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Abstract
The growing number of edge devices in everyday life generates a considerable amount of data that
current AI algorithms, like artificial neural networks, cannot handle inside edge devices with
limited bandwidth, memory, and energy available. Neuromorphic computing, with low-power
oscillatory neural networks (ONNs), is an alternative and attractive solution to solve complex
problems at the edge. However, ONN is currently limited with its fully-connected recurrent
architecture to solve auto-associative memory problems. In this work, we use an alternative
two-layer bidirectional ONN architecture. We introduce a two-layer feedforward ONN
architecture to perform image edge detection, using the ONN to replace convolutional filters to
scan the image. Using an HNNMatlab emulator and digital ONN design simulations, we report
efficient image edge detection from both architectures using various size filters (3× 3, 5× 5, and 7
× 7) on black and white images. In contrast, the feedforward architectures can also perform image
edge detection on gray scale images. With the digital ONN design, we also assess latency
performances and obtain that the bidirectional architecture with a 3× 3 filter size can perform
image edge detection in real-time (camera flow from 25 to 30 images per second) on images with
up to 128× 128 pixels while the feedforward architecture with same 3× 3 filter size can deal with
170× 170 pixels, due to its faster computation.

1. Introduction

The number of edge devices being used in everyday life is quickly growing. For healthcare, security, robotics,
or even home automation, there are edge computation in every domain, inducing a large amount of data to
treat. Classical computing algorithms along with classical hardware systems based on von-Neuman
architecture cannot efficiently handle this large amount of data at the edge [1, 2]. Artificial intelligence (AI)
field has introduced many efficient algorithms, such as artificial neural networks (ANNs), to treat big data
problems. However, edge devices with limited bandwidth, memory, and energy consumption constraints
simply cannot manage such complex algorithms in real-time. Thus, recently novel hardware-aware
computing paradigms inspired by the brain, so-called neuromorphic computing have emerged [3, 4].

Neuromorphic computing takes inspiration from the brain architecture, and the brain representation of
information to allow fast, and low power computation. For example, spiking neural networks (SNNs) [5–7]
are neural networks inspired by spikes transmitted through neurons in human brain, which encode
information in the latency between two spikes. Using time-domain data representation instead of
amplitude-domain helps reducing the mean voltage amplitude and so the energy consumption.
Implementation of large-scale SNNs in neuromorphic chips demonstrates high efficiency in solving various
complex problems [8, 9]. In this work, we explore a novel neuromorphic paradigm with Oscillatory Neural
Networks (ONNs).
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ONNs are brain-inspired neural networks that emulate brain oscillations using networks of coupled
oscillators [10–13]. ONN computation uses the natural synchronization behaviour of coupled oscillators. In
this work, we use phase-computing ONN where the information is encoded in the phase relationship
between oscillators [14]. It allows to decrease the signal voltage amplitude and to reduce the power
consumption, such as with SNNs [15–17]. In recent years, ONNs have shown good performances to be
deployed for edge applications with low power consumption. In particular, ONN is often used with
fully-coupled bidirectional connections to perform auto-associative memory (AAM) tasks [18, 19], like
Hopfield neural networks (HNNs) [20]. However, to solve edge AI type of problems and to benchmark ONN
with other computing paradigms, there is a need to explore other applications (beyond associative memory),
learning algorithms and architectures. In this work, we explore two ONN layered architectures, first with
bidirectional connections introduced by [21], and then with feedforward connections, introducing a novel
feedforward ONN architecture. We use both architectures to perform image edge detection. We believe
performing image edge detection with two-layer ONN architecture is a first step toward exploring ONNs
beyond associative memory tasks and start benchmarking ONN with other existing solutions.

Edge detection is an image processing task that detects brightness and color variations in images. Many
edge devices are equipped with smart cameras, where image processing is performed at the edge in real-time
[22]. Edge detection is often a first step of a more complex image processing operation, like for feature
extraction, object detection, image segmentation, etc [23, 24]. Classical edge detection solutions, such as
Sobel [25] and Canny [26], use small (from 3× 3 to 7× 7) convolutional filters to scan the image and detect
contrasts in small part of the image.

In [21], authors have shown a 2-layer bidirectional ONN can perform image edge detection. Authors use
coefficients from Sobel convolutional filters to compute ONN synaptic weights using the Hebbian learning
rules. They achieve good results with some missing diagonal edges. In this paper, we propose a novel method
to configure a two-layer bidirectional ONN to perform edge detection which rectifies the missing diagonal
edges. Moreover, we show that the novel method can be adapted to a two-layer feedforward ONN
architecture. We first test and validate our methods on Matlab with an HNN emulator, and then we simulate
them on a digital ONN design. This work introduces the feedforward ONN and its digital implementation.
Our contributions can be summarized as follows: we (a) develop a novel method to perform image edge
detection with a two-layer bidirectional ONN, (b) introduce a two-layer feedforward ONN architecture and
its configuration to image edge detection, and (c) validate and evaluate real-time performances of both our
solutions on black and white and gray scale images in Matlab HNN emulator and digital ONN design.

The rest of the paper is organized as follows. Section 2 presents the different ONN architectures, starting
from state-of-the-art AAM, to the novel proposed two-layer feedforward ONN. Also, we describe the
implementations of the architectures in Matlab, and the digital ONN design. Then, section 3 details how we
configure each ONN architecture to perform image edge detection using results from the HNNMatlab
emulator. Next, in section 4, we show results of simulations of our bidirectional and feedforward digital
ONNs on black and white and gray scale images. We also provide performances of our solutions in terms of
latency and resource utilization. Finally, in section 5, we discuss our results compared to other edge detection
field programmable gate array (FPGA) implementations and the perspectives of our work.

