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ABSTRACT
Existing approaches for time series similarity computing are the

core of many data analytics tasks. Given the considered data vol-

umes, or simply the need for fast response times, they often rely on

shorter representations, usually with information loss. This incurs

approximate comparisons where precision is a major issue. We

present and experimentally evaluate ASAX, a new approach for

segmenting time series before their transformation into symbolic

representations. ASAX reduces significantly the information loss

incurred by possible splittings at different steps of the represen-

tation calculation, particularly for datasets with unbalanced (non-

uniform) distributions. We provide theoretical guarantees on the

lower bound of similarity measures, and our experiments illustrate

that our method outperforms the state of the art, with significant

gain in precision for datasets with unbalanced distributions.
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1 INTRODUCTION
Many applications in different domains generate time series data

at an increasing rate. That continuous flow of emitted data may

concern personal activities (e.g., through smart-meters or smart-

plugs for electricity or water consumption) or professional activities

(e.g., for monitoring heart activity or through the sensors installed

on plants by farmers). This results in the production of large and

complex data, usually in the form of time series [8, 9, 13, 15–19, 21,

22] that challenge knowledge discovery. Data mining techniques

on such massive sets of time series have drawn a lot of interest

since their application may lead to improvements in a large number

of these activities, relying on fast and accurate similarity search in

time series for performing tasks like , e.g., Classification, Clustering,

and Motifs Discovery [14, 17, 23].

Because of the considered data volumes in such applications,

these tasks can be slow on raw data. This is why approximation
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(a) SAX segmentation on D, with 6 segments
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(b) ASAX segmentation on D, with 6 segments

Figure 1: SAX segmentation Vs. ASAX segmentation

over time series is often regarded as a means to allow fast com-

putation of similarity search. SAX [11] is one of the most popular

representations of time series, allowing dimensionality reduction

on the classic data mining tasks. SAX is efficient because it con-

structs symbolic representations by splitting the time domain into

segments of equal size. This approximation model is effective for

time series having a uniform and balanced distribution over the

time domain. However, we observe that, in the case of time series

having high variation over some time intervals, this "one size fits

all" division into segments of fixed length is not advantageous.

To illustrate the impact of a fixed length division of the series

into segments, let us consider Figure 1. It shows a set D of time

series, taken from ECGFiveDays dataset of UCR Archive [5], where

the time series length is 132. In this dataset, the distribution of

values over time domain is not uniform. We can notice that there is

almost no variation from time point 1 to 44 and from 95 to 132. On

the other hand, the remaining part, from time point 44 to 95, shows

an important variation in the data values. Figure 1a shows the SAX

division on D, with a fixed-size segmentation on the time series.

In this example the segment size is 22, leading to 6 segments in
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total. If we take any time series X from D and we convert it into its

SAX representation, the first two segments are always represented

by the same symbol, all the values of these two segments being

close to each other. Actually, there is no need to consider these two

distinct segments. And the same applies to the last two segments.

Meanwhile, for segments 3 and 4, all the values of each segment

are represented by a single symbol while the data values present

great variations, causing a significant loss of information on these

segments.

As one can observe, it is not necessary to split the parts that are

constant or where the variation is low since they don’t carry any

relevant information and would therefore better form a single seg-

ment. It is more efficient to divide into several small segments the

parts where variation is important in order to preserve potentially

relevant information as shown in Figure 1b. The splitting of Figure

1b is the actual splitting obtained by our approach with a segment

budget limited to 6. The first two and last two segments better

correspond to the information carried by the series. It would be

rather counter-intuitive to merge segments 1 and 2, while it is the

opposite for Figure 1a. The time intervals where data values show

important differences are split like, e.g., between times point 66 and

88. By proposing such a customized splitting, we aim at improving

the performance of information retrieval algorithms that will rely

on our data representation.

In order to improve the quality of similarity search, and to achieve

adaptive splitting as illustrated above, we propose a new approxima-

tion method for time series that considers the time series shape and

does the splitting by means of segments of variable size on the time

domain. By measuring the entropy of symbolic representations, our

algorithm chooses between different possible splittings at each step

of the representation computation. This approach allows reducing

information loss, and thus increasing the accuracy of time series

representations leading to better precision during retrieval phases,

particularly from non-uniform datasets. In this paper, we make the

following contributions:

• We propose a new representation technique, called ASAX

(Adaptive SAX), that allows obtaining a variable-size seg-

mentation of time series with better precision in retrieval

tasks thanks to its lower information loss. Our representa-

tion is based on entropy measurement for detecting what

time intervals should be split.

