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Abstract. Given the high data volumes in time series applications, or simply
the need for fast response times, it is usually necessary to rely on alternative,
shorter representations of these series, usually with loss. This incurs approxi-
mate comparisons of time series where precision is a major issue.In this paper,
we propose a new parallel approach for segmenting time series before their
transformation into symbolic representations. It can reduce significantly the
error incurred by possible splittings at different steps of the representation
calculation, by taking into account the sum of squared errors (SSE). This is
particularly useful for time series similarity search, which is the core of many
data analytics tasks. We provide theoretical guarantees on the lower bound
of similarity measures, and our experiments illustrate that our technique can
improve significantly the time series representation quality.

Keywords: Time Series · Representations · Information Retrieval

1 Introduction

Time series have attracted an increasing interest due to their wide applications in
many domains. The continuous flow of emitted data may concern personal activities
(e.g., through smart-meters or smart-plugs for electricity or water consumption) or
professional activities (e.g., for monitoring heart activity or through the sensors in-
stalled on plants by farmers). This results in the production of large and complex data,
usually in the form of time series [6,1,4,7,5,11,2] that challenges knowledge discovery.

As a consequence of the high data volumes in such applications, similarity search
can be slow on raw data. One of the issues that hinder the analysis of such data is
the high dimensionality. This is why time series approximation is often used as a
means to allow fast similarity search. SAX [8] is one of the most popular time series
representations, allowing dimensionality reduction on the classic data mining tasks.
SAX constructs symbolic representations by splitting the time domain into segments
of equal size where the mean values of segments represent the time series intervals
(PAA approach). This approximation technique is effective for time series having
a uniform and balanced distribution over the time domain. However, we observe
that, in the case of time series having high variation over given time intervals, this
division into segments of fixed length is not efficient. Our main contribution is to
provide an adaptive interval distribution, rather than an equal distribution in time.
However, the number of possible segmentations of k segments with n can be very
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high. Furthermore, when searching for the best variable-size segmentation, a large
number of computation is involved in case of large sets of time series. Therefore, we
propose efficient parallel techniques using GPUs for improving the execution time
of our segmentation algorithm. In this paper, we make the following contributions:

– We propose a new representation technique, called ASAX SSE, that allows ob-
taining a variable-size segmentation of time series with better precision in retrieval
tasks thanks to its lower information loss. Our representation is based on SSE
measurement for detecting what time intervals should be split.

– We propose a lower bounding method that allows approximating the distance
between the original time series based on their representations in ASAX SSE.

– We propose efficient parallel algorithms for improving the execution time of our
segmentation approach using GPUs.

– We implemented our approach and conducted empirical experiments using more
than 120 real world datasets. The results suggest that ASAX SSE can obtain
significant performance gains in terms of precision for similarity search compared
to SAX. They illustrate that the more the data distribution in the time domain
is unbalanced (non-uniform), the greater is the precision gain of ASAX SSE. For
example, for the ECGFiveDays dataset that has a non-uniform distribution in
the time domain, the precision of ASAX SSE is 93% compared to 55% for SAX.

The rest of the paper is organized as follows. In Section 2, we define the problem
we address. In Section 3, we describe the details of ASAX SSE representation, and
in Section 4 we present parallel versions of ASAX SSE. In Section 5, we present
the experimental evaluation of our approach. Finally, we discuss the related work in
Section 6 and give our conclusion in Section 7.

2 Problem Definition and Background

We first present the background about SAX representation, and then define the
problem we address. A time series X is a sequence of values X = {x1,...,xn}. We
assume that every time series has a value at every timestamp t=1,2,...,n. The length
of X is denoted by |X|.
SAX allows a time series T of length n to be reduced to a string of arbitrary length w.

2.1 SAX Representation

Given two time series X={x1,...,xn} and Y ={y1,...,yn}, the Euclidean distance be-
tweenX and Y is defined as [6]:ED(X,Y )=

√∑n
i=1(xi−yi)2. The Euclidean distance

is one of the most popular similarity measurement methods used in time series analysis.
The SAX representation is based on the PAA representation [8] which allows for

dimensionality reduction while providing the important lower bounding property as
we will show later. The idea of PAA is to have a fixed segment size, and minimize
dimensionality by using the mean values on each segment. Example 1 gives an
illustration of PAA.
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Fig. 1: A time series X is discretized by obtaining a PAA representation and then
using predetermined break-points to map the PAA coefficients into SAX symbols.
Here, the symbols are given in binary notation, where 00 is the first symbol, 01 is
the second symbol, etc. The time series of Figure 1a in the representation of Figure
1c is [first, first, second, fourth] (which becomes [00,00,01,11] in binary).