2. ONNs

ONNs are networks of coupled oscillators [27] that compute with the natural dynamics of coupled
oscillators [28, 29]. In ONNs, each neuron is an oscillator and each synapse is a digital or analog component
that couples two oscillators. The coupling strength varies depending on the component type and value [30].
In this work, we consider phase-computing ONNs that encode information in the phase relationship
between oscillators. For example, considering binary information, we set an oscillator with 0◦ phase to
encode a logic ‘0’, and an oscillator with 180◦ phase to encode a logic ‘1’. Computing with phases allows to
reduce the voltage amplitude and consequently the power consumption.

In this section, we present the different ONN architectures, starting from state-of-the-art of single-layer
fully connected ONN architecture in section 2.1. Then, section 2.2 gives details on the 2-layer bidirectional
architecture introduced in [21] for image edge detection. Section 2.3 introduces the novel 2-layer
feedforward ONN architecture. Finally, section 2.4 describes the implementations of the ONN architectures
in Matlab and with the digital design.

2.1. Single-layer fully-connected ONN
ONN state-of-the-art is configured with a recurrent fully-connected architecture, see figure 1(A), like in
HNNs. HNNs are fully-connected recurrent networks where each neuron is a perceptron with bipolar states
evolving in time such as:

2
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Figure 1. ONN architectures with (a) fully-connected connections for Auto-Associative Memory task, (b) bidirectional layered
connections for Hetero-Associative Memory task, and (c) feedforward connections for classification task.

σt
i = sign

∑
j

wijσ
t−1
j

 (1)

where σt
i is the state of neuron i at time t, wij is the weight value between neuron i and neuron j, and σt−1

j , is

state of neuron j at time t− 1. Note, if
∑

jWijσ
t−1
j is equal to 0, σt

i = σt−1
i . Configuring weight values with

specific learning rules, HNNs can perform AAM tasks. AAM networks can learn patterns or images and
retrieve them from corrupted information such as noisy images. In HNN, if neuron states are initialized with
a corrupted information, then the states evolve in time to stabilize to a memorized pattern. Memorized
patterns are embedded in the weights of the network configured during learning. The main learning
algorithm for AAM is the unsupervised Hebbian learning rule which works as ‘neurons that fire together,
wire together’ [31]. It means if two connected neurons have equal values, the coupling strength between
them is reinforced. The mathematical formulation to compute weights wij between neuron i and neuron j
corresponding to k learning patterns Xk is:

wij =
1

k

∑
k

Xk
iX

k
j (2)

with wij = 0∀i= j. Note that with Hebbian rules, HNN learns a pattern and also the opposite one.
It is well-known that ONN with HNN architecture can also perform AAM tasks, [18, 19]. The synaptic

configuration of ONN for AAM is set with the unsupervised Hebbian rule to learn patterns. Weights are
computed with Hebbian and bipolar HNN states, and then values are translated into ONN coupling
elements [30]. Note that Hebbian can only learn bipolar patterns as it is configured for HNN, however, ONN
can encode more than two states with its phase encoding, so it can learn and stabilize to additional phase
states between 0◦ and 180◦.

After learning, ONN inference starts by initializing each oscillator in the network with its initial phase
state. Then, oscillators’ phases evolve, thanks to the coupling among oscillators, until they stabilize to a final
phase state. If couplings among oscillators are correctly configured, the stable phase state, corresponding to
the minimal energy of the system [32], represents one of the memorized patterns. In the case of image
processing, each neuron is associated with a pixel, and the phase of each oscillator represents the color of the
pixel. Using bipolar patterns with HNN limits the image processing to black and white, while ONN can also
initialize and stabilize to gray scale images.
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2.2. Two-layer bidirectional ONN
Fully-connected recurrent ONNs can perform pattern recognition by associating a corrupted pattern with a
learnt pattern. However, to enlarge the scope of possible ONN tasks, other architectures are explored [33].
Thus, in [21], authors introduced a novel ONN architecture dividing neurons into two different layers, an
input layer, and an output layer, with bidirectional connections between input and output layers, see
figure 1(B).

This architecture resembles the bidirectional associative memory (BAM) networks [34], in which
neurons are equivalent to Hopfield neurons with bipolar states, and connections are bidirectional. However,
update of BAM input and output neuron states is sequential from input layer, to output layer, and reversely
until stabilization. BAM networks can perform hetero-associative memory (HAM) tasks, meaning that it can
associate pairs of input/output patterns with two different dimensions representing two different
information. For example, it can associate an image to a class, becoming a classification task, or a sensory
input data to an action in the robotics domain.

BAM networks [34] use an adapted version of the unsupervised Hebbian learning rule to compute
weights between input and output. To learn k input/output pairs of patterns with i neurons in the input layer
X, and j neurons in the output layer Y, weight wij between input neuron i and output neuron j is computed
following:

wij =
∑
k

X k
i Y

k
j (3)

The two-layer bidirectional ONN differs from BAM as the bidirectional connection between neurons
induces a parallel exchange from input to output layer and from output to input layer. Thus, if only neurons
from the input layer are initialized, neurons from the output layer will also impact the final computation
result. So, the impartial initialization of neurons in output layer is important for an efficient computation. As
with Hebbian learning rule, we limit the pattern output state to two phase states {0◦,180◦}, same as authors
in [21] proposed to double each output neuron to initialize one with one phase state {0◦}, and the other
with the opposite phase state {180◦}. In this case, the output has no influence on the input information.
Note that each doubled output neurons are connected as they represent the same output information.
During the learning step, in order to also compute ONN weights for connections in-between outputs,
authors in [21] translate each input/output pair patterns into a unique vector to compute the classical
Hebbian coefficients as in equation (2), then removing connections among input neurons afterwards.

During inference, input neurons are initialized with input information, and output neurons with neutral
information. Then, using coupling between input/output layers, and coupling among output neurons, ONN
phases evolve and stabilize to a final phase state. Phases of the output neurons contain the computation
output.

