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Abstract

In combinatorics on words, a word w over an alphabet Σ is said
to avoid a pattern p over an alphabet ∆ if there is no factor f of w
such that f = h(p) where h : ∆∗ → Σ∗ is a non-erasing morphism.
A pattern p is said to be k-avoidable if there exists an infinite word
over a k-letter alphabet that avoids p. A pattern is doubled if ev-
ery variable occurs at least twice. Doubled patterns are known to be
3-avoidable. Currie, Mol, and Rampersad have considered a gener-
alized notion which allows variable occurrences to be reversed. That
is, h(V R) is the mirror image of h(V ) for every V ∈ ∆. We show
that doubled patterns with reversal are 3-avoidable. We also conjec-
ture that (classical) doubled patterns that do not contain a square are
2-avoidable. We confirm this conjecture for patterns with at most 4
variables. This implies that for every doubled pattern p, the growth
rate of ternary words avoiding p is at least the growth rate of ternary
square-free words. A previous version of this paper containing only
the first result has been presented at WORDS 2021.
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1 Introduction

Themirror image of the word w = w1w2 . . . wn is the word wR = wnwn−1 . . . w1.
A pattern with reversal p is a non-empty word over an alphabet
∆ =

{

A,AR, B, BR, C, CR . . .
}

such that {A,B,C, . . .} are the variables of
p. An occurrence of p in a word w is a non-erasing morphism h : ∆∗ → Σ∗

satisfying h(XR) = (h(X))R for every variable X and such that h(p) is a
factor of w. The avoidability index λ(p) of a pattern with reversal p is the
size of the smallest alphabet Σ such that there exists an infinite word w over
Σ containing no occurrence of p. A pattern p such that λ(p) 6 k is said to be
k-avoidable. To emphasive that a pattern is without reversal (i.e., it contains
no XR), it is said to be classical. A pattern is doubled if every variable occurs
at least twice.

Our aim is to strengthen the following result.

Theorem 1. [1, 7, 8] Every doubled pattern is 3-avoidable.

First, we extend it to patterns with reversal.

Theorem 2. Every doubled pattern with reversal is 3-avoidable.

Then, we notice that all the known classical doubled patterns that are
2-unavoidable contain a square, such as AABB, ABAB, or ABCCBADD.

Conjecture 3. Every square-free doubled pattern is 2-avoidable.

Notice that Conjecture 3 is related to but independent of the following
conjecture.

Conjecture 4. [8, 10] There exist only finitely many 2-unavoidable doubled
patterns.

The proof of Conjecture 3 for patterns up to 3 variables follows from the
2-avoidability of ABACBC, ABCBABC, ABCACB and ABCBAC. We
were able to verify it for patterns up to 4 variables.

Theorem 5. Every square-free doubled pattern with at most 4 variables is
2-avoidable.

Finally, we obtain a lower bound on the number of ternary words avoiding
a doubled pattern. The factor complexity of a factorial language L over Σ is

f(n) = |L ∩ Σn|. The growth rate of L over Σ is limn→∞ f(n)
1
n . We denote

by GR3(p) the growth rate of ternary words avoiding the doubled pattern p.
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Theorem 6. For every doubled pattern p, GR3(p) > GR3(AA).

Let v(p) be the number of distinct variables of the pattern p. In the proof
of Theorem 1, the set of doubled patterns is partitioned as follows:

1. Patterns with v(p) 6 3: the avoidability index of every ternary pattern
has been determined [7].

2. Patterns shown to be 3-avoidable with the so-called power series method:

• Patterns with v(p) > 6 [1]

• Patterns with v(p) = 5 and prefix ABC or length at least 11 [8]

• Patterns with v(p) = 4 and prefix ABCD or length at least 9 [8]

3. Ten sporadic patterns with 4 6 v(p) 6 5 whose 3-avoidability cannot
be deduced from the previous results: they have been shown to be
2-avoidable [8] using the method in [7].

The proof of Theorems 2 and 6 use the same partition. Sections 3 to 5
are each is devoted to one type of doubled pattern with reversal. Theorem 5
is proved in Section 6 Theorem 6 is proved in Section 7

2 Preliminaries

A word w is d-directed if for every factor f of w of length d, the word fR is
not a factor of w.

Remark 7. If a d-directed word contains an occurrence h of X.XR for some
variable X , then |h(X)| 6 d− 1.

