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Abstract
Explaining the outcome of programs has become one of the main concerns in AI research. In
constraint programming, a user may want the system to explain why a given variable assignment is
not feasible or how it came to the conclusion that the problem does not have any solution. One
solution to the latter is to return to the user a sequence of simple reasoning steps that lead to
inconsistency. Arc consistency is a well-known form of reasoning that can be understood by a
human. We consider explanations as sequences of propagation steps of a constraint on a variable
(i.e. the ubiquitous revise function in arc consistency algorithms) that lead to inconsistency. We
characterize, on binary CSPs, cases for which providing a shortest such explanation is easy: when
domains are Boolean or when variables have maximum degree two. However, these polynomial cases
are tight. Providing a shortest explanation is NP-hard if the maximum degree is three, even if the
number of variables is bounded, or if domain size is bounded by three. It remains NP-hard on trees,
despite the fact that arc consistency is a decision procedure on trees. Finally, the problem is not
FPT-approximable unless the Gap-ETH is false.
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1 Introduction

Constraint Programming (CP) is a technology that allows the user to solve combinatorial
problems formulated as constraint networks. A constraint network is characterized by a set
of variables taking values in a finite domain that are subject to constraints. Constraints
restrict the combinations of values that specified subsets of variables can take. One of the
advantages of using CP is that in general constraint networks represent the problem to
solve much more compactly than would an integer linear program or a SAT formula. CP
formulations are not only compact but also easy to understand for the user thanks to the
expressiveness of constraints that allow to remain close to the original problem. However,
nowadays, AI becomes even more demanding in terms of explainability. A user may want to
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not only understand the formulation of their problem as a constraint network but also to be
provided with explanations of why this assignment is the only solution, why that value is not
feasible, or why the problem does not have any solution.

An abductive explanation for a proposition is often defined as a prime implicant of
that proposition, i.e. an implicant that cannot be generalized further. For instance, an
explanation of a Machine Learning model’s prediction is often defined as a minimal subset
of features that entails that prediction [16, 10]. Similarly, a minimal unsatisfiable core
(irreducible unsatisfiable subset of constraints) can be seen as an abductive explanation for
unsatisfiability since it is a sufficient and minimal reason for unsatisfiability. At least one
term of an abductive explanation must be relaxed in order to change the outcome. This is
the viewpoint adopted in many existing approaches. For instance by providing explanations
in the form of minimal sets of choices of the user that lead to the given value removal (e.g.,
product configuration [1]), or explanations in the form of minimal sets of constraints that
lead to an inconsistency [11]. The purpose of such approaches is to help the user to repair
the inconsistency, not to let them understand why it is an inconsistency.

Intuitively, an explanation is more than a sufficient condition. In particular, if an
abductive explanation answers the “why” question, it does not answer the “how” question.
An intuitive definition of an explanation also covers the demonstration of how the considered
cause has that consequence. For instance, when solving a logic puzzle, we may want to
let the user understand why the zebra is necessarily in the middle house, not by providing
a set of constraints of the problem that rule out all other positions for the zebra, but by
displaying a sequence of simple reasoning steps that lead to that conclusion. This notion
of demonstrative explanation can be related to proof systems and to the notion of formal
proof. A formal proof better explains unsatisfiability by making every step explicit down to
axiomatic definitions. For instance, a refutation proof log using the reverse unit propagation
(RUP) system [8, 9] allows one to formally verify the unsatisfiability of a formula, provided
that one can “trust” the application of the unit propagation rule, i.e. trust that a given
formula that is refutable via unit propagation is indeed unsatisfiable. This is valid in the
context of formal proof verification where each unit propagation refutation can be checked
efficiently. However, this may produce very long proofs in which each step might be too
complex for an explanation to a non-expert.