2.3. Two-layer feedforward ONN
In this paper, we introduce a novel ONN architecture with feedforward connections, to remove the impact of
the output over the input layer, and only consider the impact of the input layer over the output layer, see
figure 1(C). Also, we expect the two-layer feedforward architecture to compute faster than the two-layer
bidirectional architecture. The bidirectional architecture computes with interactions between input and
output until both stabilize. However, in the feedforward architecture, only the input influences the output
and the input does not evolve in time, so we expect that output stabilizes faster.

Considering HNN neurons instead of oscillators, stabilization can even become a ‘one-shot’ computation
as:

σt
j = sign

(∑
i

wijσ
t−1
i

)
(4)

with σt
j , the state of output neuron j at time t, σt−1

i the state of input neuron i at time t− 1, and wij weight

between input neuron i and output neuron j. Note that if the weighted sum
∑

iWijσ
t−1
i is equal to zero, the

new state of neuron j, σt
j takes the previous value σ

t−1
j . This is true for both HNNs and ONNs. Thus, it is still

necessary to initialize neurons in the output layer to prevent this behavior. Note, the initialization is
application-dependent.

In the two-layer feedforward ONN, oscillators in the input layer are phase-controlled oscillators taking
phases as input and sending oscillating signals to oscillators in the output layer. Oscillators in the output
layers take as input the sum of oscillating signals sent from input layer, equivalent to the weighted sum.
Output oscillators evolve in phase depending on this weighted sum. Training a two-layer feedforward ONN
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Figure 2. ONN digital implementation on FPGA with (a) Fully-connected architecture, (b) Bidirectional layered architecture, and
(c) Feedforward architecture.

is not trivial and needs further exploration. However, theoretically, it can use unsupervised learning rules
used for HAM tasks, as well as supervised learning rules used for classification tasks. In this paper, we use the
two-layer feedforward ONN for a specific image edge detection application and compute custom weights
dedicated to image edge detection.

Note that hardware implementation of such feedforward ONN is not possible with every oscillator
design. Some analog designs cannot differentiate between input and output coupling directions. In this case,
only bidirectional connections are possible. However, using some digital design, it is possible to differ
oscillators’ input and output as in [35, 36] which can allow to implement a feedforward ONN architecture.

2.4. ONN validation and simulation
In this work, we use two ONN designs to simulate and validate our architectures. First, we use an ONN
Matlab emulator based on HNN described in section 2.4.1 to validate our methods. Then, we simulate a
digital ONN design from [36] presented in section 2.4.2, to assess ONN efficiency and evaluate resource and
timing performances.

2.4.1. HNN-based Matlab emulator
In order to easily validate our architectures, and their configuration for image edge detection, we first test our
methods using an HNN emulator developed on Matlab for each architecture. HNN emulators consists of
modeling ONN architectures using bipolar spins as neurons, like in HNN. For the fully-connected
architecture, the Matlab emulator reproduces identically an HNN, but it is not used for the image edge
detection application. For the two-layer bidirectional architecture, we consider a fully-connected HNN with
zero weights between input neurons, such that we emulate the parallel behavior of the bidirectional
architecture. Finally, for the two-layer feedforward architecture, we create a Matlab code which emulates the
two-layer feedforward network with bipolar spins as neurons. The input layer takes directly the input
information, and the output layer is updated by the weighted sum value given by the input information as in
equation (4). Note that the output layer initialization is application-dependent.

2.4.2. ONN digital design
After validating architectures and image edge detection methods with HNNMatlab emulator, we check and
evaluate our solutions by simulating a digital ONN design. The ONN digital design was introduced in [36]
with a fully-connected architecture. In the design from [36], each oscillator combines a phase calculator as
well as a phase-controlled digital oscillator. Synapses are five-bits signed registers, see figures 2(A) and 3. In
[36], Oscillators are initialized sequentially before starting their parallel computation. Authors from [36]
used their design to perform real-time image recognition. Then, in [21] authors simulated their two-layer
bidirectional architecture, using the fully-connected digital ONN design from [36], and applying zero
weights in synaptic couplings between input oscillators, see figure 2(B). In this work, we use the same design
for the bidirectional layered architecture, however we modify the design to perform a parallel initialization
instead of a sequential one to speed up the process. Finally, we develop a two-layer feedforward design
inspired by the previous ONN design. The new feedforward ONN architecture implementation is similar to
the bidirectional ONN. Oscillators from the output layer are equivalent to oscillators from the bidirectional
architecture, containing a phase calculator followed with a phase-controlled oscillator. However, oscillators
from the input layer are only phase-controlled oscillators which take the input phase value and generates an
oscillating signal, see figure 3. In this new design, there is no more recurrence between input and output
layers. Synaptic implementation also uses five-bits signed representation for each weight, and initialization of
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Figure 3. Digital implementation of the two-layer bidirectional ONN, and the two-layer feedforward ONN with details of neuron
components.

the input layer is also performed in parallel. We set up the two-layer ONN architectures to perform image
edge detection. Note, in this paper, we focus on simulation tests. We use the Vivado software to simulate the
digital ONN designs with the XC7Z020-1CLG400C FPGA as target device.

Next, we present methods to perform image edge detection using the different ONN architectures.

3. ONN for image edge detection

Edge detection task consists on extracting contrast differences between various regions of an image.
Typically, it uses small-size filters to scan images and extract contrasts in the different image parts. Here, we
present first the existing edge detection algorithms. Then, we show how a two-layer ONN with bidirectional
architecture can perform image edge detection using a 3× 3 input layer. After, we extend the method to the
two-layer feedforward ONN architecture. Also, we show that the 3× 3 input layer can be extended to larger
filters with 5× 5 and 7× 7 pixels for both bidirectional and feedforward ONN. Finally, we describe the
method used to evaluate our ONN-based edge detection solutions.

