w for which
there are at most n distinct words x such that both x and x appear as factors of w. For
n = 0 the only such infinite words are 0ω and 1ω. For n = 2 the only such infinite words are
0ω, 1ω, 01ω, and 10ω. For larger n the situation is summed up in the following theorem:

Theorem 4. There exists an infinite β+-free binary word having at most n complemented
words, for the following pairs (n, β). Moreover, this list of pairs is optimal.

(a) (4, 2 + α)

(b) (8, 3)

(c) (24, 8
3
)

(d) (36, 5
2
)

(e) (64, γ′), where γ′
.
= 2.4808627161472369 is the critical exponent of p.

(f) (90, 7
3
).

Proof. For the positive part, we use the same words as in Theorem 3. That is, for every
β ∈ {2+α, 3, 8

3
, 5
2
, γ′, 7

3
}, the infinite β+-free binary words given in Theorem 3 to achieve the

pair (ℓ, β) also achieve the pair (n, β) in Theorem 4. It is not hard to count the complemented
factors in such words since their length is less than ℓ. Now let us consider the negative part.
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(a) For 4 ≤ t ≤ 6 the optimal exponent we can avoid is 2 + α. To see this note that any
such word must avoid having both x and x as factors if |x| ≥ 4, since taking non-empty
prefixes of x and x gives at least 8 complemented factors. Hence, the smallest exponent
that can be avoided is 2 + α by Theorem 16.

(b) For 8 ≤ t ≤ 22 one can avoid 3+-powers, and this is optimal. The longest word having
at most 22 complemented words, and no cubes is of length 50 and one example is
00101001001101001001101001101001001101001101001001.

(c) For 24 ≤ t ≤ 34 one can avoid 8
3

+
-powers, and this is optimal. The longest word having

at most 34 complemented words and no 8
3
-powers is of length 51 and one example is

001001100100110010100110010011001010011001010010100.

(d) For 36 ≤ t ≤ 62 one can avoid 5
2

+
-powers and this is optimal. The longest word having

at most 62 complemented words and no 5
2
-powers is of length 73 and one example is

0010110100110010110100110110010110100110010110100110110010110100110110010.

(e) For 64 ≤ t ≤ 88 the optimal exponent that can be avoided is γ′. We use the proof of
optimality of Theorem 3 (e) and replace the condition ℓ ≤ 12 by t ≤ 88.

(f) For 90 ≤ t <∞, the optimal exponent that can be avoided is 7
3

+
. By Proposition 1, if

e = 7
3
, then there are arbitrarily many complemented words.

4 Critical exponent of ξ(p) and ψ(p)

The infinite word p is the fixed point of the morphism ϕ, where

ϕ(0) = 01, ϕ(1) = 21, ϕ(2) = 0. (1)

Therefore, p = 01210210102101210102101210210121010 · · ·
The following characteristics of p are known (see [6]):

• The factor complexity (number of distinct length-n factors) of p is 2n + 1.

• The word p is not closed under reversal because 02 is a factor of p, but 20 is not.

• The word p is uniformly recurrent because the morphism ϕ is primitive.

The morphism ψ is defined by

ψ(0) = 011001, ψ(1) = 0, ψ(2) = 01101. (2)

Therefore, ψ(p) = 0110010011010011001011010 · · ·

7



The morphism ξ is defined by

ξ(0) = 01, ξ(1) = 0110, ξ(2) = 1. (3)

Hence, ξ(p) = 0101101011001101100101100110110 · · ·
In this section, we compute the critical exponents of ψ(p) and ξ(p) using the lengths of

their bispecial factors and their shortest return words.
First recall the definitions of bispecial and return word. Let u be an infinite word and

let L(u) denote the language of all finite factors of u. Then w ∈ L(u) is called left special
if aw, bw ∈ L(u) for two distinct letters a, b. A right special factor is defined analogously.
The factor w is called bispecial if it is both left special and right special. A factor r of u is
a return word to the factor w if rw ∈ L(u) and rw contains w exactly twice – once as a
prefix and once as a suffix.

For a word u over an ordered d-letter alphabet Σ, we define its Parikh vector to be the
vector of number of occurrences of each letter in u.

Theorem 5 ([9]). Let u be a uniformly recurrent aperiodic sequence. Let (wn) be a sequence
of all bispecial factors ordered by their length. For every n ∈ N, let rn be a shortest return
word to wn in u. Then

ce(u) = 1 + sup
n∈N

{ |wn|
|rn|

}

.