Example 1. Figure 1b shows the PAA representation of X, the time series of Figure
1a. The representation is composed of w= |X|/l values, where l is the segment size.
For each segment, the set of values is replaced with their mean. The length of the
final representation w is the number of segments (and, usually, w<< |X|).

By transforming the original time series X and Y into PAA representations
X = {x1, ...,xw} and Y = {y1, ...,yw}, the lower bounding approximation of the
Euclidean distance for these two representations can be obtained by:
DRf(X,Y )=

√
n
w

√∑w
i=1(xi−yi)

2

The SAX representation takes as input the reduced time series obtained using
PAA. It discretizes this representation into a predefined set of symbols, with a given
cardinality, where a symbol is a binary number. Example 2 gives an illustration of
the SAX representation.

Example 2. In Figure 1c, we have converted the time series X to SAX representation
with size 4, and cardinality 4 using the PAA representation shown in Figure 1b. We
denote SAX(X) = [00, 00, 01, 11].

The lower bounding approximation of the Euclidean distance for SAX represen-
tation X̂ = {x̂1,...,x̂w} and Ŷ = {ŷ1,...,ŷw} of two time series X and Y is defined
as: MINDISTf(X̂,Ŷ )=

√
n
w

√∑w
i=1(dist(x̂i,ŷi))

2 where the function dist(x̂i,ŷi) is
the distance between two SAX symbols x̂i and x̂i. The lower bounding condition is
formulated as: MINDISTf(X̂,Ŷ )≤ED(X,Y )

2.2 Similarity Queries

The problem of similarity queries is one of the main problems in time series analysis
and mining. In information retrieval, finding the k nearest neighbors (k-NN) of a query
is a fundamental problem. Let us define exact and approximate k nearest neighbors.
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Definition 1. (Exact k nearest neighbors) Given a query time series Q and
a set of time series D, let R=ExactkNN(Q,D) be the set of k nearest neighbors of
Q from D. Let ED(X,Y ) be the Euclidean distance between two time series X and
Y , then the set R is defined as follows:

(R⊆D)∧(|R|=k)∧(∀a∈R,∀b∈(D−R),ED(a,Q)≤ED(b,Q))

Definition 2. (Approximate k nearest neighbors) Given a set of time series
D, a query time series Q, and ϵ > 0. We say that R = AppkNN(Q,D) is the
approximate k nearest neighbors of Q from D, if ED(a,Q)≤(1+ϵ)ED(b,Q), where
a is the kth nearest neighbor from R and b is the true kth nearest neighbor.

2.3 Problem Statement

The SAX representation proceeds to an approximation by minimizing the dimensional-
ity: the original time series are divided into segments of equal size. This representation
does not depend on the time series values, but on their length. It allows SAX to
perform the segmentation in O(n) where n is the time series length. However, for
a given reduction in dimensionality, the modeling error may not be minimal since
the model does not adapt to the information carried by the series.

Our goal is to propose a variable-size segmentation of the time domain that
minimizes the loss of information in the time series representation. Formally, the
problemwe address is stated as follows. Given a database of time seriesD and a number
w, divide the time domain into w segments of variable size such that the representation
of the times series based on that segmentation lowers the error of similarity queries.

3 Adaptive SAX based on the representation’s Sum of
Squared Errors (ASAX SSE)

We propose ASAX SSE, a variable-size segmentation technique for time series rep-
resentation. To create a segmentation with minimum information loss on time series
approximation, ASAX SSE divides the time domain based on the Sum of squared
errors (SSE) value of the representation.

In the rest of this section, we first describe the notion of Sum of Squared Errors
(SSE) for the time series representation. Then, we describe our algorithm for creat-
ing the variable-size segments based on this measurement. Finally, we present our
method for measuring the lower bound distance between time series in the proposed
representation. This lower bounding is useful for efficient evaluation of kNN queries.