3.1. Edge detection algorithms
Various edge detection algorithms exist to detect brightness and color differences between two neighboring
regions of an image. State-of-the-art Sobel [25], and Canny [26] algorithms use small convolutional kernels
(commonly 3× 3, 5× 5 and 7× 7) to scan the image and detect edges in the different area of the image. For
example, Sobel commonly uses two 3× 3 convolutional kernels associated to vertical and horizontal edges.
Scanning the image consists on applying the convolutional kernels’ parameters on small parts of the image, 3
× 3 if the kernel is 3× 3, and moving the kernel all around the image with one pixel stride. The results of the
convolutional kernels are then used to calculate a global gradient for the central pixel of the 3× 3 image
window which indicates if an edge is detected or not in the given pixel, and how strong the edge is. An
optional final state binarize the output by using a threshold to select only strong edges in the image. Both
Sobel and Canny use at least two kernels to detect horizontal and vertical edges. In addition, Canny includes
a previous step with a gaussian filter to remove noise in the image.

3.2. 2-layer bidirectional ONNwith 3× 3 input size
A recent paper introduced ONN as a solution to perform image edge detection, using a two-layer
bidirectional architecture [21]. The method proposed in [21] consists on using the bidirectional ONN as a
filter with a 3× 3 input format and a two-neuron output to represent if an edge is detected or not. The
network is configured using the Sobel kernels coefficients associated to output combinations as training
patterns for the Hebbian algorithm, see figure 4. One pattern associates the horizontal Sobel kernel with
white pixels output corresponding to {−1,−1} for HNN, or {0◦,0◦} for ONN, and the second pattern
associates the vertical Sobel kernel with black pixels output corresponding to {+1,+1} for HNN, or
{180◦,180◦} for ONN. No-edge cases are detected when the ONN stabilizes to none of the trained output
patterns. Note, weights connected from one input neuron to the two output neurons are equal because the
two output neurons need to represent the same edge information.
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Figure 4. Bidirectional ONN configuration for edge detection proposed by [21], and resulted connections using 3× 3 input filter.

Figure 5. (B) Customization of the bidirectional ONN configuration for edge detection solving missing edges from (A) previous
work [21], and results of the HNNMatlab emulator for both configurations on the gray-scale octagon map.

Figure 5(A) shows results obtained on a gray-scale octagon map with methods from [21] using the HNN
Matlab emulator. It is visible that some diagonal edges are missing. Thus, in this paper we apply a novel
method to customize weights and solve the missing edges. When looking at the weights of the corresponding
network, we detected that weights applied on opposite edge sides of the filter have opposite values. For
example, weights from top right input neuron to output neurons are−2, while weights from bottom left
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Figure 6. Configuration of the feedforward ONN with 3× 3 input size, using Sobel kernel coefficients as weights, and results of
the HNNMatlab emulator on the gray-scale octagon map.

input neuron to output neurons are+2, corresponding to the right-oriented diagonal. Vertical and
horizontal edges have the same values, respectively. Those three edges are correctly retrieved. However, for
input neurons corresponding to the missing left-oriented diagonal edges, weights connected to the output
neurons have zero values. Thus, in order to solve the missing edges, we apply the same rule to weights
connected to those input neurons. We customize the weights to have opposite weight values between weights
connected to the top-left input neuron, and weights connected to the bottom-right input neuron.
Figure 5(B) shows the customization of the weights as well as the results obtained on a simple gray scale
octagon map with the HNNMatlab emulator. It shows that our customization method improves the image
edge detection proposed by [21]. Results and precision on larger scale images are reported in section 4, as
well as resource and timing performances of the digital ONN design.

3.3. 2-layer feedforward ONNwith 3× 3 input size
One main drawback in [21] is the latency of the image edge detection algorithm to compute a full image, due
to the sequential scanning process. In order to explore reducing the computation latency of ONN, we
introduce a feedforward ONN architecture, where we expect stabilization to be faster than with bidirectional
interaction. Also, we expect a reduction in the computation latency as a result of the new parallel
initialization from the digital design.

In the mathematical concept, the weighted sum computed before the neuron activation function is
equivalent to a convolutional operation, as used in classical edge detection algorithms. Thus, our first
approach to use the feedforward ONN for edge detection consisted on applying the Sobel kernels coefficients
as weights between the 3× 3 input neurons and two output neurons, one for each Sobel kernel, as shown in
figure 6. In this case, output neurons are initialized with−1 for HNN or 0◦ phase for ONN that we associate
to a no-edge information. Then, we expect the feedforward ONN to change the output information to+1
for HNN, or 180◦ phase for ONN if an edge is detected. However, figure 6 highlights that not all edges are
correctly retrieved by our HNNMatlab emulator. It can be explained by the difference between the Sobel
gradient calculation and the HNN or ONN activation functions. In Sobel, a large negative intensity and a
large positive intensity of gradient will correspond to an edge. However, with HNN or ONN, if the weighted
sum is negative, the states will evolve to−1 for HNN, and 0◦ phase for ONN, corresponding to a no-edge
information. A solution to counter this effect could be to use two output neurons per kernel, initializing both
with opposite values, and checking if at least one changed during the computation. However, this solution
uses a double amount of output neurons, inducing twice the number of synapses, and so increasing ONN
resource utilization.
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Figure 7. Feedforward ONN configuration with 3× 3 input size, with (A) first option tried from the bidirectional ONN
configuration, (B) second option by reversing weights of the first option, and (C) final option which combines (A) and (B). Also
results of the HNNMatlab emulator on the gray-scale octagon map are presented for each configuration.