4.1 Bispecial factors in p

In order to determine bispecial factors in ψ(p) and in ξ(p), we need to explore bispecial
factors in p. First, we will look at the left special factors (LS). Observing the form of ϕ, we
can see that every LS has left extensions either {0, 2}, or {0, 1}.
Observation 6. Let v ∈ L(p), v 6= ε. Then

• v is LS such that 0v, 2v ∈ L(p) if and only if v is a prefix of 1ϕ(w), where w is LS such
that 0w, 1w ∈ L(p).

• v is LS such that 0v, 1v ∈ L(p) if and only if v is a prefix of ϕ(w), where w is LS such
that 0w, 2w ∈ L(p).

Second, we will look at the right special factors (RS). By the definition of ϕ, every RS
has right extensions either {1, 2}, or {0, 2}.
Observation 7. Let v ∈ L(p), v 6= ε. Then

• v is RS such that v1, v2 ∈ L(p) if and only if v is a suffix of ϕ(w)0, where w is RS
such that w0, w2 ∈ L(p).

• v is RS such that v0, v2 ∈ L(p) if and only if v is a suffix of ϕ(w), where w is RS such
that w1, w2 ∈ L(p).
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It follows from the form of left and right special factors that we have at most 4 possible
kinds of nonempty bispecial factors in p. The following statements are obtained when
combining Observations 6 and 7.

Corollary 8. Let v ∈ L(p) \ {ε} be a bispecial factor in p.

1. If 0v, 2v, v0, v2 ∈ L(p), there exists w such that v = 1ϕ(w) and 0w, 1w,w1, w2 ∈ L(p).

2. If 0v, 1v, v1, v2 ∈ L(p), there exists w such that v = ϕ(w)0 and 0w, 2w,w0, w2 ∈ L(p).

3. If 0v, 2v, v1, v2 ∈ L(p), there exists w such that v = 1ϕ(w)0 and 0w, 1w,w0, w2 ∈
L(p).

4. If 0v, 1v, v0, v2 ∈ L(p), there exists w such that v = ϕ(w) and 0w, 2w,w1, w2 ∈ L(p).

It follows from Corollary 8 that all bispecial factors may be constructed starting from the
shortest ones in the following way: 1 is the shortest bispecial factor with left extensions {0, 2}
and right extensions {0, 2}. Applying the morphism ϕ, we obtain the bispecial factor ϕ(1)0
with left extensions {0, 1} and right extensions {1, 2}. The second application of ϕ gives us
the bispecial factor 1ϕ2(1)ϕ(0) with left extensions {0, 2} and right extensions {0, 2}. This
process can be iterated infinitely many times

1 → ϕ(1)0 → 1ϕ2(1)ϕ(0) → ϕ(1)ϕ3(1)ϕ2(0)0 → 1ϕ2(1)ϕ4(1)ϕ3(0)ϕ(0) → · · ·

Similarly, when starting with the bispecial factor 10 with left extensions {0, 2} and right
extensions {1, 2}, we obtain after application of ϕ the bispecial factor ϕ(10) with left ex-
tensions {0, 1} and right extensions {0, 2}. After the second application of ϕ, we have the
bispecial factor 1ϕ2(10)0 with left extensions {0, 2} and right extensions {1, 2}. We continue
analogously and complete thus the list of all bispecial factors

10 → ϕ(10) → 1ϕ2(10)0 → ϕ(1)ϕ3(10)ϕ(0) → 1ϕ2(1)ϕ4(10)ϕ2(0)0 → · · ·

The following statement is an immediate consequence of Corollary 8.

Proposition 9. Let w ∈ L(p)\{ε}. If w is a bispecial factor, then w has one of the following
forms:

A)

w
(n)
A = 1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n−1(0)ϕ2n−3(0) · · ·ϕ(0) for n ≥ 1.

If n = 0, then we set w
(0)
A = 1.

The Parikh vector of w
(n)
A is the same as of the factor 1ϕ(012)ϕ3(012) · · ·ϕ2n−1(012).

B)
w

(n)
B = ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0 for n ≥ 0.

The Parikh vector of w
(n)
B is the same as of the factor 012ϕ2(012)ϕ4(012) · · ·ϕ2n(012).
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C)
w

(n)
C = 1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0 for n ≥ 0.

The Parikh vector of w
(n)
C is the same as of the factor 01ϕ2(01)ϕ4(01) · · ·ϕ2n(01).

D)

w
(n)
D = ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n+1(0)ϕ2n−1(0) · · ·ϕ(0) for n ≥ 0.

The Parikh vector of w
(n)
D is the same as of the factor ϕ(01)ϕ3(01) · · ·ϕ2n+1(01).

4.2 The shortest return words in p

Let us derive the form of the shortest return words to all bispecial factors in p. We will
make use of them when solving the same problem for ψ(p) and ξ(p).

• The return words to ε are 0, 1, 2.

• The return words to 1 are 12, 102, 10.

