

Doubled patterns with reversal and square-free doubled patterns

Antoine Domenech, Pascal Ochem

▶ To cite this version:

Antoine Domenech, Pascal Ochem. Doubled patterns with reversal and square-free doubled patterns. 2023. lirmm-03799694

HAL Id: lirmm-03799694 https://hal-lirmm.ccsd.cnrs.fr/lirmm-03799694

Preprint submitted on 17 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Doubled patterns with reversal and square-free doubled patterns

Antoine Domenech

ENS de Lyon, Lyon, France antoine.domenech@ens-lyon.fr

Pascal Ochem

LIRMM, CNRS, Université de Montpellier Montpellier, France ochem@lirmm.fr

March 2, 2022

Abstract

In combinatorics on words, a word w over an alphabet Σ is said to avoid a pattern p over an alphabet Δ if there is no factor f of w such that f = h(p) where $h : \Delta^* \to \Sigma^*$ is a non-erasing morphism. A pattern p is said to be k-avoidable if there exists an infinite word over a k-letter alphabet that avoids p. A pattern is doubled if every variable occurs at least twice. Doubled patterns are known to be 3-avoidable. Currie, Mol, and Rampersad have considered a generalized notion which allows variable occurrences to be reversed. That is, $h(V^R)$ is the mirror image of h(V) for every $V \in \Delta$. We show that doubled patterns with reversal are 3-avoidable. We also conjecture that (classical) doubled patterns that do not contain a square are 2-avoidable. We confirm this conjecture for patterns with at most 4 variables. This implies that for every doubled pattern p, the growth rate of ternary words avoiding p is at least the growth rate of ternary square-free words. A previous version of this paper containing only the first result has been presented at WORDS 2021.

1 Introduction

The mirror image of the word $w = w_1 w_2 \dots w_n$ is the word $w^R = w_n w_{n-1} \dots w_1$. A pattern with reversal p is a non-empty word over an alphabet $\Delta = \{A, A^R, B, B^R, C, C^R \dots\}$ such that $\{A, B, C, \dots\}$ are the variables of p. An occurrence of p in a word w is a non-erasing morphism $h: \Delta^* \to \Sigma^*$ satisfying $h(X^R) = (h(X))^R$ for every variable X and such that h(p) is a factor of w. The avoidability index $\lambda(p)$ of a pattern with reversal p is the size of the smallest alphabet Σ such that there exists an infinite word w over Σ containing no occurrence of p. A pattern p such that $\lambda(p) \leqslant k$ is said to be k-avoidable. To emphasive that a pattern is without reversal (i.e., it contains no X^R), it is said to be classical. A pattern is doubled if every variable occurs at least twice.

Our aim is to strengthen the following result.

Theorem 1. [1, 7, 8] Every doubled pattern is 3-avoidable.

First, we extend it to patterns with reversal.

Theorem 2. Every doubled pattern with reversal is 3-avoidable.

Then, we notice that all the known classical doubled patterns that are 2-unavoidable contain a square, such as AABB, ABAB, or ABCCBADD.

Conjecture 3. Every square-free doubled pattern is 2-avoidable.

Notice that Conjecture 3 is related to but independent of the following conjecture.

Conjecture 4. [8, 10] There exist only finitely many 2-unavoidable doubled patterns.

The proof of Conjecture 3 for patterns up to 3 variables follows from the 2-avoidability of ABACBC, ABCBABC, ABCACB and ABCBAC. We were able to verify it for patterns up to 4 variables.

Theorem 5. Every square-free doubled pattern with at most 4 variables is 2-avoidable.

Finally, we obtain a lower bound on the number of ternary words avoiding a doubled pattern. The factor complexity of a factorial language L over Σ is $f(n) = |L \cap \Sigma^n|$. The growth rate of L over Σ is $\lim_{n\to\infty} f(n)^{\frac{1}{n}}$. We denote by $GR_3(p)$ the growth rate of ternary words avoiding the doubled pattern p.

Theorem 6. For every doubled pattern p, $GR_3(p) \geqslant GR_3(AA)$.