• We propose a lower bounding method that allows approxi-

mating the distance between the original time series based

on their representations in ASAX.

• We implemented our approach and conducted empirical ex-

periments usingmore than 10 real world datasets. The results

suggest that ASAX can obtain significant performance gains

in terms of precision for similarity search compared to SAX.

They illustrate that the more the data distribution in the time

domain is unbalanced, the greater is the precision gain of

ASAX. For example, for the EGCFiveDays dataset that has a

non-uniform distribution in the time domain, the precision

of ASAX is 82% compared to 55% for SAX.

The rest of the paper is organized as follows, we review the related

works in Section 2. In Section 3, we describe the details of ASAX

representation. In Section 4, we present the experimental evaluation

of our approach.We discuss the relatedwork in Section 5, and finally

conclude in Section 6.

2 PROBLEM DEFINITION AND
BACKGROUND

In this section, we first present the background about SAX repre-

sentation, and then define the problem we address.

Table 1: Some frequently used symbols

𝐷 Time series database

𝑋 , 𝑌 , 𝑄 Time series

𝑛 = |𝑋 | The length of time series 𝑋

𝑙 The segment size

𝑤 The number of PAA segments

𝑎 The cardinality (the alphabet size)

𝑋 The SAX representation of time series 𝑋

𝑘 the 𝑘 nearest neighbors

A time series 𝑋 is a sequence of values 𝑋 = {𝑥1, ..., 𝑥𝑛}. We

assume that every time series has a value at every timestamp 𝑡 =

1, 2, ..., 𝑛. The length of 𝑋 is denoted by |𝑋 |.
SAX allows a time series 𝑇 of length 𝑛 to be reduced to a string

of arbitrary length𝑤 . Table 1 lists the notations used in this paper.

2.1 SAX Representation
Given two time series 𝑋 = {𝑥1, ..., 𝑥𝑛} and 𝑌 = {𝑦1, ..., 𝑦𝑛}, the
Euclidean distance between 𝑋 and 𝑌 is defined as [6]: 𝐸𝐷 (𝑋,𝑌 ) =√∑𝑛

𝑖=1 (𝑥𝑖 − 𝑦𝑖 )2
The Euclidean distance is one of the most straightforward simi-

larity measurement methods used in time series analysis.

The SAX representation is based on the Piecewise Aggregate

Approximation (PAA) representation [11] which allows for dimen-

sionality reduction while providing the important lower bounding

property as we will show later. The idea of PAA is to have a fixed

segment size, and minimize dimensionality by using the mean val-

ues on each segment. Example 1 gives an illustration of PAA.

Example 1. Figure 2b shows the PAA representation of 𝑋 , the

time series of Figure 2a. The representation is composed of𝑤 = |𝑋 |/𝑙
values, where 𝑙 is the segment size. With PAA, for each segment,

the set of values is replaced with their mean. The length of the final

representation𝑤 is the number of segments (and, usually,𝑤 << |𝑋 |).

By transforming the original time series𝑋 and 𝑌 into PAA repre-

sentations, 𝑋 = {𝑥1, ..., 𝑥𝑤} and 𝑌 = {𝑦
1
, ..., 𝑦𝑤}, the lower bound-

ing approximation of the Euclidean distance for these two repre-

sentations can be obtained by : 𝐷𝑅𝑓 (𝑋,𝑌 ) =
√

𝑛
𝑤

√∑𝑤
𝑖=1 (𝑥𝑖 − 𝑦𝑖 )2

The SAX representation takes as input the reduced time series

obtained using PAA. It discretizes this representation into a prede-

fined set of symbols, with a given cardinality, where a symbol is a

binary number. The size of the symbols set is called the cardinality.

Example 2 gives an illustration of the SAX representation.