Thus, we explored alternative solutions to use our feedforward ONN for edge detection. First, we tried to
reproduce similar configuration than with the bidirectional architecture. We do not differ the two output
neurons and consider equal weights from input neurons to the two output neurons, and we initialize output
neurons to {−1,−1}HNN states or {0◦,0◦} ONN phase states. We set weights from input neurons
corresponding to opposite side of each edge with opposite weight values, as displayed in figure 7(A). It
highlights that with this method, only half of the edges from the gray-scale octagon map are detected. Next,
we exchange each weight values from previous configuration, so positive weights become negative, and
negative weights become positive, see figure 7(B). In this case, we detect edges that were missing in the
previous configuration. Thus, we deduce that by using one of the described configurations to connect input
neurons to one output neuron, and the other configuration to connect input neurons to the second output
neuron, we are able to retrieve all edges of the gray scale octagon map. Figure 7(C) shows results of the HNN
Matlab emulator on the gray scale map image for this last optimal configuration. Precisions obtained with
the digital ONN design on larger scale images, and resource and latency performances of the solution are
described in section 4.

3.4. Extension to 5× 5 and 7× 7 ONN inputs
Convolutional filters configured for edge detection are often 3× 3 kernels but can also be larger, with 5× 5
kernels, or even 7× 7 kernels. Thus, in this work, we explore if our edge detection methods with two-layer
bidirectional and feedforward ONNs, can scale for larger input size. In particular, we extend our methods to
perform image edge detection with ONN filters using input of 5× 5 and 7× 7 sizes, see figure 8. To extend
our methods, we reproduce the main principle to have weights connected to central input neurons set to
zero, and weights connected in neurons from the border respecting the rule: if two weights corresponds to
the same edge, they have opposite values. And for the feedforward ONN, an additional rule is necessary:
weights from the same input neuron to the two output neurons, need to have opposite values, see figure 8.

Note, in this paper we consider scanning the image with one-pixel stride. Thus, when we apply the 5× 5
or 7× 7 filters, we use the same method as with 3× 3, we select a small part of the image (5× 5 or 7× 7),
we apply our ONN for edge detection (bidirectional or feedforward architecture), and we apply the output
information to the central pixel. Then, we move the filter to select the next part of the image, and so on.
Thus, using larger filters we expected to detect more times each edges, which is confirmed in figure 8 with the
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Figure 8. ONN configuration with 3× 3, 5× 5, and 7× 7 input size, for (A) the bidirectional ONN architecture, and (B) the
feedforward ONN architecture. Also results of the HNNMatlab emulator on the gray-scale octagon map are presented for each
configuration.

HNNMatlab emulator on the gray scale octagon map. Results of the digital ONN designs with larger input
sizes and resource utilization and timing performances are presented in section 4.

3.5. Evaluation of edge detection algorithms
Evaluation of edge detection algorithm is not an easy task as, to the best of our knowledge, there are no
state-of-the-art evaluation metric, as well as no ground truth (GT) available. To first visually evaluate our
edge detection solutions with our HNN emulator, we use a method from literature [37] which uses
hexagonal forms with various gray levels on a white background. It allows to first assess if our solution is able
to retrieve the simple edges from the simple image. However, we believe a more precise assessment of the
performance is necessary to evaluate our ONN edge detection solutions. In literature, similarity coefficients
are often used to assess precision of object detection algorithms. Here, we propose to use the Jaccard
similarity coefficient (JSC) [38] to evaluate our solutions. JSC metric takes a GT and calculates the similarity
between the GT and the obtained output information. To do so, it makes a ratio of the area of overlap
between the two solutions, and the area of union. To apply it to edge detection algorithms, we consider the
area of overlap as the number of overlapping edges, and the are of union the number of union edges between
the two output images. Note, the JSC is computed considering similarity only between detected edges, and
does not consider the full image with background.

JSC=
Overlappingedges

Unionedges
(5)

As already mentioned, to the best of our knowledge, there is no GT for edge detection algorithms using
our dataset. Thus, to evaluate performances of our solutions, we propose to use results from state-of-the-art
edge detection algorithms as GT. Canny is known as the most precise solution for image edge detection,
while Sobel is a cheaper and faster solution with less precision and more sensitivity to noise. Thus, we take
Canny as GT and evaluate its similarity with Sobel and our solutions using the JSC metric. We use images
generated with built-in Sobel and Canny Matlab functions.

4. Results

After exploring and validating methods to perform image edge detection using our two-layer ONNs with the
HNNMatlab emulator, we validate and assess performances of the methods with the digital ONN design. We
test both architectures on black and white 28× 28 images from modified national institute of standards and
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Figure 9. Edge detection results of the digital ONN designs for the bidirectional architecture with input size 3× 3, 5× 5, and 7×
7, and for the feedforward architecture with input size 3× 3, 5× 5, and 7× 7, compared with previous work [21] and state of the
art Sobel and Canny on a black and white 28× 28 MNIST image.

technology database (MNIST), gray-scale 28× 28 MNIST images, as well as on large scale black and white
images. For each architecture, we perform image edge detection using 3× 3 input filters, 5× 5 input filters,
and 7× 7 input filters, and we evaluate precision of each solution. Finally, we extract resource utilization and
latency performances of each ONN architecture and size to assess real-time performances of our solutions.

4.1. Black and white 28× 28MNIST images
We first evaluate our two-layer ONNs for image edge detection using black and white images of handwritten
digits from MNIST database [39]. The MNIST database contains 28× 28 gray scale images, that we binarize
to obtain black and white images.

Figure 9 displays an example of output images generated by the digital ONN design simulation for
multi-scale bidirectional and feedforward architectures. Figure 9 also highlights outputs of previous work
[21], and outputs of state-of-the-art Sobel and Canny configured with 3× 3 kernels. Additionally, figure 9
illustrates the similarity between our ONN bidirectional filter and Sobel filter with GT Canny. It highlights
that our customized weight solution for the 3× 3 bidirectional architecture improves the number of detected
edges from previous work [21]. Also, both 3× 3 bidirectional architecture and 3× 3 feedforward
architecture have equal results. Comparing to state-of-the-art Sobel and Canny algorithms, our solution
correctly detects all necessary edges. However, each edge is detected multiple times, creating larger lines.
When increasing the input layer size, for both bidirectional and feedforward architectures, edges are detected
even more times as we scan the image with one pixel stride. This creates large edge shapes, making it hard to
visualize edges on a small 28× 28 image. Figure 10 corroborates this visual assessment by comparing
numerically our ONN feedforward and bidirectional filters and Sobel filter with Canny as GT. Figure 10
shows than for black and white MNIST images, the number of overlapping edges between our solutions and
Canny are close to the overlapping edges between Sobel and Canny. However, the number of union edges is
larger for our solutions, increasing with the filter size. It confirms that our solutions detect more edges than
Sobel. Thus, the JSC between Sobel and Canny is higher than between our solutions and Canny as we detect
more edges. Figures 9 and 10 have similar precision to state-of-the-art Sobel algorithm.