Let v(p) be the number of distinct variables of the pattern p. In the proof of Theorem 1, the set of doubled patterns is partitioned as follows:

- 1. Patterns with $v(p) \leq 3$: the avoidability index of every ternary pattern has been determined [7].
- 2. Patterns shown to be 3-avoidable with the so-called power series method:
 - Patterns with $v(p) \ge 6$ [1]
 - Patterns with v(p) = 5 and prefix ABC or length at least 11 [8]
 - Patterns with v(p) = 4 and prefix ABCD or length at least 9 [8]
- 3. Ten sporadic patterns with $4 \le v(p) \le 5$ whose 3-avoidability cannot be deduced from the previous results: they have been shown to be 2-avoidable [8] using the method in [7].

The proof of Theorems 2 and 6 use the same partition. Sections 3 to 5 are each is devoted to one type of doubled pattern with reversal. Theorem 5 is proved in Section 6 Theorem 6 is proved in Section 7

2 Preliminaries

A word w is d-directed if for every factor f of w of length d, the word f^R is not a factor of w.

Remark 7. If a d-directed word contains an occurrence h of $X.X^R$ for some variable X, then $|h(X)| \leq d-1$.

A variable that appears only once in a pattern is said to be *isolated*. The formula f associated to a pattern p is obtained by replacing every isolated variable in p by a dot. The factors between the dots are called fragments. An occurrence of a formula f in a word w is a non-erasing morphism h such that the h-image of every fragment of f is a factor of w. As for patterns, the avoidability index $\lambda(f)$ of a formula f is the size of the smallest alphabet allowing the existence of an infinite word containing no occurrence of f. Recently, the avoidability of formulas with reversal has been considered by Currie, Mol, and Rampersad [4, 5] and Ochem [9].

Recall that a formula is *nice* if every variable occurs at least twice in the same fragment. In particular, a doubled pattern is a nice formula with exactly one fragment.

The avoidability exponent AE(f) of a formula f is the largest real x such that every x-free word avoids f. Every nice formula f with $v(f) \ge 3$ variables is such that $AE(f) \ge 1 + \frac{1}{2v(f)-3}$ [12].

Let \simeq be the equivalence relation on words defined by $w \simeq w'$ if $w' \in \{w, w^R\}$. Avoiding a pattern up to \simeq has been investigated for every binary formulas [3]. Remark that for a given classical pattern or formula p, avoiding p up to \simeq implies avoiding simultaneously all the variants of p with reversal.

Recall that a word is (β^+, n) -free if it contains no repetition with exponent strictly greater than β and period at least n.

3 Formulas with at most 3 variables

For classical doubled patterns with at most 3 variables, all the avoidability indices are known. There are many such patterns, so it would be tedious to consider all their variants with reversal.

However, we are only interested in their 3-avoidability, which follows from the 3-avoidability of nice formulas with at most 3 variables [11].

Thus, to obtain the 3-avoidability of doubled patterns with reversal with at most 3 variables, we show that every minimally nice formula with at most 3 variables is 3-avoidable up to \simeq .

The minimally nice formulas with at most 3 variables, up to symmetries, are determined in [11] and listed in the following table. Every such formula f is avoided by the image by a q-uniform morphism of either any infinite $\left(\frac{5}{4}^+\right)$ -free word w_5 over Σ_5 or any infinite $\left(\frac{7}{5}^+\right)$ -free word w_4 over Σ_4 , depending on whether the avoidability exponent of f is smaller than $\frac{7}{5}$.

Formula f	$=f^R$	AE(f)	Word	q	d	freeness
ABA.BAB	yes	1.5	$g_a(w_4)$	9	9	$\left(\frac{131}{90}^+, 28\right)$
ABCA.BCAB.CABC	yes	1.333333333	$g_b(w_5)$	6	8	$\left(\frac{4}{3}^+, 25\right)$
ABCBA.CBABC	yes	1.333333333	$g_c(w_5)$	4	9	$\left(\frac{30}{23}^+, 18\right)$
ABCA.BCAB.CBC	no	1.381966011	$g_d(w_5)$	9	4	$\left(\frac{62}{45}^+, 37\right)$
ABA.BCB.CAC	yes	1.5	$g_e(w_4)^1$	9	4	$\left(\frac{67}{45}^+, 37\right)$
ABCA.BCAB.CBAC	yes^2	1.333333333	$g_f(w_5)$	6	6	$\left(\frac{31}{24}^+,31\right)$
ABCA.BAB.CAC	yes	1.414213562	$g_g(w_4)$	6	8	$\left(\frac{89}{63}^{+}, 61\right)$
ABCA.BAB.CBC	no	1.430159709	$g_h(w_4)$	6	7	$\left(\frac{17}{12}^+, 61\right)$
ABCA.BAB.CBAC	no	1.381966011	$g_i(w_5)$	8	7	$\left(\frac{127}{96}^+, 41\right)$
ABCBA.CABC	no	1.361103081	$g_j(w_5)$	6	8	$\left(\frac{4}{3}^+, 25\right)$
ABCBA.CAC	yes	1.396608253	$g_k(w_5)$	6	13	$\left(\frac{4}{3}^+, 25\right)$