Example 2. In Figure 2c, we have converted the time series 𝑋 to

SAX representation with 4 segments, and cardinality 4 using the PAA
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(c) A SAX representation of X, with 4 segments and car-
dinality 4, [00, 00, 01, 11].

Figure 2: A time series 𝑋 is discretized by obtaining a PAA
representation and then using predetermined break-points
to map the PAA coefficients into SAX symbols. Here, the
symbols are given in binary notation, where 00 is the first
symbol, 01 is the second symbol, etc. The time series of Fig-
ure 2a in the representation of Figure 2c is [first, first, second,
fourth] (which becomes [00, 00, 01, 11] in binary).

representation shown in Figure 2b. In this example, we have 4 possible

symbols: 11, 10, 01, 00. For each segment, SAX chooses the symbol

that corresponds to the PAA value of the segment. Thus, the SAX

representation of X is: [00, 00, 01, 11].

The lower bounding approximation of the Euclidean distance

for SAX representation𝑋 = {𝑥1, ..., 𝑥𝑤} and 𝑌 = {𝑦1, ..., 𝑦𝑤} of two
time series 𝑋 and 𝑌 is defined as:

𝑀𝐼𝑁𝐷𝐼𝑆𝑇𝑓 (𝑋,𝑌 ) =
√

𝑛
𝑤

√∑𝑤
𝑖=1 (𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑦𝑖 ))2

where the function 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑦𝑖 ) is the distance between two SAX

symbols 𝑥𝑖 and 𝑥𝑖 . The lower bounding condition is formulated as:

𝑀𝐼𝑁𝐷𝐼𝑆𝑇𝑓 (𝑋,𝑌 ) ≤ 𝐸𝐷 (𝑋,𝑌 )

2.2 Similarity Queries
The problem of similarity queries is one of the main problems in

time series analysis and mining. In information retrieval, finding

the 𝑘 nearest neighbors (k-NN) of a query is a fundamental problem.

Let us define exact and approximate 𝑘 nearest neighbors.

Definition 1. (Exact 𝑘 nearest neighbors) Given a query time

series 𝑄 and a set of time series 𝐷 , let 𝑅 = 𝐸𝑥𝑎𝑐𝑡𝑘𝑁𝑁 (𝑄, 𝐷) be the
set of 𝑘 nearest neighbors of𝑄 from 𝐷 . Let 𝐸𝐷 (𝑋,𝑌 ) be the Euclidean
distance between two time series 𝑋 and 𝑌 , then the set 𝑅 is defined as

follows:

(𝑅 ⊆ 𝐷) ∧ (|𝑅 | = 𝑘) ∧ (∀𝑎 ∈ 𝑅,∀𝑏 ∈ (𝐷 − 𝑅), 𝐸𝐷 (𝑎,𝑄) ≤ 𝐸𝐷 (𝑏,𝑄))

Definition 2. (Approximate 𝑘 nearest neighbors) Given a set

of time series 𝐷 , a query time series 𝑄 , and 𝜖 > 0. We say that 𝑅 =

𝐴𝑝𝑝𝑘𝑁𝑁 (𝑄,𝐷) is the approximate 𝑘 nearest neighbors of 𝑄 from 𝐷 ,

if 𝐸𝐷 (𝑎,𝑄) ≤ (1 + 𝜖)𝐸𝐷 (𝑏,𝑄), where 𝑎 is the 𝑘𝑡ℎ nearest neighbor

from 𝑅 and 𝑏 is the true 𝑘𝑡ℎ nearest neighbor.

2.3 Time Series Approximation
The SAX representation proceeds to an approximation by mini-

mizing the dimensionality: the original time series are divided into

segments of equal size.

This representation does not depend on the time series values,

but on their length. It allows SAX to perform the segmentation

in 𝑂 (𝑛) where 𝑛 is the time series of length. However, for a given

reduction in dimensionality, the modeling error may not be minimal

since the model does not adapt to the information carried by the

series. Our claim is that, by taking into account the information

carried by time series for choosing the segments, we may obtain

significant increase in the precision of kNN queries. This issue

motivated us for proposing an adaptive representation aiming at

minimizing the information loss.

2.4 Problem Statement
Our goal is to propose a variable-size segmentation of the time

domain that minimizes the loss of information in the time series

representation.