4.2. Gray scale 28× 28MNIST images
After investigating ONN for image edge detection on black and white MNIST images, we also analyze its
efficiency on gray scale images. Figure 11 shows ONN output on a 28× 28 gray scale MNIST image for the
various architecture configurations. It also shows the similarity between our ONN feedforward filter and
Sobel filter with GT Canny. First, we highlight that the bidirectional architecture, even with our customized
weights does not allow to perform image edge detection on realistic gray scale images. The HNNMatlab
emulator was able to detect edges on gray scale octagon map, however, the ONN digital design is not efficient
on a realistic MNIST image. For various part of the image, the digital ONN system is unstable and never
stabilizes to one of the patterns. However, the feedforward ONN architecture is able to correctly detect edges
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Figure 10. Number of overlapping edges, union edges, and similarity coefficient between our digital ONN solutions and Canny
reference, and between Sobel state-of-the-art and Canny reference on MNIST black and white (bw) and grayscale (gs) digit
images.

Figure 11. Edge detection results of the digital ONN designs for the bidirectional architecture with input size 3× 3, 5× 5, and 7
× 7, and for the feedforward architecture with input size 3× 3, 5× 5, and 7× 7, compared with previous work [21] and state of
the art Sobel and Canny on a gray scale 28× 28 MNIST image.

on gray-scale images. In comparison to state-of-the-art Sobel and Canny, visually our feedforward ONN
solution seems to perform better that Sobel, which misses a majority of edges from the image, but worst than
Canny which still performs well on the gray-scale image. However, when computing the JSC with Canny as
GT, Sobel gets better results, as shown in figure 10. It highlights that our feedforward ONN detects more
edges that Sobel, however edges are not overlapping with Canny edges. Note that we observe the same
behavior as before when increasing the input filter size. Each edge is detected more times, and edge lines
become thicker. This behaviour increases a little bit the JSC as the number of overlapping edges increases
with the number of detected edges. Using large-scale input with 5× 5 or 7× 7 pixels does not seem relevant
for small-size images.

4.3. 512× 512 standard black and white images
Finally, we test our solutions on 512× 512 large scale standard black and white images. The digital ONN
simulation process takes time, and to simulate 512× 512 images, it is equivalent to simulate more than 260k
times our ONNs for each part of the image. So, for the 3× 3 ONNs, we simulated all 3× 3 black and white
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Figure 12. Edge detection results of the digital ONN designs for the bidirectional architecture with input size 3× 3, 5× 5, and
7× 7, and for the feedforward architecture with input size 3× 3, 5× 5, and 7× 7, compared with previous work [21] and state
of the art on the black and white 512× 512 standard ‘pepper’ image.

Figure 13. Number of overlapping edges, union edges, and similarity coefficient between our ONN solutions simulated on
Matlab, Sobel state-of-the-art and Canny GT reference on large scale black and white images Peppers, House, and Lake. Similarity
outputs of the bidirectional ONN solutions simulation on Matlab and Sobel solution compared to Canny on black and white
Peppers image.

options (512 possible inputs) using our digital ONNs, and associated each part of the image with the
corresponding ONN output. However, with 5× 5 ONN input, the number of possibilities increases to more
than 33 million, and for 7× 7 it is even larger, becoming a challenge to simulate. For both the 5× 5 and
7× 7 options, we select a small part of the image and apply it as input of our ONNs edge detection
algorithms.

Figure 12 shows the output of our ONNs on the standard image ‘peppers’ converted in black and white.
This confirms the efficiency of our two ONN solutions with bidirectional and feedforward architecture to
perform image edge detection on black and white images. It also supports the previous results showing an
increase in the number of detected edges when increasing the input layer size. In addition, we use the HNN
emulator to estimate the the JSC between our ONN edge detection filters on large scale black and white
images, as shown in figure 13. It corroborates that our ONN edge detection filter is close to the Sobel
state-of-the-art algorithm as it detects similar number of overlapping edges, but the higher number of union
edges, increasing with the filter size, decreases the JSC when comparing similarity with Canny algorithm.
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Table 1. ONN latency performances and resource utilization depending on the architecture and the size. The system is configured with
166MHz frequency, allowing 2.7MHz oscillation frequency.

Bidirectional Feedforward

ONN architecture ONN size 3× 3 5× 5 7× 7 3× 3 5× 5 7× 7

Initialisation 24 ns 24 ns 24 ns 24 ns 24 ns 24 ns
Computation 1.42µs 1.42µs 1.42µs 1.15µs 1.15µs 1.15µs
LUTs (%) 484 (0.91) 1214 (2.28) 2369 (4.45) 211 (0.40) 302 (0.57) 457 (0.86)
Flip-Flops (%) 458 (0.43) 1026 (0.96) 1626 (1.53) 277 (0.26) 437 (0.41) 597 (0.56)

Table 2. Estimation of full image edge detection using our ONN architectures. The estimation multiplies the number of pixels to treat in
each image by the time to initialize and compute each ONN design.