In the table above, the columns indicate respectively, the considered minimally nice formula f, whether f is equivalent to its reversed formula, the avoidability exponent of f, the infinite ternary word avoiding f, the value q such that the corresponding morphism is q-uniform, the value such that the avoiding word is d-directed, the suitable property of (β^+, n) -freeness used in the proof that f is avoided. We list below the corresponding morphisms.

a	g_b	g_c	g_d	a
g_a 002112201	021221	2011	020112122	g_e 001220122
	021121	1200	020101112	**==*===
001221122	020001	1120	020001222	001220112
001220112	011102	0222	010121222	001120122
001122012	010222	0012	000111222	001120112

The formula ABA.BCB.CAC seems also avoided up to \simeq by the Hall-Thue word, i.e., the fixed point of $0 \to 012$; $1 \to 02$; $2 \to 1$.

²We mistakenly said in [11] that ABCA.BCAB.CBAC is different from its reverse.

g_f	a	a	g_{i}	g_{j}	g_k
012220	g_g	g_h	01222112	021121	022110
012111	021210	011120	01112022	012222	021111
012012	011220	002211	01100022	011220	012222
011222	002111	002121	01012220	011112	012021
010002	001222	001222	01012120	000102	011220

As an example, we show that ABCBA.CAC is avoided by $g_k(w_5)$. First, we check that $g_k(w_5)$ is $\left(\frac{4}{3}^+, 25\right)$ -free using the main lemma in [7], that is, we check the $\left(\frac{4}{3}^+, 25\right)$ -freeness of the g_k -image of every $\left(\frac{5}{4}^+\right)$ -free word of length at most $\frac{2\times\frac{4}{3}}{\frac{4}{3}-\frac{5}{4}}=32$. Then we check that $g_k(w_5)$ is 13-directed by inspecting the factors of $g_k(w_5)$ of length 13. For contradiction, suppose that $g_k(w_5)$ contains an occurrence h of ABCBA.CAC up to \simeq . Let us write a=|h(A)|, b=|h(B)|, c=|h(C)|.

Suppose that $a \ge 25$. Since $g_k(w_5)$ is 13-directed, all occurrences of h(A) are identical. Then h(ABCBA) is a repetition with period $|h(ABCB)| \ge 25$. So the $\left(\frac{4}{3}^+, 25\right)$ -freeness implies the bound $\frac{2a+2b+c}{a+2b+c} \le \frac{4}{3}$, that is, $a \le b + \frac{1}{2}c$. In every case, we have

$$a \leqslant \max\left\{b + \frac{1}{2}c, 24\right\}.$$

Similarly, the factors h(BCB) and h(CAC) imply

$$b \leqslant \max\left\{\frac{1}{2}c, 24\right\}$$

and

$$c \leqslant \max\left\{\frac{1}{2}a, 24\right\}$$
.

Solving these inequalities gives $a \leq 36$, $b \leq 24$, and $c \leq 24$. Now we can check exhaustively that $g_k(w_5)$ contains no occurrence up to \simeq satisfying these bounds.

Except for ABCBA.CBABC, the avoidability index of the nice formulas in the above table is 3. So the results in this section extend their 3-avoidability up to \simeq .

4 The power series method

The so-called power series method has been used [1, 8] to prove the 3-avoidability of many classical doubled patterns with at least 4 variables and every doubled pattern with at least 6 variables, as mentioned in the introduction.

Let p be such a classical doubled pattern and let p' be a doubled pattern with reversal obtained by adding some $-^R$ to p. Witout loss of generality, the leftmost appearance of every variable X of p remains free of $-^R$ in p'. Then we will see that p' is also 3-avoidable. The power series method is a counting argument that relies on the following observation. If the h-image of the leftmost appearance of the variable X of p is fixed, say $h(X) = w_X$, then there is exactly one possibility for the h-image of the other appearances of X, namely $h(X) = w_X$. This observation can be extended to p', since there is also exactly one possibility for $h(X^R)$, namely $h(X^R) = w_X^R$.