The problem we address is stated as follows. Given a database

of time series 𝐷 and a number 𝑤 , divide the time domain into 𝑤

segments of variable size such that the representation of the times

series based on that segmentation lowers the error of kNN queries.

3 ADAPTIVE SAX (ASAX)
In this section, we propose ASAX, a variable-size segmentation tech-

nique for the time series representation. To create a segmentation

with minimum information loss, ASAX divides the time domain

based on the representation entropy.

In the rest of this section, we first describe the notion of entropy

for the time series representation. Then, we describe our algorithm

for creating the variable-size segments. Finally, we present our

method for measuring the lower bound distance between time
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series in the proposed representation. This lower bounding is useful

for efficient evaluation of kNN queries.

3.1 Entropy
Entropy is a mathematical function which intuitively corresponds

to the amount of information contained or delivered by a source

of information. This source of information can be of various types.

Themore the source emits different information the higher is the en-

tropy. If the source always sends the same information, the entropy

is minimal. Formally, entropy is defined as follows.

Definition 3. Given a set 𝑋 of elements, and each element 𝑥 ∈ 𝑋

having a probability 𝑃𝑥 of occurrence, the entropy 𝐻 of the set 𝑋 is

defined as: 𝐻 (𝑋 ) = −∑
𝑥 ∈𝑋 𝑃𝑥 × log 𝑃𝑥

In our context, we calculate the entropy on a set containing the

different symbolic representations obtained from the transforma-

tion of the original time series of a dataset according to a given

segmentation. The entropy computed on this set allows to measure

the quantity of information contained in the time series represen-

tations. Let us illustrate this using an example.

Example 3. Consider the database D={x,y,z} in Figure 3 where x,

y and z are time series with l=8. Let us create a representation having

two segments (e.g., 0-4, and 4-8), and then compute the entropy of

the representation of the set D. To generate the representation of the

time series x, y and z, they are discretized by obtaining their PAA

representation and then using predetermined break-points to map

the PAA coefficients into the corresponding symbols like the SAX

representation proceeds. We have converted the 3 time series into

symbolic representations with size 2, and cardinality 4. Thus, the

symbolic representations of x, y and z are 𝑥 = [00, 10], 𝑦 = [00, 10]
and 𝑧 = [00, 10], respectively. We notice that the 3 time series have

the same symbolic representation, thus, the set X consists of only this

unique symbolic representation with an occurrence equal to 3., i.e.,

𝑋 = {[00, 10]}. The entropy H(X) of X is computed as follows:

𝐻 (𝑋 ) = −(𝑃 (𝑥 = [00, 10]) × log
2
𝑃 (𝑥 = [00, 10]))

where the probability for the word x is 𝑃 (𝑥 = [00, 10]) = 3

3
= 1.

Therefore, we have 𝐻 (𝑋 ) = −(1 log 1) = 0 meaning that in the

representation 𝑋 there is no information allowing to distinguish the

three original time series from each other. This is explained by the fact

that they have the same representation with a fixed-size segmentation.
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Figure 3: ASAX segmentation with 2 segments

In the next subsection, we describe our algorithm to create

variable-size segments based on entropy.

3.2 Variable-Size Segmentation Based on
Entropy Measurement

Given a database of time series𝐷 , and a number𝑤 , our goal is to find

the 𝑘 variable size segments that minimize the loss of information

in time series representations.

Intuitively, our algorithm works as follows. First it splits the time

domain into two segments of equal size. Then, it performs 𝑤 − 2

iterations, and in each iteration it finds the segment 𝑠 whose split

makes the minimum loss in entropy, and it splits that segment. By

doing this, in each iteration a new segment is added to the set of

segments. This continues until having𝑤 segments.

Let us now describe ASAX in more details. The pseudo-code

is shown in Algorithm 1. It first splits the time domain into two

equal parts and creates two segments that are included to the set

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 (Line 1). Then, it sets the current number of segments,

denoted as 𝑘 , to 2 (Line 2).

Afterwards, in a loop, until the number of segments is less than

𝑤 the algorithm proceeds as follows. For each segment 𝑖 (from 1

to 𝑘), 𝑖 is divided into two equal parts, if its size is greater than

𝑚𝑖𝑛𝑆𝑖𝑧𝑒 , which is the minimum possible size of a segment, and it’s

default value is 1. Then, a temporary set of segments 𝑡𝑒𝑚𝑝𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠

is created including the two new segments and all previously cre-

ated segments except 𝑖 (i.e., expect the one that has been divided).