A variable that appears only once in a pattern is said to be isolated. The
formula f associated to a pattern p is obtained by replacing every isolated
variable in p by a dot. The factors between the dots are called fragments.
An occurrence of a formula f in a word w is a non-erasing morphism h such
that the h-image of every fragment of f is a factor of w. As for patterns,
the avoidability index λ(f) of a formula f is the size of the smallest alphabet
allowing the existence of an infinite word containing no occurrence of f .
Recently, the avoidability of formulas with reversal has been considered by
Currie, Mol, and Rampersad [4, 5] and Ochem [9].
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Recall that a formula is nice if every variable occurs at least twice in
the same fragment. In particular, a doubled pattern is a nice formula with
exactly one fragment.

The avoidability exponent AE(f) of a formula f is the largest real x such
that every x-free word avoids f . Every nice formula f with v(f) > 3 variables
is such that AE(f) > 1 + 1

2v(f)−3
[12].

Let ≃ be the equivalence relation on words defined by w ≃ w′ if w′ ∈
{

w,wR
}

. Avoiding a pattern up to ≃ has been investigated for every binary
formulas [3]. Remark that for a given classical pattern or formula p, avoiding
p up to ≃ implies avoiding simultaneously all the variants of p with reversal.

Recall that a word is (β+, n)-free if it contains no repetition with exponent
strictly greater than β and period at least n.

3 Formulas with at most 3 variables

For classical doubled patterns with at most 3 variables, all the avoidability
indices are known. There are many such patterns, so it would be tedious to
consider all their variants with reversal.

However, we are only interested in their 3-avoidability, which follows from
the 3-avoidability of nice formulas with at most 3 variables [11].

Thus, to obtain the 3-avoidability of doubled patterns with reversal with
at most 3 variables, we show that every minimally nice formula with at most
3 variables is 3-avoidable up to ≃.

The minimally nice formulas with at most 3 variables, up to symmetries,
are determined in [11] and listed in the following table. Every such formula f

is avoided by the image by a q-uniform morphism of either any infinite
(

5
4

+
)

-

free word w5 over Σ5 or any infinite
(

7
5

+
)

-free word w4 over Σ4, depending

on whether the avoidability exponent of f is smaller than 7
5
.
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Formula f = fR AE(f) Word q d freeness

ABA.BAB yes 1.5 ga(w4) 9 9
(

131
90

+
, 28

)

ABCA.BCAB.CABC yes 1.333333333 gb(w5) 6 8
(

4
3

+
, 25

)

ABCBA.CBABC yes 1.333333333 gc(w5) 4 9
(

30
23

+
, 18

)

ABCA.BCAB.CBC no 1.381966011 gd(w5) 9 4
(

62
45

+
, 37

)

ABA.BCB.CAC yes 1.5 ge(w4)
1 9 4

(

67
45

+
, 37

)

ABCA.BCAB.CBAC yes2 1.333333333 gf(w5) 6 6
(

31
24

+
, 31

)

ABCA.BAB.CAC yes 1.414213562 gg(w4) 6 8
(

89
63

+
, 61

)

ABCA.BAB.CBC no 1.430159709 gh(w4) 6 7
(

17
12

+
, 61

)

ABCA.BAB.CBAC no 1.381966011 gi(w5) 8 7
(

127
96

+
, 41

)

ABCBA.CABC no 1.361103081 gj(w5) 6 8
(

4
3

+
, 25

)

ABCBA.CAC yes 1.396608253 gk(w5) 6 13
(

4
3

+
, 25

)

In the table above, the columns indicate respectively, the considered mini-
mally nice formula f , whether f is equivalent to its reversed formula, the
avoidability exponent of f , the infinite ternary word avoiding f , the value q
such that the corresponding morphism is q-uniform, the value such that the
avoiding word is d-directed, the suitable property of (β+, n)-freeness used in
the proof that f is avoided. We list below the corresponding morphisms.

ga
002112201

001221122

001220112

001122012

gb
021221

021121

020001

011102

010222

gc
2011

1200

1120

0222

0012

gd
020112122

020101112

020001222

010121222

000111222

ge
001220122

001220112

001120122

001120112

1The formula ABA.BCB.CAC seems also avoided up to ≃ by the Hall-Thue word,
i.e., the fixed point of 0 → 012; 1 → 02; 2 → 1.