3.1 Sum of Squared Errors (SSE)

In Statistics, Sum of Squared Errors (SSE) is defined as the sum of the squares of
the errors. In other words, SSE is the sum of the squared differences between the
actual and the estimated values. Formally, SSE is defined as follows.

Definition 3. Given a vectorX of n elements and a vector X̃ being the estimated val-
ues generated from X, SSE of the estimation is given by: SSE(X,X̃)=

∑n
i=1(xi−x̃i)

2
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In our context, we calculate the SSE on the PAA representation obtained from the
transformation of the original time series of a dataset according to a given segmentation.
The SSE computed on this representation allows to measure the approximation error
on the time series by the PAA representation compared to the original time series.
The lower the SSE, the closer is the PAA representation to original data.

By transforming a time series X = {x1, ..., xn} into a PAA representation
X={x1,...,xw}, X is reduced to the PAA representation composed of w segments.
For each segment, the set of values is replaced with their mean. We can compute
the SSE for each segment, that is in this case, the sum of the squared differences
between each value (actual value) and its segment’s mean (estimated value). In
the next subsections, we show how to compute the SSE of a PAA representation
considering only one segment (called LSSE) or all segments (called GSSE). As shown
by experiments, using these two different SSE measurements may lead to different
results in terms of precision and execution time.

3.2 SSE of PAA Representation Considering One Segment (LSSE)

Let X be the PAA representation of X with w segments. The LSSE (local SSE)
of X for a particular segment is the sum of the squared errors for the time se-
ries values in this segment. Formally, LSSE of X for a segment si is computed as:

LSSE(si,xi) =
∑UB(si)

j=LB(si)
(xj−xi)

2 where si is the selected segment, LB(si) and

UB(si) are the start and end time points of si respectively.

3.3 SSE of PAA Representation Considering All Segments (GSSE)

The global SSE (GSSE), is computed by taking into account all segments of the

PAA representation X: GSSE(X,X)=
∑w

i=1

∑UB(si)
j=LB(si)

(xj−xi)
2 where LB(si) and

UB(si) are the start and end time points of the segment si respectively.

3.4 Variable-Size Segmentation Based on SSE Measurement

Given a database of time series D, and a number w, our goal is to find the k variable
size segments that minimize the loss of information in time series representations by
minimizing the approximation error of these representations.

Intuitively, our algorithm works as follows. Based on a starting segment size value
size, it firstly splits the time domain into k segments of length size. The default value of
size is 2. The algorithm performs k−w iterations, and in each iteration it finds the two
adjacent segments si and si+1 whose merging gives the minimum SSE (MSSE) on the
representations, and merges them. By doing this, in each iteration the two selected seg-
ments are merged to form a single segment which replaces them in the set of segments,
reducing the number of segments by one. This continues until having w segments.

Let us now describe our algorithm in more details. The pseudocode is shown in
Algorithm 1. It first sets the current number of segments, denoted as k, to n

size . Then,
it splits the time domain into k segments of length size that are included to the set
segments (Line 2).
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Algorithm 1: variable-size segmentation
Input: D: time series database; n: the length

of time series; size: the starting size of segments; w: the required number of segments
Output: w variable-size segments

1 k=⌈ n
size⌉

2 segments={
⋃k−1

i=0 [size×i,size×(i+1)−1]} // split time domain into k segments of size size
3 while k≠w do
4 segmentsToMerge = null
5 msse = ∞
6 for i=1 to k−1 do
7 s = merge (si,si+1)
8 tempSegments = segments−{si,si+1}
9 tempSegments = tempSegments

⋃
s

10 //merge segment i and segment i+1 in tempSegments
11 sse = 0
12 foreach ts in D do
13 sse = sse + SSE(ts)

14 if sse<msse then
15 segmentsToMerge = i
16 msse = sse

17 s = merge (ssegmentsToMerge,ssegmentsToMerge+1)
18 segments = segments−{ssegmentsToMerge,ssegmentsToMerge+1}
19 segments = segments