Then, for each time series 𝑡𝑠 in the database 𝐷 , the algorithm gen-

erates the symbolic representation of 𝑡𝑠 (denoted as 𝑤𝑜𝑟𝑑) using

the segments included in 𝑡𝑒𝑚𝑝𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 with the given cardinality

𝑎 (Line 12), and inserts it to a hash table (Line 13). Note that for

all time series, ASAX uses the same cardinality to map the PAA

coefficients into the corresponding symbols. After having inserted

all the representations of the time series contained in 𝐷 to the hash

table, the entropy of the representations is calculated (Line 14). If

the entropy is higher than the maximum entropy obtained until

now, the algorithm sets 𝑖 as the segment to be split, and keeps the

entropy of the representation. This procedure continues by split-

ting one of the segments at each time, and computing the entropy.

The algorithm selects the one whose entropy is the highest, and

updates the set of the segments by removing the selected segment,

and inserting its splits to the set 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 (Lines 18-20). Then, the

variable 𝑘 , which shows the number of current segments, is incre-

mented by one. The algorithm ends if the number of segments is

equal to the required number, i.e.,𝑤 .

Example 4. Let us consider the dataset D in Figure 3 which rep-

resents the initialization of the algorithm, i.e., the time domain is

divided into two segments of the same size. The next step is to create

the 3rd segment by splitting one of the two existing segments. Two

different scenarios are possible.

Scenario 1 : The first scenario is shown in Figure 4a where the left

segment is divided into two equal parts. We generate the symbolic

representation of the time series 𝑥 , 𝑦, and 𝑧 by using the 3 seg-

ments. Let’s assume the cardinality is 4. Then, 𝑥 = [00, 00, 10],
𝑦 = [00, 00, 10] and 𝑧 = [00, 00, 10] are the symbolic representa-

tion of x, y and z, respectively. Thus, the set 𝑋1 consists of only

one representation [00,00,10] with an occurrence of 3, i.e., 𝑋1 =

[00, 00, 10]. The entropy is then calculated as: 𝐻 (𝑋1) = −(𝑃 (𝑥 =

[00, 00, 10]) log 𝑃 (𝑥 = [00, 00, 10])) where 𝑃 (𝑥 = [00, 00, 10]) = 3

3
=
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Algorithm 1: ASAX variable-size segmentation

Input: 𝐷 : time series database; 𝑛: the length of time series;

𝑚𝑖𝑛𝑆𝑖𝑧𝑒: the minimum possible size of a segment; 𝑎:

cardinality of symbols;𝑤 : the required number of

segments

Output:𝑤 variable-size segments

1 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = {[0,
𝑛
2
], [

𝑛
2
, 𝑛]}; // split time domain into two

equal size segments

2 𝑘 = 2

3 while 𝑘 ≠ 𝑤 do
4 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑇𝑜𝑆𝑝𝑙𝑖𝑡 = 1

5 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 0

6 for 𝑖=1 to 𝑘 do
7 𝑡𝑒𝑚𝑝𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

8 if 𝑙𝑒𝑛𝑔𝑡ℎ(tempSegments[𝑖]) > 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 then
9 split segment 𝑖 into two equal parts, and replace

the segment 𝑖 by its corresponding parts in

𝑡𝑒𝑚𝑝𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠

10 ℎ𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒 = new HashTable

11 foreach 𝑡𝑠 ∈ 𝐷 do
12 𝑤𝑜𝑟𝑑 = ASAX(𝑡𝑠 , 𝑡𝑒𝑚𝑝𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 , 𝑎)

13 ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒 .put(𝑤𝑜𝑟𝑑)

14 𝑒 = entropy(ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒)

15 if 𝑒 > 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 then
16 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑇𝑜𝑆𝑝𝑙𝑖𝑡 = 𝑖

17 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑒

18 split 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑇𝑜𝑆𝑝𝑙𝑖𝑡 into two equal size segments 𝑠1

and 𝑠2

19 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 - {𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑇𝑜𝑆𝑝𝑙𝑖𝑡}
20 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

⋃{𝑠1, 𝑠2}
21 𝑘 = 𝑘+1

22 return 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

1 and we have 𝐻 (𝑋1) = −(1 log 1) = 0.