• The return words to 10 are 10, 102, 1012. The shortest one is 10 and it is a prefix of
all of them.

• The return words to ϕ(1)0 are 210 = ϕ(1)0, 21010, 2101. The shortest one is 210 and
it is a prefix of all of them.

Using this knowledge and the knowledge of how the bispecial factors can be constructed,
we obtain the following observation for the shortest return words:

A) The shortest return words to w
(0)
A = 1 are 12 and 10. The shortest return word to w

(n)
A ,

n ≥ 1, has the same Parikh vector as the factor ϕ2n−1(012).

B) The shortest return word to w
(n)
B , n ≥ 0, has the same Parikh vector as the factor

ϕ2n(012).

C) The shortest return word to w
(n)
C , n ≥ 0, has the same Parikh vector as the factor

ϕ2n(01).

D) The shortest return word to w
(n)
D , n ≥ 0, has the same Parikh vector as the factor

ϕ2n+1(01).

10



4.3 Bispecial factors in ψ(p)

Let us start with some simple observations. If a factor v ∈ L(ψ(p)) contains the factor 11001
or 1101, then we are able to write v = xψ(w)y uniquely, where w ∈ L(p), and x (resp., y) is
a proper suffix (resp., proper prefix) of the image of some letter. Moreover, if v is a bispecial
factor in ψ(p), then w is a bispecial factor in p.

Observation 10. Let v ∈ L(ψ(p)) be a bispecial factor in ψ(p) such that it contains 11001
or 1101. Then one of the following items is true.

1. There exists w ∈ L(p) such that v = 01ψ(w)0110 and 0w, 2w,w0, w2 ∈ L(p).

2. There exists w ∈ L(p) such that v = ψ(w)0 and 0w, 1w,w1, w2 ∈ L(p).

3. There exists w ∈ L(p) such that v = 01ψ(w)0 and 0w, 2w,w1, w2 ∈ L(p).

4. There exists w ∈ L(p) such that v = ψ(w)0110 and 0w, 1w,w0, w2 ∈ L(p).

Corollary 11. Let v ∈ L(ψ(p)). If v is a bispecial factor containing 11001 or 1101, then v
has one of the following forms:

A)

v
(n)
A = 01ψ(1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n−1(0)ϕ2n−3(0) · · ·ϕ(0))0110 for n ≥ 1.

The Parikh vector of v
(n)
A is the same as that of the factor

000111ψ(1ϕ(012)ϕ3(012) · · ·ϕ2n−1(012)).

B)
v
(n)
B = ψ(ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0)0 for n ≥ 0.

The Parikh vector of v
(n)
B is the same as that of the factor

0ψ(012ϕ2(012)ϕ4(012) · · ·ϕ2n(012)).

C)
v
(n)
C = 01ψ(1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0)0 for n ≥ 0.

The Parikh vector of v
(n)
C is the same as of the factor 001ψ(01ϕ2(01)ϕ4(01) · · ·ϕ2n(01)).

D)

v
(n)
D = ψ(ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n+1(0)ϕ2n−1(0) · · ·ϕ(0))0110 for n ≥ 0.

The Parikh vector of v
(n)
D is the same as of the factor 0011ψ(ϕ(01)ϕ3(01) · · ·ϕ2n+1(01)).

11



4.4 The shortest return words in ψ(p)

Knowing the Parikh vectors of the shortest return words to bispecial factors in p and using
the unambiguous reconstruction of w from ψ(w) when ψ(w) contains 11001 or 1101, we
obtain the following observation for the shortest return words:

A) The shortest return word r
(n)
A to v

(n)
A , n ≥ 1, has the same Parikh vector as the factor

ψ(ϕ2n−1(012)).

B) The shortest return word r
(n)
B to v

(n)
B , n ≥ 0, has the same Parikh vector as the factor

ψ(ϕ2n(012)).

C) The shortest return word r
(n)
C to v

(n)
C , n ≥ 0, has the same Parikh vector as the factor

ψ(ϕ2n(01)).

D) The shortest return word r
(n)
D to v

(n)
D , n ≥ 0, has the same Parikh vector as the factor

ψ(ϕ2n+1(01)).

