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Implementation of SARL* Algorithm for A
Differential Drive Robot in a Gazebo Crowded
Simulation Environment
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Abstract—Because of the stochasticity in people’s behaviors,
autonomous navigation in crowded environments is critical and
challenging for both the robot and people evolving around. This
paper deals with the implementation and effectiveness evaluation
of the Socially Attentive Reinforcement Learning star algorithm,
namely SARL*, which is an extended version of the state-of-the-
art socially compliant navigation algorithm SARL. It introduces
a dynamic local goal resetting mechanism. The Simulations were
conducted in the Robot Operating System (ROS) and the Gazebo
simulator is used to test the human-aware navigation in different
scenarios. Simulation results illustrate the efficiency of SARL*
in terms of navigation around people in a socially acceptable
manner. Nevertheless, it could not navigate efficiently when the
goal position is located behind static or quasi-static obstacles.

Index Terms—SARL*, Social Robotics, ROS, Deep Reinforce-
ment Learning, Navigation

I. INTRODUCTION

A robotic framework is often constructed around three
main entities, including (i) guidance, (ii) navigation and (iii)
control (GNC) systems. These systems mainly interact with
each other through the transmission of data and signals. In its
basic form, GNC is a reference model (the guidance system),
a measurement/sensor system (the navigation system) and a
controller (the control system) [1]-[4].

Mobile robot navigation has been intensively researched as
a basic problem in robotics. Today, more service robots are
being created to function in human-robot coexisting situations,
including, autonomous vehicles, smart wheelchairs, luggage
collecting and hospitality robots [5]-[10].

In traditional navigation frameworks typically, Collision avoid-
ance modules treat dynamic obstacles as static, such as the
Dynamic Window Approach (DWA) [11] or simply focus on
the next step of action based on certain interaction rules,
such as Reciprocal Velocity Obstacle (RVO) [12] and Optimal
Reciprocal Collision Avoidance (ORCA) [13]. Because these
strategies prevent collisions by passive reaction and typically
rely on manually programmed functions to assure safety, it
has been revealed that they lead the robot’s movement to be
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awkward, short-sighted, and dangerous.

In congested environments, a robot must be able to observe,
interpret and predict the behavior of the surrounding pedes-
trians in order to move in a socially acceptable manner.
In the human aware navigation problem, the integration of
human motion prediction with robot motion planning remains
a difficult problem. One of the existing approaches consists
to plan after prediction, i.e., to choose a safe path after
predicting the future trajectories [14]. To anticipate pedestrian
trajectories, some hand-crafted models (e.g., constant velocity
model [15], discrete choice model [16], social force model
and its variations [17], [18]) and data-driven approaches (e.g.,
social LSTM [19], [20], social GAN [21], [22]) have been
presented.

However, the significant stochasticity of the crowd behav-
ior frequently affects the computing cost and reliability of
pedestrian trajectory prediction. Such planning-after-prediction
approaches are still hard for practical implementations in the
context of human-aware navigation for mobile robots, which
demands both security and time efficiency [23].

Deep Reinforcement Learning (DRL) is another category of
algorithms for human-aware navigation that includes human
motion prediction into the decision-making process, i.e., the
robot learns from experiences to comprehend crowded envi-
ronments and encodes crowd-robot interaction in the naviga-
tion strategy. Recent studies [24]-[29] shown greater ability
to create crowd-aware navigation rules, with the Socially At-
tentive Reinforcement Learning (SARL) algorithm obtaining
cutting-edge performance for an effective DRL based human-
aware navigation.

II. PROBLEM FORMULATION

Let us consider a robot and n humans as agents, in a 2D
workspace. Each of these agents has an observed states such
as position p = [pg,p,], velocity v = [v,,v,] and radius r
(i.e. agents are represented as circles in their workspace). For
each agent the rest of the states, such as the orientation 6, goal
position g = [g,g,] and the preferred speed vp,.f, are not
observed by other agents.