⋃
s

20 k = k-1

21 return segments

Afterwards, in a loop, until the number of segments is more than w the algorithm
proceeds as follows. For each segment si (i from 1 to k− 1), si is merged with
segment si+1 to form a single segment denoted as s (Line 7). Then, a temporary set
of segments tempSegments is created including the new segment and all previously
created segments except si and si+1 i.e., except the two that have been merged
(Lines 8, 9). Then, for each time series ts in the database D, the algorithm generates
its PAA representation and calculates the corresponding SSE (Line 13) calling either
GSSE function in the case that the entire PAA representation is considered for the
error calculation, or LSSE function if the error is computed on segment s. Then, it
adds the result of the computed SSE to sse (Line 13). After having calculated the
sum of the SSE for the PAA representation of all the time series contained in D, if the
SSE is less than the MSSE (minimum SSE) obtained so far, the algorithm sets i as
the segment to be merged with the next one, and keeps the SSE of the representation
(Lines 15, 16). This procedure continues by trying the merging of every two adjacent
segments of segments at each time, and computing the SSE. The algorithm selects
the merging whose SSE is the lowest, and updates the set of the segments by removing
the selected segments, and inserting its merging to segments (Lines 17-19). Then,
k, which stands for the number of current segments, is decremented by one (Line
20). The algorithm ends when k gets equal to the required number, i.e., w.

Let us illustrate the principle of our algorithm using an example. For simplicity,
we consider a dataset containing only a single time series and we calculate the
approximation error on the entire time series representation using GSSE approach.

Example 3. Let us apply our algorithm on the time series X in Figure 2 by taking
the initial size of 2 for the segments. The algorithm starts by dividing the time domain
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into 4 segments of size 2. The next step is to reduce the number of segments from 4
to 3. To this purpose, the algorithm tests the merging of every two adjacent segments
of the 4 existing segments, in order to find the one that has the minimum SSE. Three
different scenarios are possible:

Scenario 1: The first scenario is shown in Figure 3a where s1 and s2 of the initial
segmentation (shown in figure 2) are merged into one segment. We generate the
PAA representation of X using the 3 segments, and then compute the SSE of this
representation that is SSE1(X,X)≈1.167.

Scenario 2: This scenario is shown in Figure 3b in which s2 and s3 of the initial
segmentation are merged. As for Scenario 1, we generate the PAA representation of
X using the current segmentation. Here, SSE2(X,X)≈1.915.

Scenario 3: The last scenario is shown in Figure 3b, where we merge s3 and s4. For
this segmentation, SSE3(X,X)≈1.745.

We have calculated the SSE for the three scenarios. Since we aim to minimize the
SSE, we have to choose the minimum SSE value (MSSE), that is MSSE=1.167
corresponding to the segmentation generated in Scenario 1. The latter is chosen for
this iteration of our algorithm and we continue the next iterations, until the number
of segment reaches w.

0 1 2 3 4 5 6 7 8−2

−1

0

1

2 S1 S2 S3 S4

Fig. 2: PAA representation of a time series X of length 8 with 4 segments.
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3

Fig. 3: The three different scenarios of ASAX SSE segmentation with 3 segments.
Scenario 1 is the one chosen because it provides the MSSE.
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3.5 Lower Bounding of the Similarity Measure

SAX [9] defines a distance measure on the PAA representation of time series as
described in Section 2.1. Given the representation of two time series, theDRf function
allows obtaining a lower bounding approximation of the Euclidean distance between
the original time series. By the following theorem, we propose a lower bounding
approximation formula for the case of variable size segmentation in ASAX SSE.

Theorem 1. Let X and Y be two time series. Suppose that by using ASAX SSE
we create a variable size segmentation with w segments, such that the size of the ith

segment is li. Let X and Y be the representations of X and Y in ASAX SSE. Then,
DRv(X,Y ) gives a lower bounding approximation of the Euclidean distance between

X and Y : DRv(X,Y )=
√∑w

j=1((xj−yj)
2×lj)

Proof: The proof has been removed due to lack of space.

4 Parallel Versions of ASAX SSE

We propose efficient parallel techniques using GPUs for improving the execution
time of our segmentation algorithm. In our approach, the CPU controls the main
loop of the segmentation computation process and does light operations, while the
time-consuming tasks are parallelized on GPU, particularly the SSE computation on
a dataset for a given segmentation. We propose two parallel versions of the algorithm
using CUDA framework to provide a fast computation of the variable-size segmentation
over long time series and/or large number of time series: 1) ASAX DP that performs
the parallelization on data; 2) ASAX SP that makes the parallelization on segments.