We would therefore want to produce demonstrative explanations, allowing a trustworthy
verification, however with minimal requirements on the recipient of the explanation. This is
of course impossible in general. In [17, 2], the choice was made to provide explanations in
the form of sequences of inferences performed by constraint propagation. We consider an
even simpler, and also incomplete, proof system: Arc Consistency. Arc consistency has often
been considered as a sufficiently strong inference technique on applications where the human
is in the loop (configuration [12], logic puzzles [17]).

Our goal is to analyze the complexity of providing the shortest possible explanation of arc
inconsistency of a problem. For simplicity of presentation, we restrict ourselves to normalized
networks of binary constraints. We show that when variables have degree two or domains
are Boolean, finding a shortest explanation of arc inconsistency is polynomial. However, the
problem is NP-hard in general and the two polynomial cases above are tight. Finding a
shortest explanation of arc inconsistency is NP-hard as soon as variables have degree three,
even if the number of variables is bounded (even though the problem is obviously polynomial
to solve). It is also NP-hard if domain size is bounded by three. Perhaps more surprisingly,
it remains NP-hard on trees, where arc consistency is known to be a decision procedure.
We also show that there is little hope that we can efficiently find short (if not shortest)
explanations: the problem is not FPT-approximable unless the Gap-ETH is false.
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2 Background and Definitions

The constraint satisfaction problem (CSP) involves finding solutions to a constraint network.
A constraint network (or CSP instance) is defined as a set of n variables X = X1, . . . , Xn,
a set of domains D = {D(X1), . . . , D(Xn)}, where D(Xi) is the finite set of values that Xi

can take, and a set C of constraints. A binary constraint c(Xi, Xj) is a binary relation that
specifies which combinations of values (tuples) the variables (Xi, Xj) are allowed to take. A
CSP is binary when all the constraints are binary. A binary CSP is said to be normalized if
there is at most one constraint per pair of variables. A degree-2 CSP does not contain any
variable involved in more than two constraints. Arc consistency (AC ) is the basic form of
inference reasoning on constraint networks. A tuple τ of values on (Xi, Xj) is called a support
on constraint c(Xi, Xj) for a value v ∈ D(Xi) (and τ [Xj ] its support in D(Xj)) if and only
if τ [Xi] = v, τ [Xj ] ∈ D(Xj) and τ ∈ c(Xi, Xj). A value v in D(Xi) is arc consistent if and
only if v has a support on every constraint involving Xi. A network is arc consistent if all
values in all domains are arc consistent. The operation revise(Xi, c(Xi, Xj)), often denoted
by Xi

c← Xj in the following, removes from D(Xi) all values that do not have any support
on c(Xi, Xj). If enforcing arc consistency on a network (that is, applying revise() operations
until a fix point is reached) leads to a domain wipe out (i.e. an empty domain), we say that
the network is arc inconsistent.

▶ Definition 1 (Arc Inconsistency Explanation). An arc inconsistency explanation for a CSP
instance is a sequence of revise() operations such that one of the domains is wiped out by
the execution of the sequence of revise() operations.

▶ Definition 2 (Shortest Arc Inconsistency Explanation). The shortest arc inconsistency
explanation problem consists in finding an arc inconsistency explanation of minimum length.

▶ Example 3 (Explaining the Zebra puzzle). The Zebra puzzle, which may (or may not) be
due to Lewis Carroll, has a well known CSP model whereby, for each of the 5 house colors,
nationalities, beverages, cigarette brands, and pets, we have a variable whose value is the
number of the corresponding house (e.g., XZebra stands for the house where the Zebra lives).
The constraints are statements such as The Englishman lives in the red house or The Old
Gold smoker owns snails. Moreover, each house has a unique colour, its owner has a unique
nationality, drinks a unique beverage, smokes a unique brand, and has a unique pet.

Applying arc consistency on this CSP detects that “the Kools smoker does not live
in the 2nd house”. A demonstrative explanation would be: The Norwegian lives in the
first house. Since the Norwegian lives next to the blue house, then the 2nd house is blue.
Since the 2nd house has a single color, then it is not yellow. Since Kools are smoked in the
yellow house, then the Kools smoker does not live in the 2nd house.