The robot’s full state at time ¢ can be defined as S; =
[Dzs Pys Vs Vys 0, Gy Gys T, Upres], and the k-th human’s ob-
servable state at time ¢ can be defined as Of =
[Pk, pf, vk, vk ¥ vk ] To make the state representation
more general, the current and goal positions (p, g) are replaced
by the distance between them and denoted d,. The distance
between the robot and the k-th human is denoted by d*. As

adopted in [26] the new state is defined as follows:

S, = [dgavpref>v:vavy>r]

k k k .k k .k
Ot = [d ,pwpy,vw,vy,r , T +T]

(D

A joint state of all (n + 1) agents at time ¢ is constructed by
concatenating the state S; with the all of the Off:

Jt = [St30}703770?} (2)

Differential drive robot is controlled by linear and angular
velocity commands (i.e. actions a;) according to a specified
navigation policy 7(J;): m(J;) = a; = v;. At each time the
robot is awarded by R(J:,7(J:)). The form of the reward
function is as following:

—0.25, if dipin < 0

0.5 (dmm — dc), if 0 < dpin < dg;
R(Juat) = . 3)

1, if dg = 0;

0, otherwise.

Where d,,;, represents the smallest separation distance be-
tween the robot and people during the decision interval At,
and d. is the shortest comfortable distance that humans can
handle.

The optimal value of J; at time ¢ can be formulated as:

K
VE(I) = YA R(Jy, a)) “

i=0
where aj is selected according to a given optimal policy
7*(J¢), K is the total number of decision steps from the state
at time ¢ to the final state, At is the decision interval between
two actions a;, and v € [0,1] is a discount factor in which
the preferred speed vprey is introduced as a normalization
parameter.
Maximizing the cumulative reward yields the optimal policy,
which is as follows:

7" (J;) = argmax R(J¢, a:) + AL Vpres
a;EA

&)

/ P(Jirae | Je,a0) Vi (Jeyae)dd g ae
Jitrnat

with A is the action space P(J;ya¢ | J¢,a¢) is the transition
probability from J; to J;1A; when action a; is selected.
Given that pedestrian intentions are difficult to foresee and that
the length At is quite short, it is reasonable to suppose that
pedestrians walk at a constant speed within the time interval
[t,t + At]. As a result, we can predict the future states of
humans and approximate the next combined state using a
constant velocity model: J;1a; < propagate(J;, At, a;).

The computation of the optimal strategy defined in (5) is
simplified as follows:

™ (Jt) — arg max R(Jt, at) + ’}/At'vpref V* (Jt+At) (6)
a;EA

III. DEEP REINFORCEMENT LEARNING (DRL)

In Reinforcement Learning (RL), value functions V(J;) can
be evaluated in a variety of ways. One approach is to utilize
tables to record the values for each state J; or action-state pair
(J:, a;). However, this method, does not scale with the sizes of
state and action spaces. Another approach is to employ neural
networks to estimate value functions or, to generate an action
distribution given input states. Artificial neural networks can
be viewed as universal function approximators [30], which
means that they can represent arbitrarily complicated map-
pings between spaces if properly trained.

The trained deep neural network takes as inputs the state J,
and some features that could be collected from agents (e.g.
range measurements), and outputs the estimated value function
namely Value Network.

The training of the value network used in the SARL* algo-
rithm is summarized by the Algorithm 1.

Algorithm 1 Value Network Training
Initialize experience replay memory E with demonstrations;
Initialize the value network N with memory E;
Initialize the target value network N’ < N;
for episode = 1,..., M do
Initialize Jo randomly;
repeat
a; < EpsilonGreedyActionSelection();
value < R(Jt7 at) + ’YAt'UpTef.N/(Jt_i_At);
state <— Jt+At;
Enrich experience E < (state,value);
Optimize value network N with experience E;
t—t+ AL J: — Jiras
until J; = J.,q or timeout;
if episode | TargetUpdateInterval then
Update the target value network N’ < N;
end if
end for
return N;

IV. SARL* ALGORITHM

The difference between SARL and SARL* is that SARL*
introduces a dynamic goal resetting due to the SARL algo-
rithm’s training conditions [23], [29]. The DWA local planner
[11] is used in each At to reset a local goal which is considered
as a target goal for the SARL planner. The algorithm keeps
controlling the robot to move towards the local goal till it
reaches the global goal of the robot.