4.1 Parallelization on Data

The main idea of our first parallel algorithm, called ASAX DP (ASAX Data Parallel),
is to divide the dataset into blocks (partitions), and to assign the SSE computation
for the time series of each block to a core of the GPU.
Let us describe the proposed algorithm. Initially, the host (CPU) sends the whole
dataset D to the GPU (this data transfer between the CPU and the GPU is done
only once). Then, the host creates the initial segmentation segments by splitting the
time domain into the k starting segments. Afterwards, in a loop, until the number of
segments is more thanw, it generates a candidate segmentation by merging 2 segments
of the last validated segmentation. For each candidate segmentation, the GPU is used
for computing SSE onD. For this, the host calls the GPU kernel that computes SSE in
parallel operating on different time series of the different dataset blocks. In the kernel,
each thread calculates the SSE on the time series of its block and stores the result in a
shared array, called sseArray, that is sent back to the CPU. The host calculates the
sum of the received results to get the SSE on D, and updates the MSSE (minimum
SSE) if the SSE obtained in this iteration is less than the MSSE obtained until now.
After testing all possible segmentations, it chooses the one that has the minimum SSE,
updates the set of segments segments and decrements the current number of segments
k by one. This process continues until k reaches the required number of segments w.
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4.2 Parallelization on Segments

Here, we propose ASAX SP (ASAX Segment in Parallel), a parallel algorithm in
which the computations related to each possible merging of segments is done by
a different GPU core. As shown by our experiments, this algorithm can be more
efficient than the one presented previously in the cases where the time series are long
(e.g., more than 1000 values per time series).

The initialization of this algorithm is the same as the algorithm presented in
the previous subsection. The host starts by sending the dataset D to the GPU, and
dividing the time domain into k starting segments to form the set segments.

Then, until the number of segments has not reached w, the host calls the GPU
kernel to compute SSE on D of each possible segmentation in parallel. The number
of launched threads is equal to the number of possible segmentations obtained when
reducing the number of segments from k to k−1. In the kernel, each thread calculates
its segmentation by merging two segments si and si+1 where i is the thread position.
The thread computes the SSE of the segmentation on the dataset D and stores the
result in a shared array, called sseArray, according to its position. The result array is
sent back to the CPU. Each element of the array represents the SSE for a candidate
segmentation. The host selects the one having the lowest SSE value, and then updates
segments and k. This process continues until k reaches w.

5 Experiments

In this section, we present the experimental evaluation of ASAX SSE. We first de-
scribe the experimental setup. Then, in Subsection 5.2, we compare the precision of
ASAX SSE representation with that of the existing SAX representation. Finally, in
Subsection 5.3, we evaluate the performance of the parallel versions of ASAX SSE
by measuring the execution time of the variable-size segmentation using GPUs.

5.1 Setup

All approaches are implemented with Python programming language. ASAX SSE
and SAX implementations use Numba JIT compiler to optimize machine code at
runtime. The GPU-based part of the parallel algorithms is written in Numba 1.

The ASAX SSE and SAX experiments were conducted on a machine using
Ubuntu 18.04.5 LTS operating system with 20 Gigabytes of main memory, and an
Intel Xeon(R) 3,10 GHz processor with 4 cores. The parallel experimental evaluation
was conducted on an NVIDIA GeForce RTX 2080 Ti GPU card, equipped with 4 352
CUDA cores and 11 GB of memory installed in the same machine. We compare the
proposed ASAX SSE and SAX in terms of precision on all the real-world datasets
available in the UCR Time Series Classification Archive 2. We evaluate the perfor-
mance of the parallel algorithms on two datasets taken from the same archive, the
size of the datasets is increased to reach 1M by repeating the contained time series

1 Our code is available at: https://github.com/lamiad/ASAX_SSE
2 https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

https://github.com/lamiad/ASAX_SSE
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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multiple times. For each approach, the length w of the approximate representations
is reduced to 10% of the original time series length and the variable-size segmentation
algorithms are initialized by splitting the time domain into segments of length 2.