Each step corresponds to the arc consistency revision of some domain knowledge (in bold)
with respect to a constraint (in italic), that is, it corresponds in our framework to the following
sequence of revise() operations: ⟨XBlue ← XNorwegian, XYellow

̸=← XBlue, XKools
=← XYellow⟩.

3 Complexity of Explaining Arc Inconsistency: Structure

We show that if all variables are involved in no more than two constraints, finding shortest
arc inconsistency explanations is polynomial. We then show that this class is tight. As soon
as we allow a variable to be in the scope of three constraints, the problem becomes NP-hard,
even if the CSP has no more than four variables. Perhaps even more surprising, the problem
is NP-hard on CSPs structured as trees, despite arc consistency being a decision procedure
on trees.

CP 2022
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3.1 Tractability on degree-2 CSPs
▶ Theorem 4. Shortest Arc Inconsistency Explanation is solvable in time polynomial
in the number of variables and values when restricted to binary normalized networks with
maximum degree two.

Proof. A constraint network of maximum degree two is composed of unconnected cycles
and paths. A shortest arc inconsistency explanation clearly always concerns only one of the
connected components of the network. An exhaustive search over all connected components
only increases complexity by at most a linear factor. Since, furthermore a path can be viewed
as a degenerate cycle (a cycle in which one constraint disallows no tuples), it follows that we
only need consider the case of a single cycle.

Without loss of generality, we suppose that the cycle is X1, . . . , Xn, with constraints
c(Xi, Xi+1), where here and in the rest of the proof addition within subscripts is understood to
be modulo n, so that for example Xn+1 actually refers to X1. We say that revise() operations
are clockwise (resp. anticlockwise) if they are of the form Xi+1 ← Xi (resp. Xi ← Xi+1). We
say that a pair of revise() operations R1, R2 commute if the two sequences R1R2 and R2R1
produce the same result. It is easy to verify that the only revise() operations that may not
commute are those in which the destination variable of one is the source variable of the other.
Furthermore, revise() operations in opposite directions (clockwise and anticlockwise) always
commute, even Xi ← Xi+1 and Xi+1 ← Xi. Thus the only pairs of revise() operations that
do not commute are of the form {Xi ← Xi+1, Xi+1 ← Xi+2}. What’s more, if we have the
operations Xi ← Xi+1, Xi+1 ← Xi+2 in this order, then the set of value-eliminations cannot
decrease if we inverse the order of these two operations.

In a shortest arc inconsistency explanation E, a revise() operation must be useful: it must
eliminate a domain value whose elimination is essential for a subsequent revise() operation
or for the final domain wipe-out. In the former case, the operation Xi ← Xi+1 must be
followed later in the sequence by Xi−1 ← Xi. Let S be the sequence of revise() operations
in E between the operation Xi ← Xi+1 and the next subsequent occurrence of Xi−1 ← Xi.
By the above discussion on commutativity, we can shift the operation Xi ← Xi+1 just after
S without decreasing the set of value-eliminations since S does not contain Xi−1 ← Xi. In
this way, we can group together all the anticlockwise revise() operations to form a sequence
of anticlockwise operations on consecutive edges in the cycle. The same argument holds
for clockwise operations which can be grouped together to form a sequence of clockwise
operations on consecutive edges in the cycle.

An obvious observation is that a shortest arc inconsistency explanation is necessarily of
length bounded by nd, where d is the maximum domain size, since at least one elimination
must occur at each operation. Moreover, there are up to n possible starting points for the
sequence of clockwise (resp. anticlockwise) operations. Hence a shortest explanation can be
found in polynomial time, by exhaustive search over the starting points and lengths of the
clockwise/anticlockwise sequences. ◀

3.2 Intractability on CSPs with four variables
The result in Theorem 4 is tight. We show that as soon as we allow variables to have degree 3,
finding a shortest explanation becomes NP-hard. This is true even if the number of variables
is bounded by four. (Observe that all binary normalized CSPs on three variables have degree
at most 2.) We use a reduction from Clique, which is NP-complete [13], to prove hardness.
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▶ Definition 5 (Clique).
Input: An undirected graph G = (V, E) and an integer k

Question: Is there S ⊆ V such that |S| ≤ k and for all i ̸= j ∈ S, {i, j} ∈ E?