4.5 Critical exponent of ψ(p)

Having determined the lengths of bispecial factors and of their shortest return words in ψ(p),
we can use Theorem 5 to compute the critical exponent of ψ(p):

ce(ψ(p)) = 1 + max {A,B,C,D,E}

A = sup

{

|v(n)A |
|r(n)A |

: n ≥ 1

}

= sup

{ |000111ψ(1ϕ(012)ϕ3(012) · · ·ϕ2n−1(012))|
|ψ(ϕ2n−1(012))| : n ≥ 1

}

;

B = sup

{

|v(n)B |
|r(n)B |

: n ≥ 0

}

= sup

{ |0ψ(012ϕ2(012)ϕ4(012) · · ·ϕ2n(012))|
|ψ(ϕ2n(012))| : n ≥ 0

}

;

C = sup

{

|v(n)C |
|r(n)C |

: n ≥ 0

}

= sup

{ |001ψ(01ϕ2(01)ϕ4(01) · · ·ϕ2n(01))|
|ψ(ϕ2n(01))| : n ≥ 0

}

;

D = sup

{

|v(n)D |
|r(n)D |

: n ≥ 0

}

= sup

{ |0011ψ(ϕ(01)ϕ3(01) · · ·ϕ2n+1(01))|
|ψ(ϕ2n+1(01))| : n ≥ 0

}

;

E =

{ |w|
|r| : w bispecial not containing 11001 or 1101, r the shortest return word to w

}

.

4.5.1 Computation of E

As summarized in Table 4.5.1, for each bispecial w that does not contain 11001 and 1101
and its shortest return word r, we have |w|

|r|
≤ 4

3

.
= 1.333, therefore E = 1 + 1

3
.
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w 0 1 01 10 101 010 0110 1001

r 0 1 01 10 101 01011 011001 100

Table 1: Short bispecial factors w and their return words r

4.5.2 Computation of A and B

If we consider an := |ψ(ϕn(012))|, then we can see that an satisfies the recurrence relation
an+1 = 2an − an−1 + an−2 with initial conditions a0 = 12, a1 = 19, and a2 = 32.

This recurrence relation may be solved and we obtain

an = A1β
n
1 +B1λ

n
1 + C1λ

n
2 ,

where
β1

.
= 1.75488, λ1

.
= 0.12256 + 0.74486i, λ2 = λ1

are the roots of the polynomial t3 − 2t2 + t− 1, and

A1 =
12|λ1|2 − 38Re(λ1) + 32

|β1 − λ1|2
.
= 10.6175 ;

B1 =
12β1λ2 − 19(β1 + λ2) + 32

(β1 − λ1)(λ2 − λ1)
.
= 0.6912− 0.1330i ;

C1 = B1 .

Let us first determine

A′ := lim sup
n→+∞

|v(n)A |
|r(n)A |

= lim sup
n→+∞

|000111ψ(1ϕ(012)ϕ3(012) · · ·ϕ2n−1(012))|
|ψ(ϕ2n−1(012))| .

We have

A′ = lim sup
n→+∞

6 + 1 +
∑n

k=1 a2k−1

a2n−1

= lim sup
n→+∞

7 + A1

∑n
k=1 β

2k−1
1 +B1

∑n
k=1 λ

2k−1
1 + C1

∑n
k=1 λ

2k−1
2

A1β
2n−1
1 +B1λ

2n−1
1 + C1λ

2n−1
2

= lim
n→+∞

7 + A1β1
β2n

1
−1

β2

1
−1

+B1λ1
λ2n

1
−1

λ2

1
−1

+ C1λ2
λ2n

2
−1

λ2

2
−1

A1β
2n−1
1 +B1λ

2n−1
1 + C1λ

2n−1
2

=
β2
1

β2
1 − 1

.
= 2.4809 .
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Next we will show that A ≤ A′ and thus A = A′. We want to show for all n ≥ 1 that

7 + A1

∑n
k=1 β

2k−1
1 +B1

∑n
k=1 λ

2k−1
1 + C1

∑n
k=1 λ

2k−1
2

A1β
2n−1
1 +B1λ

2n−1
1 + C1λ

2n−1
2

≤? β2
1

β2
1 − 1

(β2
1 − 1)

(

7 + 2Re

(

B1λ1
λ2n1 − 1

λ21 − 1

))

+ A1β
2n+1
1 − A1β1 ≤? 2β2

1 Re(B1λ
2n−1
1 ) + A1β

2n+1
1

(β2
1 − 1)

(

7 + 2Re

(

B1λ1
λ2n1 − 1

λ21 − 1

))

≤? 2β2
1 Re(B1λ

2n−1
1 ) + A1β1 .

Now, on the one hand, for n ≥ 2, we have

(β2
1 − 1)

(

7 + 2Re

(

B1λ1
λ2n1 − 1

λ21 − 1

))

≤ (β2
1 − 1)

(

7 + 2|B1||λ1|
|λ1|2n + 1

|λ21 − 1|

)

≤ (β2
1 − 1)

(

7 + 2|B1||λ1|
|λ1|4 + 1

|λ21 − 1|

)

.

On the other hand,

2β2
1 Re(B1λ

2n−1
1 ) + A1β1 ≥ A1β1 − 2β2

1 |B1||λ1|2n−1

≥ A1β1 − 2β2
1 |B1||λ1|3.