Scenario 2 : This scenario is shown in Figure 4b in which the right

segment is split. As for Scenario 1 we generate the symbolic represen-

tation of time series x, y and z using the 3 segments, and cardinality

of 4. 𝑥 = [00, 01, 10], 𝑦 = [00, 01, 11] and 𝑧 = [00, 01, 11] are the
symbolic representation of x, y and z, respectively. In this scenario the

representation set𝑋2 consists of [00,01,10] with an occurrence of 1 and

[00,01,11] with an occurrence of 2, i.e., 𝑋 = [00, 01, 10], [00, 01, 10].
The entropy is calculated as:

𝐻 (𝑋2) = −(𝑃 (𝑥 = [00, 01, 10]) log 𝑃 (𝑥 = [00, 01, 10]) +
𝑃 (𝑥 = [00, 01, 11]) log 𝑃 (𝑥 = [00, 01, 11])) where 𝑃 (𝑥 = [00, 01, 10]) =
1

3
and 𝑃 (𝑥 = [00, 01, 11]) = 2

3
. Then,𝐻 (𝑋2) = −( 1

3
log

1

3
+ 2

3
log

2

3
) =

0.918.

After having calculated the entropy for the two scenarios, we see

that 𝐻 (𝑋1) < 𝐻 (𝑋2). We aim to maximize the entropy, therefore we

choose the segmentation generated in Scenario 2 for this iteration of

our algorithm. We continue the next iterations, until the number of

segment reaches w.
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(a) Scenario 1 of ASAX segmentation with 3 segments
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(b) Scenario 2 of ASAX segmentation with 3 segments

Figure 4: The two different scenarios of ASAX segmentation
with 3 segments. Scenario 4b is the one chosen because it
optimizes the entropy.

3.3 Lower Bounding of the Similarity Measure
SAX [12] defines a distance measure on the representation of time

series as described in Section 2.1. Given the representation of

two time series, the𝑀𝐼𝑁𝐷𝐼𝑆𝑇𝑓 function allows obtaining a lower

bounding approximation of the Euclidean distance between the

original time series. By the following theorem, we propose a lower

bounding approximation formula for the case of variable size seg-

mentation in ASAX.

Theorem 1. Let𝑋 and 𝑌 be two time series. Suppose that by using

ASAX we create a variable size segmentation with𝑤 segments, such

that the size of the 𝑖𝑡ℎ segment is 𝑙𝑖 .

Let 𝑋 and 𝑌 be the PAA representation of variable size of 𝑋 and 𝑌 in

ASAX, 𝐷𝑅𝑣 (𝑋,𝑌 ) gives a lower bounding approximation of the Eu-

clidean distance between𝑋 and𝑌 :𝐷𝑅𝑣 (𝑋,𝑌 ) =
√∑𝑤

𝑖=1 ((𝑥𝑖 − 𝑦𝑖 )2 × 𝑙𝑖 )
Let 𝑋 and 𝑌 be the representations of 𝑋 and 𝑌 in ASAX obtained by

converting𝑋 and𝑌 into symbolic representation. Then,𝑀𝐼𝑁𝐷𝐼𝑆𝑇𝑣 (𝑋,𝑌 )
gives a lower bounding approximation of the Euclidean distance be-

tween 𝑋 and 𝑌 :𝑀𝐼𝑁𝐷𝐼𝑆𝑇𝑣 (𝑋,𝑌 ) =
√∑𝑤

𝑖=1 (𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑦𝑖 )2 × 𝑙𝑖 )

Proof. The proof has been removed due to lack of space.