Bidirectional Feedforward

ONN architecture ONN size 3× 3 5× 5 7× 7 3× 3 5× 5 7× 7

3× 3 image 1.42µs 1.42µs 1.42µs 1.15µs 1.15µs 1.15µs
28× 28 image 1.11ms 1.11ms 1.11ms 0.78ms 0.78ms 0.78ms
100× 100 image 14.2ms 14.2ms 14.2ms 11.5ms 11.5ms 11.5ms
128× 128 image 23.3ms 23.3ms 23.3ms 18.8ms 18.8ms 18.8ms
170× 170 image 41ms 41ms 41ms 33.2ms 33.2ms 33.2ms
512× 512 image 372ms 372ms 372ms 301ms 301ms 301ms

4.4. ONN performances
After validation of our methods efficiency to perform image edge detection, we extract ONN characteristics
from simulations. Table 1 presents latency performances of the different ONN solutions (feedforward and
bidirectional with various input sizes). Each ONN operates with a system frequency set to Fsys = 166MHz,
equivalent to an oscillation frequency of Fo = 2.7 MHz. It highlights that a 3× 3 bidirectional ONN needs
1.42µs in average to stabilize. Note, the computation time stays stable with the increase of the bidirectional
ONN size, as ONN computes in parallel. The new parallel initialization implemented in both the
bidirectional and feedforward ONN designs, drastically accelerates the initialization process compared to
original fully-connected ONN design from [36], as it only needs one clock cycle to initialize all oscillators no
matter the input size. Also, we highlight that, as expected, the computation is faster with the feedforward
architecture than with the bidirectional architecture. The difference is minimal when considering only one
ONN computation, but as shown in table 2 for a full image edge detection process, there is an important
difference between the two architectures. For example, considering a 5× 5 input size, the feedforward ONN
can treat images up to 170× 170 pixels in real-time (considering 25 to 30 images per second), while the
bidirectional ONN can not treat such large images.

Table 1 also points out that the bidirectional architecture requires more resources than the feedforward
architecture, regardless of the size. Yet, in general, the ONN design for image edge detection does not require
a large amount of resources, with up to 4.5% of the look up tables (LUTs), and 1.36% of the Flip-Flops for
the 7× 7 bidirectional ONN. Thus, both ONN architectures can easily be integrated in larger systems with
minimal resources.

5. Discussion

Assessing precision of edge detection algorithms is challenging. A common GT is needed for comparison.
However, up to our knowledge, to date there is no edge detection database providing input and GT output. A
first solution to counter the lack of GT is to compare to state-of-the-art algorithms. Another solution is to
integrate the image edge detection solution in a more complex algorithm to check the global outputs of the
algorithm. For example, some use edge detection as part of image segmentation applications [24], or in
feature extraction applications [15]. It could be interesting to set up a more complex demonstrator to better
assess the quality of our edge detection solutions. In this work, we evaluate our ONN edge detection
algorithms by comparing the output of our solutions with other state-of-the-art edge detection algorithms,
Sobel and Canny. In particular, we consider Canny as GT, as it is known to provide higher precision than
Sobel, and compute the JSC for our ONN solutions and Sobel algorithm. We show that both the
bidirectional and feedforward ONNs can detect most edges detected by Sobel and Canny algorithms on black
and white images, even if edges are detected multiple times depending on the size. We also show that the
efficiency of the bidirectional ONN solution is limited to black and white images, like Sobel, while the
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Table 3. Performances of FPGA implementation of edge detection algorithms from literature.

Resources

Filter size LUTs Flip-Flops Hardware Frequency Latency 512× 512

Sobel [40] 3× 3 346 289 Xilinx Spartan 3 50MHz 5.25ms
XC3S200

Sobel [41] 3× 3 47 107 Xilinx Spartan 3 204MHz 1.28ms
XC3S50-5PQ20

Canny [43] 3× 3 82 496 40 640 Xilinx Virtex 5 100MHz 0.721ms
XC5VSX240T

Sobel [42] 3× 3 0 114 Xilinx Spartan 6 504MHz 0.52ms
XC6SLX43TQG144

feedforward ONN can also address gray scale images, like Canny. In addition, an important point is that our
methods are scalable with different ONN input size.

The latency is a critical point in image edge detection. Main algorithms use small convolutional filters to
scan each part of the image. The sequential scanning is one of the main drawbacks of these methods, as well
as for ours. For example, respecting real-time camera constraints of 25 to 30 images per second, we report
that the 3× 3 feedforward ONN can handle images of around 170× 170 pixels while the bidirectional ONN
can only treat smaller images, that is limited for image processing applications.

In literature, there are various references of FPGA implementation of Sobel and Canny algorithms.
Mainly, two options are considered to accelerate the image scanning process, with one more adapted to
Sobel, and the other more adapted to Canny. In [40–42], authors propose to simplify the Sobel convolutional
computation in order to reduce the number of operations to be able to increase the frequency and speed up
the process. For example, the Sobel FPGA architecture proposed in [40] can process each pixel gradient in a
single clock cycle. Using a clock at 50MHz, they are able to process a 512× 512 image in around 5ms. Using
faster frequency, authors in [41] achieve the process of a 512× 512 image in 1.28ms, and with an even faster
frequency, authors in [42] process the same-size image in less than 1ms, as shown in table 3. For Canny,
additional parallelization is necessary to achieve short processing. Authors in [43] propose to parallelize the
process by blocks. They divide the image in numerous 64× 64 non-overlapping blocks and process edge
detection inside the blocks in serial, but edge detection of the different blocks in parallel. In this way, with a
system running at 100MHz, they can process a 512× 512 image in less than 1ms. However, as shown in
table 3, it requires much more resources than the previous Sobel implementations.