5.2 Precision of k-Nearest Neighbor Search

We compare the quality of ASAX SSE and SAX representation on all 128 datasets
of the UCR Time Series Classification Archive. For each dataset, we measure the
precision of the approximate k-NN search as the average precision for a set of arbitrary
random queries taken from this dataset. The search precision for each query Q from

a dataset D is calculated as : p= |AppkNN(Q,D)∩ExactkNN(Q,D)|
k where AppkNN(Q,D)

and ExactkNN(Q,D) are the sets of approximate k nearest neighbors and exact k
nearest neighbors of Q from D, respectively. AppkNN(Q,D) is obtained using the
DRf distance measure for SAX and DRv for the ASAX SSE representation, while
ExactkNN(Q,D) contains the exact k-NN results of Q using the euclidean distance ED.
AppkNN(Q,D) and ExactkNN(Q,D) use a linear search that consists in computing
the distance from the query point Q to every other point in D, keeping track of the
”best so far” result.

The precision results are reported in Figure 4 where the precision gain/loss (as
percentage) for ASAX SSE compared to SAX precision is measured for each dataset.
The integer part of the obtained precision is taken into consideration to compare the
two methods. Figure 4a shows the precision results for ASAX GSSE (i.e., ASAX SSE
using GSSE) and Figure 4b those for ASAX LSSE (i.e., ASAX SSE using LSSE).
The results are illustrated using a scatter chart where the horizontal axis represents
the dataset number and the vertical axis shows the precision gain/loss obtained. We
observe a gain in precision for the large majority of datasets. We obtained a gain in
precision for 80% of the datasets with ASAX GSSE and 84% with ASAX LSSE.
The distribution of time series over the time domain varies from one dataset to another.
There are some for which the distribution is quite balanced, those which undergo some
variations and others whose variation increases a lot. Figure 4 does not allow explaining
the precision gain or loss since we need to have the visualisation of the time series
for each datasets, for this, an analysis is done regarding the precision results obtained
and the shape of data. We have noticed that the more the distribution of the data is
unbalanced the more the gain is important. The maximum gain achieved is a significant
38% for both ASAX GSSE and ASAX LSSEmethods, obtained for the ECGFiveDays
dataset. This high gain is due to the unbalanced data distribution over the time domain
on this dataset. We were able to achieve a precision of 93% for ASAX SSE while it
is 55% for SAX, because ASAX SSE performed a better distribution of the segments
according to information gain by creating several segments in the parts that undergo a
significant variation that produces more accurate times series representations leading
to a better result for the approximate k-NN search. We can see that for some datasets
the computed gain is zero meaning equivalent precision for ASAX SSE and SAX due
to the balanced shape of the time series over the time domain. Regarding the few
datasets where we obtain lower precision, the loss is relatively low (mostly near zero).



Parallel Techniques for Variable Size Segmentation of Time Series Datasets 11

0 20 40 60 80 100 120
Datasets sorted by increasing gain

−10

0

10

20

30

40

Pr
ec

isi
on

 g
ai

n 
(%

)

-8

38

(a) Precision gain for ASAX GSSE
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(b) Precision gain for ASAX LSSE

Fig. 4: The precision gain for ASAX GSSE and ASAX LSSE compared to SAX. The
obtained gain is up to 38% for both methods

Globally, our results suggest the effectiveness of our approach and its advantage
over the state of the art when applied to time series especially those with unbalanced
distribution over the time domain.

5.3 Scalability

This subsection presents the time cost of the variable-size segmentation for our pro-
posed algorithms. We measure the variable-size segmentation time costs of the parallel
algorithms ASAX DP and ASAX SP, and compare them to that of the variable-size
segmentation for the sequential algorithm ASAX SSE. The percentage of precision
gain computed in the experiments described in the previous subsection shows that
the gain obtained with the ASAX GSSE approach is less than the one obtained
with ASAX LSSE. Furthermore, the evaluation of the time cost for ASAX GSSE
approach (sequential and parallel methods) showed that this approach is more time
consuming than ASAX LSSE. For these reasons, we present the results of our parallel
algorithms, ASAX DP and ASAX SP, only using the LSSE measurement.