3.4 Uniform Distribution of Symbols
SAX breakpoints divide the value domain into regions of different

size where small regions are concentrated on the middle of the value

domain and regions at extreme values are larger. This is illustrated
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by Figure 5, with three time series from our motivating example in

Figure 1. The breakpoints of SAX with 10 symbols are represented

by horizontal lines, and, logically, they appear close to the center of

the distribution. If we keep such distribution of symbols, then we

would have two issues. First, the extreme values of the series like

those above 2 or below -4 would be assigned the same symbol (their

PAA value on the segment would fall in the same symbol). Second,

the adaptive segmentation would consider that the slight variations

around zero are more important than the ones at extreme values,

ending in irrelevant splits that favor minor information gain. For

this reason, we propose to calculate the breakpoints differently. In

ASAX, the discretization is done based on breakpoints that produce

uniform distributions of symbols. These breakpoints divide the

value domain into regions of equal size. In the case of Figure 5 the

10 symbol regions will be evenly distributed in the range of data

values.

0 22 44 66 88 110 132
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−4

−2

0

2
x
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z

Figure 5: The Gaussian based distribution of symbols in SAX
are not suitable for ASAX since they would favor minor in-
formation gain.

4 EXPERIMENTS
In this section, we report the results of experimental studies on the

proposed ASAX segmentation approach that illustrate its perfor-

mance in improving the accuracy of time series representations in

order to get better precision during information search operations.

4.1 Datasets and Experimental Settings
We compared the ASAX representation with the existing SAX rep-

resentation on datasets selected for their particular (lack of) uni-

formity. Notice that SAX and its extensions in the literature use a

fixed-size segmentation of the time domain. But, ASAX proposes a

variable-size segmentation based on information theory techniques.

The approaches are implemented in Python programming lan-

guage and Numba JIT compiler is used to optimize machine code

at runtime
1
. The experimental evaluation was conducted on a

machine using Fedora 31 operating system with 16 Gigabytes of

main memory, an Intel Core i7 1,90 GHz-4,80 GHz processor with

4 cores.

1
Our code is available for download here: https://github.com/lamiad/ASAX

We carried out our experiments on several real world datasets

from the UCR Time Series Classification Archive [5]. Table 2 gives

basic information about the datasets: name, type, length of the time

series (number of values). Notice that almost all selected datasets

have non-uniform distributions over time domain (see Figure 6),

else SyntheticControl that has a quasi uniform distribution.

For each approach, we set the default cardinality value to 32 and

the length w of the approximate representations is reduced to 10%

of the original time series length.

Table 2: Datasets basic information

Name Type time series Length

AllGestureWiimoteZ Sensor 500

ECG200 ECG 90

ECG5000 ECG 140

ECGFiveDays ECG 130

Fungi HRM 200

GesturePebbleZ1 Sensor 450

MedicalImages Image 90

SonyAIBORobotSurface1 Sensor 70

SyntheticControl Simulated 60

In the experiments, we measure the ASAX and SAX precision in

similarity search by applying a k-Nearest Neighbor (k-NN) search,

as detailed in Subsection 4.2. For ASAX, we measure the time cost

of the variable-size segmentation in Subsection 4.3.

4.2 Precision of k-Nearest Neighbor Search
In this part of experiments, we compare the quality of ASAX and

SAX representation on the different datasets described in Table 2 by

measuring the precision of the approximate k-NN search for both

of the two approaches. The precision reported for each dataset rep-

resents the average precision for a set of arbitrary random queries

taken from this dataset. The search precision for each query Q from

a dataset D is calculated as follows :

𝑝 =
|𝐴𝑝𝑝𝑘𝑁𝑁 (𝑄,𝐷) ∩ 𝐸𝑥𝑎𝑐𝑡𝑘𝑁𝑁 (𝑄, 𝐷) |

𝑘

whereAppkNN(Q,D) and ExactkNN(Q,D) are the sets of approximate

k nearest neighbors and exact k nearest neighbors of Q from D,

respectively. AppkNN(Q,D) is obtained using 𝐷𝑅𝑓 distance measure

for SAX and 𝐷𝑅𝑣 for the ASAX representation and the set Exac-

tkNN(Q,D) contains the k-NN of Q using the euclidean distance ED.

AppkNN(Q,D) and ExactkNN(Q,D) use a linear search that consists

in computing the distance from the query point Q to every other

point in D, keeping track of the "best so far" result.