Furthermore, the learning of SARL algorithm does not con-
sider the static nor the quasi-static obstacles in the 2d envi-
ronment. Therefore, they introduced a procedure for checking
whether the best selected action aj according to the optimal



policy 7*(J;) will drive the robot to an obstacle or not. The
action will be aborted if it will drive the robot to an obstacle
and the robot will choose rotating in place in order to find
another valid optimal action.

=

Humans ——

Local goal

Global goal

Fig. 1. Illustrative view of the robot, humans, global and local paths in the
2d map environment. The optimal action is selected with respect to the red
points (local goals). Eventually, the robot will arrive at its final destination,
while avoiding humans navigating around based on the SARL policy.

Algorithm 2 SARL*
Initialize A;
Load the pre-trained value network N;
Build the 2D map;
Set global goal position g,
while d, > goal_tolerance do
Update J;
Global Plan < Dijkstra(pt, 810pa1, Map);
ocar < FindLocalGoal (ps, GlobaPlan, d);
a; < argmax, .o R(J;,a) + yAtUres N(Jiyar)s
with g Sglobals
A; = FindSafeActionSpace(pt, A, map)
end while
return N;

As it can be seen from the ROS RViz application depicted
on Fig. 1, humans are represented by the blue dots. The robot
is moving towards the red dots (local goals), so that it will
eventually reaches the global goal.

V. DESCRIPTION OF THE SIMULATION ENVIRONMENT

The mobile robot used for simulation is the Turtlebot2, as
illustrated in Fig. 2. It is a low-cost differential-drive mobile
robot built out of a Yujin Kobuki mobile platform plus sensors
and actuators such optical encoders and DC motors. It is
equipped with a Microsoft XBOX 360 Kinect along with a
Hokuyo lidar sensor.

The robot’s simulation ROS package integrates the Kobuki
platform with the lidar and Kinect ROS modules. Using
the ROS navigation stack, these modules enables simulation

and implementation of many mobile robotics tasks such as
perception, localization, mapping, navigation, and control.

Fig. 2. View of the Turtlebot2 Differential drive mobile robot used in
simulation including its basic components and sensors.

The Robot Operating System (ROS) melodic is installed

on an 8GB of RAM and i5 CPU PC running under Ubuntu
18.04 operational system along with Gazebo simulator, enables
the creation of a realistic human-robot coexisting environment.
The simulation environment depicted in Fig. 3 could be a good
testing place where there are humans navigating alongside the
robot. They move randomly in the environment and do not
follow a certain navigation policy.
Each human is tracked using the people ROS package [31].
The robot and the humans states S;, O} are used to update the
joint state J,. The SARL* algorithm is then started controlling
the robot to move towards its goal while avoiding humans and
obstacles.

Fig. 3. Top view of the human-robot simulation environment used to test the
SARL* navigation efficiency and robustness.

VI. NUMERICAL SIMULATION RESULTS

In order to test the efficiency of the SARL* algorithm,
we conducted the simulation in two steps. In the first one,
we give the robot a goal position in front of it, and near its



current position. In the next step, the goal position is placed
behind and a little bit far from the robot. Each of these two
scenarios is tested by running the algorithm 5 times and then
another 5 times while placing new static obstacles along each
trajectory in such a way that the robot will encounter them.
These obstacles are not present in the 2D occupancy grid map.
The time limit for the navigation is defined as ¢,,,,, = 200sec.
It is valuable to mention that the robustness of SARL* is also
considered, by controlling the simulated humans to randomaly
walk in different speeds rather than navigating according to the
same training conditions such as circle crossing or the Optimal
Reciprocal Collision Avoidance (ORCA) [13].

A. Scenario 1

In this scenario, the robot is located initially at py =
[0.0,0.0] and receives a goal position p, = [6.22,0.51]. The
SARL* policy will drive the robot from pg to pgy while avoid-
ing humans. Fig. 4 illustrates how SARL* is a good human-
aware navigation policy in terms of finding the solution, time
and path length. We also indicate on Fig. 4, the time required
for the robot to arrive at the goal position at each run.