Notice that this straightforward generalization of the power series method from classical doubled patterns to doubled patterns with reversal cannot be extended to avoiding a doubled pattern up to \simeq . Indeed, if $h(X) = w_X$ for the leftmost appearance of the variable X and w_X is not a palindrome, then there exist two possibilities for the other appearances of X, namely w_X and w_X^R .

5 Sporadic patterns

Up to symmetries, there are ten doubled patterns whose 3-avoidability cannot be deduced by the previous results. They have been identified in [8] and are listed in the following table.

Let w_5 be any infinite $\left(\frac{5}{4}^+\right)$ -free word over Σ_5 and let h be the following 9-uniform morphism.

h(0) = 020022221

h(1) = 0111111221

h(2) = 010202110

h(3) = 010022112

h(4) = 000022121

Table 1: The seven sporadic patterns on 4 variables and the three sporadic patterns on 5 variables

Doubled pattern	Avoidability exponent
ABACBDCD	1.381966011
ABACDBDC	1.333333333
ABACDCBD	1.340090632
ABCADBDC	1.292893219
ABCADCBD	1.295597743
ABCADCDB	1.327621756
ABCBDADC	1.302775638
ABACBDCEDE	1.366025404
ABACDBCEDE	1.302775638
ABACDBDECE	1.320416579

First, we check that $h(w_5)$ is 7-directed and $\left(\frac{139}{108}^+, 46\right)$ -free. Then, using the same method as in Section 3, we show that $h(w_5)$ avoids up to \simeq these ten sporadic patterns simultaneously.

6 Square-free doubled patterns with at most 4 variables

Here we show Theorem 5, that is, every square-free doubled pattern with at most 4 variables is 2-avoidable. We list them as follows:

- Among patterns that are equal up to letter permutation, we only list the lexicographically least.
- If a pattern is distinct from its mirror image, we only list the lexicographically least among the pattern and its mirror image.
- We do not list patterns that contain a square-free doubled pattern as a strict factor.
- We do not list patterns that contain an occurrence of *ABACBC*, *ABCACB*, *ABCBABC*, *ABCDBDABC*, *ABCDBDAC*, *ABACDCBD*, or their mirror image.

• We do not include the seven sporadic patterns on 4 variables from Table 1, which are 2-avoidable.

Table 2 contains every pattern p in this list with an infinite binary word avoiding p. Let us detail how to read Table 2:

- A morphism is m given in the format m(0)/m(1)/...
- We denote by b_2 , b_4 , b_5 the famous morphisms 01/10, 01/21/03/23, 01/23/4/21/0, respectively.
- We denote by w_k any infinite $RT(k)^+$ -free word over Σ_k .
- If the avoiding word is a pure morphic word $m^{\omega}(0)$, then m is given.
- If the avoiding word is a morphic word $f(m^{\omega}(0))$, then we write m; f.
- If the avoiding word is of the form $f(w_k)$, then we write w_k ; f.

The proofs that a (pure) morphic word avoids a pattern use Cassaigne's algorithm [2] and the proofs that a morphic image word a Dejean word avoids a pattern use the technique described in Section 3.

7 Growth rate of ternary words avoiding a doubled pattern

Theorem 6 obviously holds for p = AA. Without loss of generality, we do not need to consider a doubled pattern p that contains an occurrence of another doubled pattern. In particular, p is square-free. So we need to show that $GR_3(p)$ is at least $GR_3(AA)$, which is close to 1.30176 [13].

If p is 2-avoidable, then p is avoided by sufficiently many ternary words. By Lemma 4.1 in [7], $\lambda(p) = 2$ implies that $GR_3(p) \geqslant 2^{\frac{1}{2}} > GR_3(AA)$. Thus, Conjecture 3 implies Theorem 6. By Theorem 5, we can assume that $v(p) \geqslant 5$. We can also rule out the three sporadic patterns on 5 variables from Table 1, which are 2-avoidable.

According to the partition of the set of doubled patterns mentioned in the introduction, there remains to consider the doubled patterns p whose 3-avoidability has been obtained via the power series method. In that case, we even get $GR_3(p) > 2 > GR_3(AA)$.