The precision results are reported in Figure 6 where each dataset

is plotted with the precision obtained (as percentage) for both ap-

proaches and the datasets are sorted in descending order of preci-

sion gain. The plots show the shape of the different time series of

each dataset and we can notice that the distribution of time series

over the time domain varies from one dataset to another. Let us

take for example the ECGFiveDays dataset presented in Figure 6a

and SyntheticControl shown in Figure 6i. On the first one, we were

able to achieve a precision of 82% for ASAX while it is 55% for

SAX, which is a significant gain in precision. This higher precision

https://github.com/lamiad/ASAX
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Figure 6: The data distribution of the tested datasets, and the precision results for each dataset. p(SAX) and p(ASAX) show the
precision of SAX and ASAX respectively. The datasets are sorted in descending order of precision gain.
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Figure 7: Runtime ofASAX segmentation algorithm for each
dataset

for ASAX is due to the variable-size segmentation which created

segments in the parts that undergo a significant variation (from

time point 44 to 95) as discussed in our motivating example, except

that, here, we have 13 segments (allowing ASAX to perform a better

distribution of the segments according to information gain). For

SyntheticControl we can see that the precision of the approximate

k-NN search is the same for both ASAX and SAX approaches which

is 32%. In this dataset, the shape of the time series is balanced over

the time, and the segmentations obtained by ASAX and SAX are

the same, resulting in equivalent precision.

These results suggest the advantage of our approach over the

state-of-the-art when applied to time series with unbalanced distri-

bution.

4.3 Time cost of ASAX segmentation algorithm
Figure 7 reports the time cost of our proposed approach. It gives

the segmentation time of ASAX on the datasets of our experiments.

It does not concern SAX since SAX divides the time domain into

segments of fixed size which does not require any computation
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beforehand. The longest segmentation time is approximately 13

seconds, while the shortest one is around 20milliseconds. It depends

on both the number of time series in the dataset and their length.

5 RELATEDWORK
Several techniques have been yet proposed to reduce the dimension-

ality of time series. Examples of such techniques that can signifi-

cantly decrease the time and space required for similarity search are:

singular value decomposition (SVD) [7], the discrete Fourier trans-

formation (DFT) [1], discrete wavelets transformation (DWT) [3],

piecewise aggregate approximation (PAA) [10], random sketches

[4], and symbolic aggregate approXimation (SAX) [12].

SAX [12] is one of the most popular techniques for time series

representation. It uses a symbolic representation that segments all

time series into equi-length segments and symbolizes the mean

value of each segment. The symbolic representation allows to lower

bound the corresponding distance measures defined on the original

time series. Several extensions of SAX have been yet proposed,

mainly for improving the similarity search performance via index-

ing. For example, iSAX [20] is an indexable version of SAX designed

for indexing large collections of time series.

iSAX 2.0 [2] proposes a new mechanism and also algorithms for

efficient bulk loading and node splitting policy, wich is not sup-

ported by iSAX index. In [2], two extensions of iSAX 2.0, namely

iSAX 2.0 Clustered and iSAX2+, have been proposed. These exten-

sions focus on the efficient handling of the raw time series data

during the bulk loading process, by using a technique that uses main

memory buffers to group and route similar time series together

down the tree, performing the insertion in a lazy manner.

However, the segmentation in SAX and its extensions is not adap-

tive to the data since their division principle of the time domain

is based on fixed-size segments which is not always effective for

unbalanced data distributions. To increase the quality of the approx-

imation for this type of time series we propose our approach ASAX

based on SAX representation and a variable-length segmentation

algorithm. Our approach is complementary to the SAX extensions,

such as iSAX and iSAX 2.0 which have been proposed for improving

the kNN queries response time.

6 CONCLUSION
In this paper, we proposed a new approximation technique, called

ASAX, that considers the time series distribution on the time do-

main and performs variable-size segmentation, by using the en-

tropy of symbolic representations. Our technique allows reducing

information loss and thus increasing the accuracy of time series

representations. We implemented our technique and evaluated its

performance using several real world datasets. The experimental

results suggest that ASAX can obtain significant performance gains

in terms of precision for similarity search compared to SAX. The

results show that the more the data distribution in the time domain

is unbalanced (non-uniform), the greater is the precision gain of

ASAX, e.g., for the EGCFiveDays dataset that has a non-uniform

distribution in the time domain, the precision of ASAX is 82% com-

pared to 55% for SAX.
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