It is noticeable that CSPs with a bounded number of variables have a constant number
of possible revise() operations available at each step –only 12 in the case of four variables.
This is not sufficient to make the problem of finding a shortest explanation easy.

▶ Theorem 6. Shortest Arc Inconsistency Explanation is NP-hard, even on binary
normalized networks with four variables.

▶ Lemma 7. Deciding whether there exists an arc inconsistency explanation of length smaller
than or equal to k is NP-complete, even on binary normalized networks with four variables.

Proof. Membership. Given a sequence of revise() operations, we decide whether this sequence
is an arc inconsistency explanation by executing each revise() in the order of the sequence
and checking whether one of the domains is empty after these executions. As constraints
have bounded arity, executing a revise() operation is polynomial, so the whole process is
polynomial.

Completeness. We reduce the Clique problem to the problem of deciding whether there is
an arc inconsistency explanation of length at most 3n + 3 for a CSP instance. Let G = (V, E)
be a graph with set of vertices V = {1, . . . , n}.

We construct the CSP instance PG with four variables X = {X1, X2, X3, X4}, all with
domain {(p, i) : p ∈ 0..n + 1, i ∈ 1..n} ∪ {st : t ∈ 1..k + 1}.

We build the set of constraints

C = {c1(X1, X2), c2(X1, X3), c3(X2, X3), X1 = X4, X2 = X4, X3 = X4}

with:

c1(X1, X2) = {((p− 1, i), (p, i)) : p ∈ [0, n + 1],∀i ̸= p ∈ [1, n]}
∪ {((p− 2, i), (p, i)) : p ∈ [0, n + 1],∀i ∈ [1, n]}
∪ {(st, st) : t ∈ [1, k + 1]}

c2(X1, X3) = {(p− 1, i), (p, i)) : p ∈ [0, n + 1],∀i ∈ [1, n]} ∪ {(st−1, st) : t ∈ [1, k + 1]}
c3(X2, X3) = ({{(p, i) : p ∈ [0, n + 1], i ∈ [1, n]}2}\

{((n + 1, i), (n + 1, j)) : i = j ∨ {i, j} ∈ E})
∪ {{st : t ∈ [1, k + 1]}2}

The constraint network for a graph with 3 vertices and the edges {1, 2} and {2, 3} is shown
in Figure 1.

We first show that if G contains a k-clique, then, there exists an arc inconsistency
explanation of length 3n + 3 for PG.

Assume that the set of vertices S is a k-clique. We build the sequence R(S) of revise()
operations in the following way, and we will say that R(S) encodes the set S, since there is a
one-to-one mapping between subsets S ⊆ V and this type of explanation:

If p /∈ S, the (3p− 2)th element in the sequence R(S) is X2
c1← X1, the (3p− 1)th element

is X4
=← X2, and the (3p)th element is X1

=← X4.
If p ∈ S, the (3p− 2)th element in the sequence R(S) is X3

c2← X1, the (3p− 1)th element
is X4

=← X3, and the (3p)th element is X1
=← X4.

CP 2022
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Figure 1 The CSP PG, reduction of the graph G = ({1, 2, 3}, {(1, 2), (2, 3)}). Solid edges represent
allowed tuples for c1 and c2, while dashed edges stand for forbidden tuples of c3. The equality
constraints are not represented. There are two explanations of Arc-Inconsistency of length 12.
The first encodes the clique {2, 3} with the revise() operations X2

c1← X1, X3
c2← X1, X3

c2← X1

at positions 1, 4, and 7 in the sequence. The second encodes the clique {1, 2} with the revision
operations X3

c2← X1, X3
c2← X1, X2

c1← X1 at positions 1, 4, and 7.