Table 2: Binary words avoiding doubled patterns

18	able 2: Binary words avoiding doubled patterns
Doubled pattern	Avoiding word
ABCABDCBD	w_5 ; $0010101110/0010011000/0001111110/0001110101/0000011001$
ABCACDCBD	w_5 ; 000101010111/000100110111/000011001111/000001011111/000000
ABCBABDBCBD	b_4 ; $01/00/10/11$
ABCBADCBCD	b_4 ; $0000/0011/1111/1010$
ABCBDACBCD	b_4 ; $01/00/10/11$
ABCBDBCACBCD	b ₂
ABCBDCBACBCD	b ₄ ; 1000/0111/0110/0010
ABCDACBD	w_5 ; 001001101111111000/00100110111011000/
	00011110110101010/000011111111011010/00001010101011111
ABCDBACBD	w_6 ; 010101111100/010010100000/001001110111/000111111
ABCDBADC	w_5 ; 10001000101111101010110/0000011011010000111111
	000001010111001001111111/00000011101010010
ABCDBCBACBD	001/011
ABCDCACBD	b_5 ; $0011110110000/00110101010110/0001111100111/0001110001000/00011011$
ABCDCBABCD	avoided by every $\left(\frac{3}{2}^+, 4\right)$ -free binary word [6]
ABCDCBCACBD	b ₅ ; 00/01/10/1101
	0. 7 7 7
ABACDCBCD	w_5 ; 10011011000/010111111000/00111010100/001001
ABCABDBCD	w_5 ; 0010111111/0010011110/0010011100/0000010101/000000
ABCADBCBD	w_5 ; $001011010000/001001111000/000110011001/000011101010/000010111111$
ABCADCBCD	w_5 ; 001101111000/001101101000/001001111111/000101110101/000001100101
ABCBADBDC	w_5 ; $00111111110110/00010101111100/0000101101$
ABCBDABCD	w_4 ; 1111/1101/0010/0000
ABCBDABDC	w_5 ; $101110000001/101100100001/0111111110100/01000111111$
ABCBDACBD	b_5 ; $00/01/10/110/111$
ABCBDADBC	w_5 ; 00110111010010/00110000000010/0001111111
ABCBDADBDC	b_5 ; 111/101/000/011/001
ABCBDBABDBC	b_5 ; $00/01/10/110/111$
ABCBDBABDC	b_5 ; $000/011/001/111/101$
ABCBDBACBCD	b_4 ; $01/00/10/11$
ABCBDBACD	w_5 ; 0001111101010/0001110111000/000101111111
ABCBDBADBDC	011/100
ABCBDBADC	$001\overline{1}1101110000/00111011000010/00111010100000/0001100100$
ABCBDBCABCD	b_5 ; $00/01/10/110/111$
ABCBDBCACBD	b_5 ; $00/01/10/110/111$
ABCBDBCAD	w_5 ; 00011110110011/00011101101001/0001101101
ABCBDBCBABCD	b_4 ; 000/111/10/01
ABCBDBCBACBCD	b_2
ABCBDBCBACBD	b4; 00/01/10/11
ABCBDBCBACD	001/110
ABCBDCABCD	b ₅ ; 00/10/111/01/011
ABCBDCABD	w_5 ; $10000000011/01111010010/01101100010/010111111$
ABCBDCACBD	b ₅ ; 111/101/000/100/110
ABCBDCBABCD	5 ₅ ; 00/01/10/110/111
ABCBDCBACBD	b ₅ ; 00/01/10/110/111
ABCBDCBACD	b ₅ ; 00/01/10/1100/111
ABCBDCBAD	w_5 ; 001101101100/0010111111111/001001111100/0001100100
ABCBDCBCABD	b4; 000/111/10/01
ABCBDCBCAD	w ₅ ; 1111100/1100110/01101101/0010010/0000101
ABCDADCB	w_5 ; 0000010001111110101000100111110111/0000010001111100100
	000000100111111110100001101011111011/000000
	00000001011100100001111110100101111
ABCDBABDC	w_5 ; 00111111110101/0010111011010/00101011110000/0000111111
ABCDBADBC	w_5 ; 010111111111/01001000111/00101000011/00011110101/000000
ABCDBCACBD	b ₅ ; 101/000/110/111/100
ABCDBCBACD	w ₅ ; 0110101/0100000/0011110/0001111
ABCDBCBAD	w_5 ; 00010111001010/00001111010101/0000111001010/00001100111111
ABCDBDAC	w_5 ; 000000110110110011100011110110101000101111
	0000001101101100001001111011010000101111
	00000010110011110101010101010110001110000
	0000001010110110100010001111110100001010
	0000001010110110011100011110100110000101
ABCDBDADBC	w_5 ; 01111101/00111100/00111001/00110110/00000101
ABCDCACDB	$w_5;00110001000110/0010101111111110/000111111$

8 Conclusion

Unlike classical formulas, we know that there exist avoidable formulas with reversal of arbitrarily high avoidability index [9]. Maybe doubled patterns and nice formulas are easier to avoid. We propose the following open problems.