We can see that our ONN solution is slower than the state-of-the-art FPGA implementations of both
Sobel and Canny. As explained, Sobel implementations only need one clock cycle to process the gradient for
one pixel and with the low amount of necessary resources, they can work at high frequency. Meanwhile, we
need to wait for a few oscillation cycles depending on the architecture and our oscillation frequency is much
slower than Sobel FPGA implementation system frequencies. Thus, as Canny we should consider including
some parallelization to be competitive with Sobel or Canny in terms of Latency. Additionally, in [43], they
also mention the overlapping parameter which can accelerate the process by scanning less time, this is
another parameter we can play with in order to accelerate the image edge detection complete process. In
table 4, we estimate latency to compute a 512× 512 image for various overlapping parameters, depending on
the number of parallel ONNs implemented for different ONN filter sizes and architectures. Note, we
consider only two overlapping options, either a full overlapping (Y) considering a scanning stride of one
pixel, or no overlapping at all (N) considering a scanning stride of the size of the filter such that there is no
overlapping but no missing pixels as well. Also note, in order to assess the impact of the overlapping
parameter on the edge detection precision, we computed the JSC between our ONN solutions simulated with
the Matlab emulator and Canny algorithm on three large scale images (peppers, house, lake). Table 4 features
the mean JSC value between the three images for each ONN solution. Finally, in table 4, we consider the
number of parallel ONNs as the maximum number of parallel ONNs that can be implemented in the
XC7Z020-1CLG400C FPGA chip used in our experiments. Table 4 shows that using a single ONN to
sequentially scan an image is hardly competitive compared to state-of-the-art Sobel and Canny FPGA
implementations. Only using a 7× 7 filter with no overlapping option reaches a latency between 6ms and
7ms, depending on the architecture, similar to some Sobel implementations. However, precision reduces
with the no-overlapping option, as well as with the size of the ONN filter. However, it is interesting to note
that using parallel ONNs, with overlapping, the bidirectional ONN can process the entire 512× 512 image
in less than 10ms, in particular, using 100 3× 3 bidirectional ONNs in parallel, we can process the image in
3.7ms, which is in the same range as the state-of-the-art Sobel and Canny implementations. Furthermore,
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Table 4. Estimation of resource utilization and latency for various parallel and overlapping parameters for the two ONN architectures
and various sizes.

Resources

Filter size Overlap Parallel ONNs LUTs Flip-Flops
Latency
512× 512

JSC between
Canny/ONN

Bid 3× 3 Y 1 484 458 372ms 0.41
Bid 5× 5 Y 1 1214 1026 372ms 0.25
Bid 7× 7 Y 1 2369 1626 372ms 0.17
Bid 3× 3 N 1 484 458 41.5ms 0.23
Bid 5× 5 N 1 1214 1026 14.8ms 0.16
Bid 7× 7 N 1 2369 1626 7.6ms 0.13
Bid 3× 3 Y 100 48 525 45 577 3.7ms 0.41
Bid 5× 5 Y 40 49 625 38 520 9.3ms 0.25
Bid 7× 7 Y 20 47 980 27 778 18.6ms 0.17
Bid 3× 3 N 100 48 525 45 577 0.42ms 0.23
Bid 5× 5 N 40 49 625 38 520 0.37ms 0.16
Bid 7× 7 N 20 47 980 27 778 0.38ms 0.13
FF 3× 3 Y 1 211 277 301ms 0.41
FF 5× 5 Y 1 302 437 301ms 0.24
FF 7× 7 Y 1 457 597 301ms 0.17
FF 3× 3 N 1 211 277 33.6ms 0.23
FF 5× 5 N 1 302 437 11.9ms 0.16
FF 7× 7 N 1 457 597 6.1ms 0.13
FF 3× 3 Y 290 53 125 82 727 1.04ms 0.41
FF 5× 5 Y 170 51 665 74 297 1.77ms 0.24
FF 7× 7 Y 110 51 724 61 616 2.74ms 0.17
FF 3× 3 N 290 53 125 82 727 0.12ms 0.23
FF 5× 5 N 170 51 665 74 297 0.07ms 0.16
FF 7× 7 N 110 51 724 61 616 0.06ms 0.13

the feedforward ONN is even faster and requires less resources so we can implement more feedforward
ONNs. Thus, using 290 3× 3 feedforward ONNs in parallel, we can scan the 512× 512 image in around
1ms which is faster than some Sobel FPGA implementations, but slightly slower than the Canny FPGA
implementation. Combining both non-overlapping option with parallel ONNs provides faster latency than
reported Sobel and Canny FPGA implementations, however as explained the non-overlapping parameter
impacts the edge detection precision. Additional study is necessary to assess precision of the overlapping
parameter.

Future work will include the implementation of the solutions to assess real-time performances, with the
various latency optimization methods. Additionally, this work uses ONN as filter to replace convolutional
kernels. A possible future exploration could be to try replacing other types of convolutional filters than edge
detection filters with ONN [44]. Finally, this work also introduces the feedforward ONN architecture. Future
exploration will also investigate general learning methods adapted to the feedforward ONN and exploration
of applications with this novel ONN architecture.

6. Conclusion

This paper presents two methods to perform efficient image edge detection using two-layer ONN
architectures, one with bidirectional connections, and the other with feedforward connections. This is to
date the first work to explore ONN with feedforward architecture. We validate and evaluate precision of our
multi-scale edge detection methods with both the bidirectional and feedforward ONNs using HNNMatlab
emulators, as well as digital ONN designs. We compute edge detection on black and white and gray scale
images. We report a good precision, close to the state-of-the-art Sobel algorithm, of both bidirectional and
feedforward methods on black and white images. However, only the feedforward ONN can perform efficient
edge detection on realistic gray scale images. We also extract resource utilization and computation latency
from the digital ONN simulations. We highlight that the feedforward ONN computes faster (in 1.15µs) than
the bidirectional ONN (in 1.42µs), regardless of the size, leading to longer full image edge detection
processing for the bidirectional ONN. For example, we estimate that the 3× 3 feedforward ONN is able to
treat images with up to 170× 170 pixels while the bidirectional ONN can not treat such large images in
real-time (considering 25–30 images per second). This work brings ONN as a possible image processing
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solution, as it can replace convolutional filters in more complex algorithms, and perform feedforward
computation that is often used in image processing tasks.
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