Then the last three elements in the sequence R(S) are X2
c1← X1, X3

c2← X1, and X2
c3← X3.

In the following, the subsequence composed of the (3p− 2)th, the (3p− 1)th, and the (3p)th
operations (that is, ⟨X2

c1← X1, X4
=← X2, X1

=← X4⟩ or ⟨X3
c2← X1, X4

=← X3, X1
=← X4⟩), is

called the pth iteration.

Before each iteration p ∈ {1, . . . , n} of three domain revisions, the invariants are:

(q, i) ̸∈ D(X1) ∀q < p− 1,∀i ∈ [1, n] (1)
sj ∈ D(X1) ⇐⇒ k + 1 ≥ j > |S ∩ {0, . . . , p− 1}| (2)

(p− 1, i) ∈ D(X1) ⇐⇒ i ∈ S ∪ {p, . . . , n} (3)

All invariants are verified before entering iteration p = 1. For each one, we show that if it
is true before entering iteration p ≥ 1 then it remains true before entering iteration p + 1.

Invariant 1: Notice that a value (q, i) ∈ D(X2) (resp. D(X3)) is only supported by values
(q′, i) ∈ D(X1) such that q′ < q. If Invariant 1 is true before iteration p, then when revising
the domain of either X2 or X3, D(X1) contains no value (q, i) with q < p− 1 and therefore
all values (p− 1, i) are removed from D(X2) (resp. D(X3)). The revisions w.r.t. equality
constraints make sure that this is propagated back to D(X1).

Invariant 2. Notice that a value st ∈ D(X3) is only supported by value st−1 ∈ D(X1),
whereas the tuple (st, st) is a support in all other constraints. If Invariant 2 is true before
iteration p, then either p ∈ S in wich case the operation X3

c2← X1 removes the value sj (with
j = |S ∩ {0, . . . , p− 1}|+ 1) from D(X3) since the value sj−1 was its only support and is not
in D(X1); or X2

c1← X1 removes no s value and |S ∩ {0, . . . , p− 1}| does not change.
Invariant 3. For any i ∈ [1, n]:
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If i > p, then we have (p − 1, i) ∈ D(X1) which is a support for (p, i) w.r.t. c1 and c2
hence (p, i) is not removed and the invariant holds because i ∈ {p + 1, . . . , n}.

If i < p, notice that by Invariant 1, the tuple ((p − 2, i), (p, i)) cannot be a support
for (p, i) ∈ D(X2). Therefore, both constraints c1 and c2 have the same unique potential
support for the value (p, i) (in D(X2) and D(X3) respectively): ((p− 1, i), (p, i)). So we have:
“(p− 1, i) ∈ D(X1) before iteration p” iff “(p, i) ∈ D(X1) before iteration p + 1”. In addition,
i ∈ S ∪ {p, . . . , n} ⇐⇒ i ∈ S ∪ {p + 1, . . . , n} because i < p. Finally, by the induction
hypothesis we have “(p− 1, i) ∈ D(X1) before iteration p” iff i ∈ S ∪ {p, . . . , n}, and hence
by transitivity: “(p, i) ∈ D(X1) before iteration p + 1” iff i ∈ S ∪ {p + 1, . . . , n}.

If i = p, there are two cases: If p ∈ S, then the first operation at iteration p is X3
c2← X1,

(p, i) is not removed since it is supported by (p− 1, i), and the invariant is true at iteration
p + 1 since i ∈ S. If p ̸∈ S, then the first operation at iteration p is X2

c1← X1, (p, i) is
removed, and the invariant is true at iteration p + 1 since i ̸∈ S ∪ {p + 1, . . . , n}.