And if we substitute the values, we get

(β2
1 − 1)

(

7 + 2|B1||λ1|
|λ1|4 + 1

|λ21 − 1|

)

≤ A1β1 − 2β2
1 |B1||λ1|3.

For n = 1, we get 7+a1
a1

= 1 + 7
19
< A′.

Therefore

A = A′ =
β2
1

β2
1 − 1

.

Next, we will use the same procedure for B.

B′ := lim sup
n→+∞

|v(n)B |
|r(n)B |

= lim sup
n→+∞

|0ψ(012ϕ2(012)ϕ4(012) · · ·ϕ2n(012))|
|ψ(ϕ2n(012))|

= lim sup
n→+∞

1 +
∑n

k=0 a2k
a2n

= lim sup
n→+∞

1 + A1

∑n
k=0 β

2k
1 +B1

∑n
k=0 λ

2k
1 + C1

∑n
k=0 λ

2k
2

A1β2n
1 +B1λ2n1 + C1λ2n2

=
β2
1

β2
1 − 1

.
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Now we will show that B = B′, because for all n ≥ 0 we have

1 + A1

∑n
k=0 β

2k
1 +B1

∑n
k=0 λ

2k
1 + C1

∑n
k=0 λ

2k
2

A1β
2n
1 +B1λ

2n
1 + C1λ

2n
2

≤? β2
1

β2
1 − 1

(β2
1 − 1)

(

1 + 2Re

(

B1
λ2n+2
1 − 1

λ21 − 1

))

+ A1β
2n+2
1 −A1 ≤? 2β2

1 Re(B1λ
2n
1 ) + A1β

2n+2
1

(β2
1 − 1)

(

1 + 2Re

(

B1
λ2n+2
1 − 1

λ21 − 1

))

≤? 2β2
1 Re(B1λ

2n
1 ) + A1 .

Now, on the one hand, for all n ≥ 2, we have

(β2
1 − 1)

(

1 + 2Re

(

B1
λ2n+2
1 − 1

λ21 − 1

))

≤ (β2
1 − 1)

(

1 + 2Re

(

B1

1− λ21

)

− 2Re

(

B1
λ2n+2
1

1− λ21

))

≤ (β2
1 − 1)

(

1 + 2Re

(

B1

1− λ21

)

+ 2|B1|
|λ2n+2

1 |
|1− λ21|

)

≤ (β2
1 − 1)

(

1 + 2Re

(

B1

1− λ21

)

+ 2|B1|
|λ1|6

|1− λ21|

)

.

On the other hand,
2β2

1 Re(B1λ
2n
1 ) + A1 ≥ A1 − 2β2

1 |B1||λ1|4.
Substituting the values proves that

(β2
1 − 1)

(

1 + 2Re

(

B1

1− λ21

)

+ 2|B1|
|λ1|6

|1− λ21|

)

< A1 − 2β2
1 |B1||λ1|4.

For n = 0, we get 1+a0
a0

= 1+12
12

< B′. For n = 1, we get 1+a0+a2
a2

= 1 + 1+12
32

< B′. The

inequality B ≤ B′ is proven, and therefore B = B′ =
β2

1

β2

1
−1

.

4.5.3 Computation of C and D

If we consider cn := |ψ(ϕn(01))|, then we can see that cn satisfies the same recurrence relation
as an, i.e., cn+1 = 2cn − cn−1 + cn−2 with initial conditions c0 = 7, c1 = 13, and c2 = 25.

This recurrence relation can be solved and we obtain

cn = A2β
n
1 +B2λ

n
1 + C2λ

n
2 ,

where
β1

.
= 1.75488, λ1

.
= 0.12256 + 0.74486i, λ2 = λ1

are the roots of the polynomial t3 − 2t2 + t− 1, and

A2 =
7|λ1|2 − 13Re(λ1) + 25

|β1 − λ1|2
.
= 8.0149 ;

B2 =
7β1λ2 − 13(β1 + λ2) + 25

(β1 − λ1)(λ2 − λ1)

.
= −0.5075 + 0.6315i ;

C2 = B2.
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The proof of C ′ = D′ =
β2

1

β2

1
−1

proceeds in a similar fashion as that for B′ (resp., A′). To

complete the proof, we need to show firstly C ≤ C ′, i.e., for all n ≥ 0 that

3 + A2

∑n
k=0 β

2k
1 +B2

∑n
k=0 λ

2k
1 + C2

∑n
k=0 λ

2k
2

A2β2n
1 +B2λ2n1 + C2λ2n2

≤? β2
1

β2
1 − 1

(β2
1 − 1)

(

3 + 2Re

(

B2
λ2n+2
1 − 1

λ21 − 1

))

≤? 2β2
1 Re(B2λ

2n
1 ) + A2 .