The two curvatures generated by the SARL* policy are re-
sulting from the humans passing beside the robot, where it
successfully navigates through them. The same scenario is
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Fig. 4. Tllustration of the trajectories that the robot takes for each one of the
5 simulations. At the top right corner, the time in seconds taken by the robot
while navigating using the SARL* policy is indicated.

running with a static cylindrical obstacle placed along the
trajectory (i.e. along the global path). Fig. 5 Illustrates the
length of the trajectory taken by the SARL* policy to converge
towards the goal position and each curve is associated with the
time required to arrive at the final state.
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Fig. 5. Illustration of the trajectories taken by the robot to reach the goal
pose, for each one of the 5 executions. The time in seconds taken by the
robot obeying the SARL* policy is indicated. Where, the cylindrical obstacle
is placed at pops = [4.0,0.44].

B. Scenario 2

This scenario will be more challenging than the previous
one, due to the distance between the initial robot’s pose pg =
[0.0,0.0] and the target position p, = [—6.00,—8.92]. Like
in the first scenario, each curve is associated with the time
taken by the robot’s navigation. In this first part of the second
scenario the robot is placed at py and receives the target pose
pg. The SARL* algorithm will then drive the robot towards
Dg. Another challenging problem in this part is that the robot
will encounter an L-shaped obstacle as depicted in Fig. 6. The
results will be illustrated through Fig. 7. The figure describes
the trajectories taken by the robot to go from pg to py. In
addition to the time required for it, in each run.

L-Obstacle

Fig. 6. Illustration of the challenging L-shaped obstacle that could make the
robot get stuck.
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Fig. 7. Tlustration of the 2"¢ scenario trajectories taken by the robot for
each one of the 5 simulations. The travel time in seconds is indicated in the
top left corner.

It can be seen from Fig. 7 that the robot makes a lot of
detours inside the L-shaped wall. This is because the SARL*
navigation dynamic goal resetting mechanism is not taking
the occupancy map in account. Therefore, it will obviously
try to move toward the dynamic local goal even if it is
placed behind and obstacle. The second part of this scenario
is that a cylindrical obstacle and cubic obstacle are placed at
pls = [2.96,—6.11] and p?,, = [—4.12,—5.6] respectively.
The navigation policy will drive the robot like in the first part
of the scenario. However, it has to avoid the new obstacles.
Fig. 8 is an illustration of the trajectories and the their time
taken by the robot while following the SARL* navigation
policy.

The time required for the robot to reach its goal is highly
dependent on how many humans it encountered during its
travel. One can imagine a scenario where the robot avoids
a human by taking a right turn. Yet, if the robot is trying to
avoid a human to the right, the right side has to be clear (i.e.
it could get stuck). This explains the reason behind the high
variance in the travel time.

The robustness of SARL* is quite acceptable. Nevertheless,
in each one of the simulation scenarios when new obstacles
are added to the environment, the robot did collide with them
one or two times. This can bee deduced from the trajectories
overlapping obstacles in Fig. 5 and Fig. 8. However, obstacles
are not fixed and the robot could push them away from its
path and continue moving along its trajectory.

The approach proposed by Li et al. in [23] is only effective
when the goal location is unobstructed. It can be seen in Figs.
7 and 8, the detours made by the robot that are caused by
the L-shaped wall which is a common obstacle in all real life
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Fig. 8. Illustration of the trajectories that the robot takes for each of the 5
simulations. The time in seconds taken by the SARL* policy to successfully
arrive at the desired position is also indicated in the top right corner. The robot
pushed away the cubic obstacle, which can be seen where some trajectories
are drew on top of the obstacle.

human-robot coexisting indoor environments.

VII. CONCLUSIONS AND FUTURE WORK

We evaluated the effectiveness and robustness of SARL*
in dealing with real-life socially indoor scenarios. Following
a considerable amount of simulations, we found that SARL*
policy is an effective technique for socially acceptable nav-
igation in crowded environments. However, a 2D cost map
of the surroundings is indispensable. To effectively deploy a
socially attentive reinforcement learning-based human-aware
navigation in real-world applications, static, quasi-static and
dynamic obstacles must be integrated into the network training
approach. As a future work, we suggest that the reward
function design and the training environment must consider
both social and indoor environmental information, such as
walls and doors.
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