- Are there infinitely many doubled patterns up to \simeq that are not 2-avoidable?
- Is there a nice formula up to \simeq that is not 3-avoidable?

A first step would be to improve Theorem 2 by generalizing the 3-avoidability of doubled patterns with reversal to doubled patterns up to \simeq . Notice that the results in Sections 3 and 5 already consider avoidability up to \simeq . However, the power series method gives weaker results. Classical doubled patterns with at least 6 variables are 3-avoidable because

$$1 - 3x + \left(\frac{3x^2}{1 - 3x^2}\right)^v$$

has a positive real root for $v \ge 6$. The (basic) power series for doubled patterns up to \simeq with v variables would be

$$1 - 3x + \left(\frac{6x^2}{1 - 3x^2} - \frac{3x^2 + 3x^4}{1 - 3x^4}\right)^v.$$

The term $\frac{6x^2}{1-3x^2}$ counts for twice the term $\frac{3x^2}{1-3x^2}$ in the classical setting, for h(V) and $h(V)^R$. The term $\frac{3x^2+3x^4}{1-3x^4}$ corrects for the case of palindromic h(V), which should not be counted twice. This power series has a positive real root only for $v \geqslant 10$. This leaves many doubled patterns up to \simeq whose 3-avoidability must be proved with morphisms.

Looking at the proof of Theorem 2, we may wonder if a doubled pattern with reversal is always easier to avoid than the corresponding classical pattern. This is not the case: backtracking shows that $\lambda(ABCA^RC^RB) = 3$, whereas $\lambda(ABCACB) = 2$ [7].

To get a more precise version of both conjectures 3 and 4, we plan to obtain the (conjectured) list of all 2-unavoidable doubled patterns, which should be a finite list containing no square-free pattern.

References

- [1] J. Bell, T. L. Goh. Exponential lower bounds for the number of words of uniform length avoiding a pattern. *Inform. and Comput.* **205** (2007), 1295-1306.
- [2] J. Cassaigne. An Algorithm to Test if a Given Circular HD0L-Language Avoids a Pattern. IFIP Congress, pages 459–464, 1994.
- [3] J. Currie and L. Mol. The undirected repetition threshold and undirected pattern avoidance. *Theor. Comput. Sci.* **866** (2021), 56–69.
- [4] J. Currie, L. Mol, and N. Rampersad. A family of formulas with reversal of high avoidability index. *International Journal of Algebra and Computation* **27(5)** (2017), 477–493.
- [5] J. Currie, L. Mol, and N. Rampersad. Avoidance bases for formulas with reversal. *Theor. Comput. Sci.* **738** (2018), 25–41.
- [6] L. Ilie, P. Ochem, and J.O. Shallit. A generalization of repetition threshold. *Theoret. Comput. Sci.* **92(2)** (2004), 71–76.
- [7] P. Ochem. A generator of morphisms for infinite words. RAIRO: Theoret. Informatics Appl. 40 (2006), 427–441.
- [8] P. Ochem. Doubled patterns are 3-avoidable. *Electron. J. Combinatorics.* **23(1)** (2016), #P1.19.
- [9] P. Ochem. A family of formulas with reversal of arbitrarily high avoidability index. *Theoret. Comput. Sci.* **896** (2021), 168–170.
- [10] P. Ochem and A. Pinlou. Application of entropy compression in pattern avoidance. *Electron. J. Combinatorics.* **21(2)** (2014), #RP2.7.
- [11] P. Ochem and M. Rosenfeld. On some interesting ternary formulas. *Electron. J. Combininatorics.* **26(1)** (2019), #P1.12.
- [12] P. Ochem and M. Rosenfeld. Avoidability of palindrome patterns. *Electron. J. Combininatorics.* **28(1)** (2021), #P1.4.
- [13] A. Shur. Growth rates of complexity of power-free languages. *Theoret. Comput. Sci.* **411(34-36)** (2010), 3209–3223.