Now, we have for all n ≥ 2

(β2
1 − 1)

(

3 + 2Re

(

B2
λ2n+2
1 − 1

λ21 − 1

))

≤ (β2
1 − 1)

(

3 + 2Re

(

B2

1− λ21

)

+ 2|B2|
|λ1|6

|1− λ21|

)

;

2β2
1 Re(B2λ

2n
1 ) + A2 ≥ A2 − 2β2

1 |B2||λ1|4.

Substituting the values proves that

(β2
1 − 1)

(

3 + 2Re

(

B2

1− λ21

)

+ 2|B2|
|λ1|6

|1− λ21|

)

< A2 − 2β2
1 |B2||λ1|4.

For n = 0, we get 3+c0
c0

= 1 + 3
7
< C ′. For n = 1, we get 3+c0+c2

c2
= 1 + 3+7

25
< C ′. The

inequality C ≤ C ′ is proven. Hence C = C ′ =
β2

1

β2

1
−1

.

Finally, we need to prove D ≤ D′, i.e., for all n ≥ 1, that

4 + A2

∑n
k=1 β

2k−1
1 +B2

∑n
k=1 λ

2k−1
1 + C2

∑n
k=1 λ

2k−1
2

A2β
2n−1
1 +B2λ

2n−1
1 + C2λ

2n−1
2

≤? β2
1

β2
1 − 1

(β2
1 − 1)

(

4 + 2Re

(

B2λ1
λ2n1 − 1

λ21 − 1

))

≤? 2β2
1 Re(B2λ

2n−1
1 ) + A2β1 .

Using the same estimates as for A and n ≥ 2, it remains to check the following inequality

(β2
1 − 1)

(

4 + 2|B2||λ1|
|λ1|4 + 1

|λ21 − 1|

)

≤ A2β1 − 2β2
1 |B2||λ1|3.

The inequality holds for given values. For n = 1, we get 4+c1
c1

= 1 + 4
13
< D′. Consequently,

D = D′.
We have shown that A = B = C = D =

β2

1

β2

1
−1

and E = 1 + 1
3
< A. In other words, we

have proved the following theorem.

Theorem 12. The critical exponent of ψ(p) equals

ce(ψ(p)) = 1 +
β2
1

β2
1 − 1

= 2 +
1

β2
1 − 1

.
= 2.4808627161472369.

Let us emphasize that the critical exponents of p and ψ(p) are the same [6].
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4.6 Bispecial factors in ξ(p)

Now we turn to ξ(p). Let us start with some simple observations. If a factor v ∈ L(ξ(p))
contains the factor 00 or 1011 or 11010, then we are able to express v = xξ(w)y uniquely,
where w ∈ L(p) and x (resp., y) is a proper suffix (resp., proper prefix) of an image of some
letter. Moreover, if v is a bispecial factor in ξ(p), then w is a bispecial factor in p.

Observation 13. Let v ∈ L(ξ(p)) be a bispecial factor such that it contains 00 or 1011 or
11010. Assume v 6= 1ξ(1) = 10110 and v 6= 1ξ(10) = 1011001. Then there exists w ∈ L(p)
such that either v = ξ(w) and w is a bispecial factor with left extensions {0, 1}, or v = 01ξ(w)
and w is a bispecial factor with left extensions {0, 2}. Moreover, the length of the shortest
return word to v in ξ(p) equals |ξ(r)|, where r is the shortest return word to w in p.

4.7 Critical exponent of ξ(p)

Using Observation 13, the lengths of bispecial factors and their shortest return words in ξ(p)
may be derived in an analogous way as in the case of ψ(p). Next, we can use Theorem 5 to
compute the critical exponent of ξ(p):

ce(ξ(p)) = 1 + max {A,B,C,D,E}

A = sup

{ |01ξ(1ϕ(012)ϕ3(012) · · ·ϕ2n−1(012))|
|ξ(ϕ2n−1(012))| : n ≥ 1

}

;

B = sup

{ |ξ(012ϕ2(012)ϕ4(012) · · ·ϕ2n(012))|
|ξ(ϕ2n(012))| : n ≥ 0

}

;

C = sup

{ |01ξ(01ϕ2(01)ϕ4(01) · · ·ϕ2n(01))|
|ξ(ϕ2n(01))| : n ≥ 0

}

;

D = sup

{ |ξ(ϕ(01)ϕ3(01) · · ·ϕ2n+1(01))|
|ξ(ϕ2n+1(01))| : n ≥ 0

}

;

E = max

{ |w|
|r| : w short bispecial and r the shortest return word to w

}

,

where we say that w is a short bispecial factor if w does not contain 00, 1011, 11010 or
w = 1ξ(1) or w = 1ξ(10).