2We mistakenly said in [11] that ABCA.BCAB.CBAC is different from its reverse.
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gf
012220

012111

012012

011222

010002

gg
021210

011220

002111

001222

gh
011120

002211

002121

001222

gi
01222112

01112022

01100022

01012220

01012120

gj
021121

012222

011220

011112

000102

gk
022110

021111

012222

012021

011220

As an example, we show that ABCBA.CAC is avoided by gk(w5). First, we

check that gk(w5) is
(

4
3

+
, 25

)

-free using the main lemma in [7], that is, we

check the
(

4
3

+
, 25

)

-freeness of the gk-image of every
(

5
4

+
)

-free word of length

at most
2×

4
3

4
3
−
5
4

= 32. Then we check that gk(w5) is 13-directed by inspecting

the factors of gk(w5) of length 13. For contradiction, suppose that gk(w5)
contains an occurrence h of ABCBA.CAC up to ≃. Let us write a = |h(A)|,
b = |h(B)|, c = |h(C)|.

Suppose that a > 25. Since gk(w5) is 13-directed, all occurrences of h(A)
are identical. Then h(ABCBA) is a repetition with period |h(ABCB)| > 25.

So the
(

4
3

+
, 25

)

-freeness implies the bound 2a+2b+c
a+2b+c

6
4
3
, that is, a 6 b+ 1

2
c.

In every case, we have

a 6 max
{

b+ 1
2
c, 24

}

.

Similarly, the factors h(BCB) and h(CAC) imply

b 6 max
{

1
2
c, 24

}

and
c 6 max

{

1
2
a, 24

}

.

Solving these inequalities gives a 6 36, b 6 24, and c 6 24. Now we can
check exhaustively that gk(w5) contains no occurrence up to ≃ satisfying
these bounds.

Except for ABCBA.CBABC, the avoidability index of the nice formu-
las in the above table is 3. So the results in this section extend their 3-
avoidability up to ≃.
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4 The power series method

The so-called power series method has been used [1, 8] to prove the 3-
avoidability of many classical doubled patterns with at least 4 variables and
every doubled pattern with at least 6 variables, as mentioned in the intro-
duction.

Let p be such a classical doubled pattern and let p′ be a doubled pattern
with reversal obtained by adding some −R to p. Witout loss of generality,
the leftmost appearance of every variable X of p remains free of −R in p′.
Then we will see that p′ is also 3-avoidable. The power series method is a
counting argument that relies on the following observation. If the h-image of
the leftmost appearance of the variable X of p is fixed, say h(X) = wX , then
there is exactly one possibility for the h-image of the other appearances of
X , namely h(X) = wX . This observation can be extended to p′, since there
is also exactly one possibility for h(XR), namely h(XR) = wR

X .
Notice that this straightforward generalization of the power series method

from classical doubled patterns to doubled patterns with reversal cannot be
extended to avoiding a doubled pattern up to ≃. Indeed, if h(X) = wX for
the leftmost appearance of the variable X and wX is not a palindrome, then
there exist two possibilities for the other appearances of X , namely wX and
wR

X .

5 Sporadic patterns

Up to symmetries, there are ten doubled patterns whose 3-avoidability cannot
be deduced by the previous results. They have been identified in [8] and are
listed in the following table.

Let w5 be any infinite
(

5
4

+
)

-free word over Σ5 and let h be the following

9-uniform morphism.
h(0) = 020022221
h(1) = 011111221
h(2) = 010202110
h(3) = 010022112
h(4) = 000022121
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Table 1: The seven sporadic patterns on 4 variables and the three sporadic
patterns on 5 variables
Doubled pattern Avoidability exponent
ABACBDCD 1.381966011
ABACDBDC 1.333333333
ABACDCBD 1.340090632
ABCADBDC 1.292893219
ABCADCBD 1.295597743
ABCADCDB 1.327621756
ABCBDADC 1.302775638
ABACBDCEDE 1.366025404
ABACDBCEDE 1.302775638
ABACDBDECE 1.320416579

First, we check that h(w5) is 7-directed and
(

139
108

+
, 46

)

-free. Then, using the

same method as in Section 3, we show that h(w5) avoids up to ≃ these ten
sporadic patterns simultaneously.

6 Square-free doubled patterns with at most

4 variables

Here we show Theorem 5, that is, every square-free doubled pattern with at
most 4 variables is 2-avoidable. We list them as follows:

• Among patterns that are equal up to letter permutation, we only list
the lexicographically least.