Figure 5 and Figure 6 report the performance gains of our parallel approaches
compared to the sequential version of ASAX LSSE. Figure 5 reports the variable-
size segmentation time for the ASAX DP and ASAX LSSE with varying dataset
size. The computation time increases with the number of time series for both
algorithms. But, it is much lower in the case of ASAX DP than that of the
sequential ASAX LSSE. The performance gains vary significantly depending on
the number of time series. As seen, the gain reaches ×45 for 1M of time se-
ries.
Figure 6 reports the computation time of variable-size segmentation for the ASAX SP
and ASAX LSSE. Here we vary the time series length. The running time in-
creases with the length of time series and, as one could expect, the sequential
ASAX LSSE takes much more time than ASAX SP. Depending on time series length,
ASAX SP shows performance gains that can reach ×24 for 1000 time series of length
2700.
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Fig. 5: Variable-size segmentation time
for ASAX DP and ASAX LSSE as a
function of dataset size. The original
time series are of length 130.
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Fig. 6: Variable-size segmentation time
for ASAX SP and ASAX LSSE as
a function of time series length. The
dataset size is fixed to 1000.

Figure 7 and Figure 8 compare the parallel segmentation computation time of our
approaches. In Figure 7, we evaluate the two approaches with varying dataset size
(number of time series) and fixed time series length. For this case, we observe that
ASAX DP is always faster than ASAX SP. The results show that using ASAX DP
is advantageous in the case of databases of many small time series. In Figure 8, we
vary the time series length and we fix the dataset size for the evaluation. We notice
that when time series length n=100, ASAX DP is a little faster than ASAX SP, but
when the length of time series increases, ASAX SP becomes faster than ASAX DP.
The performance gain reaches ×7.5 for time series of length 1000. ASAX SP allows
better performance gains when the database consists of few and long time series.
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Fig. 7: Comparison of parallel segmenta-
tion time using ASAX DP and ASAX SP,
as a function of dataset size. The original
time series are of length 300.
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as a function of time series length. The
dataset size is fixed to 10 000.



Parallel Techniques for Variable Size Segmentation of Time Series Datasets 13

6 Related Work

Several techniques have been yet proposed to reduce the dimensionality of time series.
Examples of such techniques that can significantly decrease the time and space required
for similarity search are: singular value decomposition (SVD) [6], the discrete Fourier
transformation (DFT) [1], discrete wavelets transformation (DWT) [4], piecewise
aggregate approximation (PAA) [7], random sketches [5], Adaptive Piecewise Constant
Approximation (APCA) [3], and symbolic aggregate approXimation (SAX) [9].

SAX [9] is one of the most popular techniques for time series representation. It
uses a symbolic representation that segments all time series into equi-length segments
and symbolizes the mean value of each segment.

Some extensions of SAX have been proposed for improving the similarity search
performance via indexing [11,2]. For example, iSAX [11] is an indexable version of
SAX designed for indexing large collections of time series. iSAX 2.0 [2] proposes
a new mechanism and also algorithms for efficient bulk loading and node splitting
policy, which is not supported by iSAX index.

There have been SAX extensions designed to improve the representation of each
segment, while using the SAX fixed-size segmentation, e.g., [10,12,15]. For example,
SAX TD improves the representation of each segment by taking into account the
trend of the time series. It uses the values at the starting and ending points of the
segments to measure the trend. TFSA [14] and SAX CP [13] are other trend-based
SAX representation methods. TFSA proposes a representation method for long
time series based on the trend, and SAX CP considers abrupt change points while
generating the symbols in order to capture time series’ trends.

To increase the quality of time series approximation, we propose an adaptive
approach ASAX SSE based on variable-length segmentation of time series by taking
into account the sum of absolute error. Our approach is complementary to the existing
SAX extensions, e.g., in indexing based techniques or those that use the trend for
representing the segments. For example, our variable-size segmentation can be used
in iSAX, SAX TD and SAX CP for segmenting the time series.

7 Conclusion

We addressed the problem of approximating time series, and proposed ASAX SSE,
a new technique for segmenting time series before their transformation into symbolic
representations. ASAX SSE can reduce significantly the error incurred by possible
splittings at different steps of the representation calculation, by taking into account
the sum of squared errors (SSE). We also proposed two parallel algorithms for improv-
ing the execution time of ASAX SSE using GPUs. We evaluated the performance
of our segmentation approach through experimentation using more than 120 real
world datasets. The results suggest that the more the data distribution in the time
domain is unbalanced (non-uniform), the greater is the precision gain of ASAX SSE.
For example, for the ECGFiveDays dataset that has a non-uniform distribution in
the time domain, the precision of ASAX SSE is 93% compared to 55% for SAX.
Furthermore, the results illustrate the effectiveness of our parallel algorithms, e.g.,
up to ×45 faster than the sequential algorithm for 1M time series.
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