4.7.1 Computation of E

w 0 1 01 10 101 0110 01101 1ξ(1) 1ξ(10)

r 0 1 01 10 10 011 011010110 1ξ(1) 1ξ(10)1−1

Thus, we have E = 3
2
.
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4.7.2 Computation of A,B,C,D

If we consider xn := |ξ(ϕn(012))|, then we can see that xn satisfies the recurrence relation
xn+1 = 2xn − xn−1 + xn−2 with initial conditions x0 = 7, x1 = 13, and x2 = 24.

This recurrence relation may be solved and we obtain

xn = X1β
n
1 + Y1λ

n
1 + Z1λ

n
2 ,

where
β1

.
= 1.75488, λ1

.
= 0.12256 + 0.74486i, λ2 = λ1

are the roots of the polynomial t3 − 2t2 + t− 1, and

X1 =
7|λ1|2 − 26Re(λ1) + 24

|β1 − λ1|2
.
= 7.704 ;

Y1 =
7β1λ2 − 13(β1 + λ2) + 24

(β1 − λ1)(λ2 − λ1)

.
= −0.352 + 0.291i ;

Z1 = Y1 .

We want to show for all n ≥ 1 that

6 +X1

∑n
k=1 β

2k−1
1 + Y1

∑n
k=1 λ

2k−1
1 + Z1

∑n
k=1 λ

2k−1
2

X1β
2n−1
1 + Y1λ

2n−1
1 + Z1λ

2n−1
2

≤? β2
1

β2
1 − 1

<
3

2
.

(β2
1 − 1)

(

6 + 2Re

(

Y1λ1
λ2n1 − 1

λ21 − 1

))

+X1β
2n+1
1 −X1β1 ≤? 2β2

1 Re(Y1λ
2n−1
1 ) +X1β

2n+1
1

(β2
1 − 1)

(

6 + 2Re

(

Y1λ1
λ2n1 − 1

λ21 − 1

))

≤? 2β2
1 Re(Y1λ

2n−1
1 ) +X1β1 .

Now, on one hand, for n ≥ 7 we have

(β2
1 − 1)

(

6 + 2Re

(

Y1λ1
λ2n1 − 1

λ21 − 1

))

≤ (β2
1 − 1)

(

6 + 2|Y1||λ1|
|λ1|14 + 1

|λ21 − 1|

)

.

On the other hand, we have

2β2
1 Re(Y1λ

2n−1
1 ) +X1β1 ≥ X1β1 − 2β2

1 |Y1||λ1|13.

And if we substitute the values, we get

(β2
1 − 1)

(

6 + 2|Y1||λ1|
|λ1|14 + 1

|λ21 − 1|

)

≤ X1β1 − 2β2
1 |Y1||λ1|13 .
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n 1 2 3 4 5 6
An 1.4615 1.4524 1.4766 1.4785 1.4803 1.4806

Table 2: The first 6 elements of A.

The first 6 values from the set A are given in Table 2. We can see that they are all
smaller than 3

2
. The inequality therefore holds for all n ≥ 1.

We have shown that A < 3
2
= E. Using the same estimates, we can show that also the

remaining values B,C,D are smaller than 3
2
. In other words, we have proved the following

theorem.

Theorem 14. The critical exponent of ξ(p) equals 5
2
.

5 Complexity threshold

Notice that we used two different constructions of infinite words in the proof of Theorem 3.
When possible, that is in cases (b), (c), and (f), we use morphic images of arbitrary ternary
square-free words, thus showing that exponentially many binary words have the considered
property. Otherwise, in cases (a), (d), and (e), every bi-infinite binary word with the con-
sidered property has the same set of factors as one or a few morphic words.

In this section, we consider the latter case and we relax the constraints on the critical
exponent or the complementary factors in order to get exponential factor complexity.

Let h be the morphism that maps 0 7→ 0 and 1 7→ 01.

Lemma 15. Every bi-infinite binary 4-free word avoiding pairs of complementary factors of
length 4 and {1001001, 0110110} has the same set of factors as either h(f) or h(f).

Proof. We compute the set S of factors y such that there exists a binary 4-free word xyz
avoiding pairs of complementary factors of length 4 and {1001001, 0110110} and such that
|x| = |y| = |z| = 100. We observe that S consists of the (disjoint) union of the factors
of length 100 of h(f) and h(f). Let w be a bi-infinite binary 4-free word avoiding pairs of
complementary factors of length 4 and {1001001, 0110110}. By symmetry, we suppose that
w contains 00, so that w has the same factors of length 100 as h(f). So w ∈ {0, 01}ω, that
is, w = h(v) for some bi-infinite binary word v. Since w is 4-free, so is v. Moreover, by
considering the pre-images by h ofw = h(v) and h(f), this implies that v and f have the same
set of factors of length 100/max(|h(0)|, |h(1)|) = 50. In particular, v avoids {11, 000, 10101}.
By [2, Thm. 8], v has the same set of factors as f . Thus w has the same set of factors as
h(f).