• If a pattern is distinct from its mirror image, we only list the lexico-
graphically least among the pattern and its mirror image.

• We do not list patterns that contain a square-free doubled pattern as
a strict factor.

• We do not list patterns that contain an occurrence of ABACBC,
ABCACB, ABCBABC, ABCDBDABC, ABCDBDAC, ABACDCBD,
or their mirror image.
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• We do not include the seven sporadic patterns on 4 variables from
Table 1, which are 2-avoidable.

Table 2 contains every pattern p in this list with an infinite binary word
avoiding p. Let us detail how to read Table 2:

• A morphism is m given in the format m(0)/m(1)/...

• We denote by b2, b4, b5 the famous morphisms 01/10, 01/21/03/23,
01/23/4/21/0, respectively.

• We denote by wk any infinite RT (k)+-free word over Σk.

• If the avoiding word is a pure morphic word mω(0), then m is given.

• If the avoiding word is a morphic word f(mω(0)), then we write m; f .

• If the avoiding word is of the form f(wk), then we write wk; f .

The proofs that a (pure) morphic word avoids a pattern use Cassaigne’s
algorithm [2] and the proofs that a morphic image word a Dejean word avoids
a pattern use the technique described in Section 3.

7 Growth rate of ternary words avoiding a

doubled pattern

Theorem 6 obviously holds for p = AA. Without loss of generality, we do not
need to consider a doubled pattern p that contains an occurrence of another
doubled pattern. In particular, p is square-free. So we need to show that
GR3(p) is at least GR3(AA), which is close to 1.30176 [13].

If p is 2-avoidable, then p is avoided by sufficiently many ternary words.

By Lemma 4.1 in [7], λ(p) = 2 implies that GR3(p) > 2
1
2 > GR3(AA).

Thus, Conjecture 3 implies Theorem 6. By Theorem 5, we can assume that
v(p) > 5. We can also rule out the three sporadic patterns on 5 variables
from Table 1, which are 2-avoidable.

According to the partition of the set of doubled patterns mentioned in
the introduction, there remains to consider the doubled patterns p whose
3-avoidability has been obtained via the power series method. In that case,
we even get GR3(p) > 2 > GR3(AA).
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Table 2: Binary words avoiding doubled patterns
Doubled pattern Avoiding word
ABCABDCBD w5; 0010101110/0010011000/0001111110/0001110101/0000011001
ABCACDCBD w5; 000101010111/000100110111/000011001111/000001011111/000000111111
ABCBABDBCBD b4; 01/00/10/11
ABCBADCBCD b4; 0000/0011/1111/1010
ABCBDACBCD b4; 01/00/10/11
ABCBDBCACBCD b2
ABCBDCBACBCD b4; 1000/0111/0110/0010
ABCDACBD w5; 00100110111111000/00100110111011000/

00011110110101010/00001111111011010/00001010101011111
ABCDBACBD w6; 010101111100/010010100000/001001110111/000111111101/000101010111/000100011011
ABCDBADC w5; 10001000101111101010110/00000110110101000111111/

00000101011100100111111/00000011101010010011111/00000011011000101011111
ABCDBCBACBD 001/011
ABCDCACBD b5; 0011110110000/0011010100110/0001111100111/0001110001000/0001101101111

ABCDCBABCD avoided by every
(

3
2

+
, 4

)

-free binary word [6]

ABCDCBCACBD b5; 00/01/10/110/111

ABACDCBCD w5; 10011011000/01011111000/00111010100/00100100111/00001111111
ABCABDBCD w5; 0010111111/0010011110/0010011100/0000010101/0000001101
ABCADBCBD w5; 001011010000/001001111000/000110011001/000011101010/000010111111
ABCADCBCD w5; 001101111000/001101101000/001001111111/000101110101/000001100101
ABCBADBDC w5; 0011111110110/0001010111100/0000101101110/0000011010111/0000001011111
ABCBDABCD w4; 1111/1101/0010/0000
ABCBDABDC w5; 101110000001/101100100001/011111110100/010001111110/010001101110
ABCBDACBD b5; 00/01/10/110/111
ABCBDADBC w5; 00110111010010/00110000000010/00011111111011/00011110101000/00010101100011
ABCBDADBDC b5; 111/101/000/011/001
ABCBDBABDBC b5; 00/01/10/110/111
ABCBDBABDC b5; 000/011/001/111/101
ABCBDBACBCD b4; 01/00/10/11
ABCBDBACD w5; 0001111101010/0001110111000/0001011111111/0000111001111/0000011011001
ABCBDBADBDC 011/100
ABCBDBADC 00111101110000/00111011000010/00111010100000/00011001001111/00010101111111
ABCBDBCABCD b5; 00/01/10/110/111
ABCBDBCACBD b5; 00/01/10/110/111
ABCBDBCAD w5; 00011110110011/00011101101001/00011011010100/00010111111110/00000011111010
ABCBDBCBABCD b4; 000/111/10/01
ABCBDBCBACBCD b2
ABCBDBCBACBD b4; 00/01/10/11
ABCBDBCBACD 001/110
ABCBDCABCD b5; 00/10/111/01/011
ABCBDCABD w5; 10000000011/01111010010/01101100010/01011111110/00001010101
ABCBDCACBD b5; 111/101/000/100/110
ABCBDCBABCD b5; 00/01/10/110/111
ABCBDCBACBD b5; 00/01/10/110/111
ABCBDCBACD b5; 00/01/10/1100/111
ABCBDCBAD w5; 001101101100/001011111111/001001111100/000110010100/000001110100
ABCBDCBCABD b4; 000/111/10/01
ABCBDCBCAD w5; 1111100/1100110/0110101/0010010/0000101
ABCDADCB w5; 0000010001111110101000100111110111/0000010001111100100001100101101111/

0000001001111111010000110101111011/0000001001111110110100010101111011/
0000000101110010000111111010010111

ABCDBABDC w5; 0011111110101/0010110111010/0010101110000/0000111111001/0000110110001
ABCDBADBC w5; 01011111111/01001000111/00101000011/00011110101/00000001011
ABCDBCACBD b5; 101/000/110/111/100
ABCDBCBACD w5; 0110101/0100000/0011110/0001111/0000111
ABCDBCBAD w5; 00010111001010/00001111010101/00001110001010/00001100111111/00001100010110
ABCDBDAC w5; 00000011011011001110001111011010110000101111010100100101110111/

00000011011011000010011110110101000010101111010100100101110111/
00000010110011110101010011000111000010101111010100100101110111/
00000010101101101000100011111101000010101111010100100101110111/
00000010101011001110001111010011000010101111010100100101110111

ABCDBDADBC w5; 01111101/00111100/00111001/00110110/00000101
ABCDCACDB w5; 00110001000110/00101011111110/00011111010011/00010101011111/00000001010011
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8 Conclusion

Unlike classical formulas, we know that there exist avoidable formulas with
reversal of arbitrarily high avoidability index [9]. Maybe doubled patterns
and nice formulas are easier to avoid. We propose the following open prob-
lems.

• Are there infinitely many doubled patterns up to ≃ that are not 2-
avoidable?

• Is there a nice formula up to ≃ that is not 3-avoidable?

A first step would be to improve Theorem 2 by generalizing the 3-avoidability
of doubled patterns with reversal to doubled patterns up to ≃. Notice that
the results in Sections 3 and 5 already consider avoidability up to ≃. How-
ever, the power series method gives weaker results. Classical doubled patterns
with at least 6 variables are 3-avoidable because

1− 3x+

(

3x2

1− 3x2

)v

has a positive real root for v > 6. The (basic) power series for doubled
patterns up to ≃ with v variables would be

1− 3x+

(

6x2

1− 3x2
−

3x2 + 3x4

1− 3x4

)v

.

The term 6x2

1−3x2 counts for twice the term 3x2

1−3x2 in the classical setting, for

h(V ) and h(V )R. The term 3x2+3x4

1−3x4 corrects for the case of palindromic
h(V ), which should not be counted twice. This power series has a positive
real root only for v > 10. This leaves many doubled patterns up to ≃ whose
3-avoidability must be proved with morphisms.

Looking at the proof of Theorem 2, we may wonder if a doubled pattern
with reversal is always easier to avoid than the corresponding classical pat-
tern. This is not the case: backtracking shows that λ(ABCARCRB) = 3,
whereas λ(ABCACB) = 2 [7].

To get a more precise version of both conjectures 3 and 4, we plan to
obtain the (conjectured) list of all 2-unavoidable doubled patterns, which
should be a finite list containing no square-free pattern.
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