Theorem 16. Every bi-infinite binary 11
3
-free word that contains no pair of complementary

factors of length 4 has the same set of factors as h(f) or the same set of factors as h(f).

Proof. Suppose that such a word w contains 1001001.
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First, suppose that w contains 11. Since w avoids 0110 = 1001, w contains 111. Since w
avoids the 4-power 1111, w contains 01110. Since w avoids 1101 = 0010, w contains 011100.
Symmetrically, since w avoids 1011 = 0100, w contains 0011100. So w contains both 0011
and 1100, a contradiction. Thus, w avoids 11.

Now, suppose that w contains 101. Since w avoids 11, w contains 01010. So w contains
both 0101 and 1010, a contradiction. Thus, w avoids 101.

Since w contains 1001001 and avoids 11, w contains 010010010. Since w contains
010010010 and avoids 101,w contains 00100100100. This is a contradiction, since 00100100100 =
(001)11/3.

So w avoids 1001001. By symmetry, w avoids 0110110.
By Lemma 15, w has the same set of factors as either h(f) or h(f).

By contrast, there exist exponentially many binary 11
3

+
-free words with no pair of com-

plementary factors of length 4.

Theorem 17. The image of any ternary squarefree word by the 31-uniform morphism

0 → 0010001001001000100100100010010

1 → 0010001001001000100100100010001

2 → 0010001001001000100100010010010

is a 11
3

+
-free word containing only 0, 1, 01, and 10 as complementary factors.

Let ρ be the morphism defined as follows

0 → 01100101101

1 → 0110010

2 → 011001.

Using the technique of Theorem 3 (d), we can show that ρ(p) is a 5
2

+
-free word with no

pair of complementary factors of length 8 and exactly 40 complementary factors.

Theorem 18. Every bi-infinite binary 29
11
-free word that contains no pair of complementary

factors of length 8 has the same set of factors as either ξ(p), ξ(p), ξ(p)R, ξ(p)R, ρ(p), ρ(p),
ρ(p)R, or ρ(p)R.

Proof. First, we show the following. If w is a bi-infinite cube-free binary word and every
factor of length 21 of w is also a factor of ξ(p), then w has the same set of factors as ξ(p).

We compute the set S of factors f such that there exists u = efg, where u is cube-free,
every factor of length 21 of u is a factor of ξ(p), and |e| = |f | = |g| = 500. We verify that
every factor f ∈ S is a factor of ξ(p).

This means that w = ξ(v) for some bi-infinite ternary word v. Moreover, by considering
the pre-images by ξ of w = ξ(v) and ξ(p), this implies that v and p have the same set of
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factors of length 500/max(|ξ(0)|, |ξ(1)|, |ξ(2)|) = 125. In particular, v has the same set of
factors as p by [6, Theorem 14].

Similarly, we show that if w is a bi-infinite cube-free binary word and every factor of
length 63 of w is also a factor of ρ(p), then w has the same set of factors as ρ(p).

Finally, we compute the set X of factors f such that there exists u = efg, where u is 29
11
-

free, u contains no pair of complementary factors of length 8, |f | = 200, and |e| = |g| = 80.
We verify that every factor f ∈ X is a factor of either ξ(p), ξ(p), ξ(p)R, ξ(p)R, ρ(p), ρ(p),
ρ(p)R, or ρ(p)R. Since 29

11
-free words are cube-free, Theorem 18 follows by the two previous

results and the symmetries by complement and reversal.

By contrast, there exist exponentially many binary 29
11

+
-free words containing no pair of

complementary factors of length 8 and exactly 36 complementary factors.

Theorem 19. The image of any ternary squarefree word by the 84-uniform morphism

0 → 100101100100110010100101100101001011001001100101100101001011001001100101100100110010

1 → 100101100100110010100101100101001011001001100101100101001011001001100101001011001001

2 → 100101100100110010100101100101001011001001100101100100110010100101100100110010110010

is a 29
11

+
-free word with no pair of complementary factors of length 8 and exactly 36 comple-

mentary factors.

We also get exponentially many words if we allow complementary factors of length 8.

Theorem 20. The image of any ternary squarefree word by the 31-uniform morphism

0 → 0010100110010011001010011001011

1 → 0010100101100101001100101001011

2 → 0010011001011001010010110010011

is a 5
2

+
-free word with no pair of complementary factors of length 9 and exactly 40 comple-

mentary factors.
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