After n iterations, the invariants hold for p = n + 1 (i.e. after the 3n-th operation) and
hence D(X1) is {(n, i)∀i ∈ S} ∪ {(n + 1, i)∀i} ∪ {sk+1}}. The call to X2

c1← X1 then yields
D(X2) = {(n + 1, i)∀i ∈ S}∪{sk+1} and the call to X3

c2← X1 yields D(X3) = {(n + 1, i)∀i ∈
S}. Therefore, the last call to X2

c3← X3 produces a wipe-out, since on layer n + 1, the
remaining vertices stand for a clique of G and the allowed tuples are non-edges of G.

We then prove that if G does not contain any k-clique, then the shortest arc inconsistency
explanation for PG is of length strictly greater than 3n + 3. We first show that the shortest
explanation must use constraint c3, then we show that only explanations that encode a set
S ⊆ V (as defined above) such that S is a clique of size k of G can be the shortest.

Suppose first that the constraint c3 does not appear in any revise() of the explanation.
By construction, the values (p, i) are organized in layers, where a layer q is the set of
values (q, i),∀i. Wiping out the domain of a variable requires removing the n + 2 layers
0 to n + 1 from its domain. Moreover, removing a layer q from X1 (resp. X2 or X3)
requires having already removed layer q + 1 (resp. q − 1) from X2 or X3 (resp. X1).
Removing a layer q from X4 requires having already removed layer q from X1, X2, or
X3. Hence, removing a layer q from a variable requires iteratively removing layers 0
to q − 1 or n + 1 down to q + 1 from other variables. The only way to do that is to
execute a sequence of revise() operations looping on a cycle of variables {X1, X2, X4},
or on {X1, X3, X4}, or both. Looping in the order ⟨X1

c1← X2, X4
=← X1, X2

=← X4⟩ or
⟨X1

c2← X3, X4
=← X1, X3

=← X4⟩ removes layers from n + 1 down to q, whereas looping in the
order ⟨X2

c1← X1, X4
=← X2, X1

=← X4⟩ or ⟨X3
c2← X1, X4

=← X3, X1
=← X4⟩ removes layers

from 0 up to q. We can then compute the number of revise() operations necessary to remove
a layer q from a variable given the order in which we loop. If we execute revise() operations
in the orders ⟨X1

c1← X2, X4
=← X1, X2

=← X4⟩ or ⟨X1
c2← X3, X4

=← X1, X3
=← X4⟩, layer q

is removed from the domain of X1 (resp. X2/X3, or X4) in 3(n + 1 − q) + 1 operations
(resp. 3(n + 1− q) + 3, or 3(n + 1− q) + 2 operations). If we execute revise() operations
in the orders ⟨X2

c1← X1, X4
=← X2, X1

=← X4⟩ or ⟨X3
c2← X1, X4

=← X3, X1
=← X4⟩, layer q is

removed from the domain of X1 (resp. X2/X3, or X4) in 3q + 3 operations (resp. 3q + 1, or
3q + 2 operations). As wiping out a domain requires, given a value q, removing layers 0 to q

from below and layers n + 1 down to q + 1 from above, we conclude that a domain wipe out,
on either X1, X2, X3, or X4, requires at least 3n + 4 revise() operations. This means that
there does not exist any arc inconsistency explanation for PG of length smaller than or equal
to 3n + 3 if we do not use c3 in the explanation.
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Hence, we must use c3. However, by construction of c3, every value in D(X2) (resp.
D(X3)) is supported as long as at least one value (p, i) with p ∈ [0, n], and any value st is
in the domain of D(X3) (resp. D(X2)). In other words, to remove a layer with a revise
on c3, the domains of X2 and X3 must only contain (p, i) values from layer n + 1. This
requires us to remove all layers from 0 to n−1 from X1 by executing n loops by a sequence of
revise() operations ⟨X2/X3 ← X1, X4 ← X2/X3, X1 ← X4⟩ for a cost of 3n operations, plus
a X2

c1← X1 and a X3
c2← X1 to remove layer n from X2 and X3. In other words, it must be

a sequence of revise() operations that encodes a set, i.e., R(S) for some set S ⊆ {1, . . . , n}.
Now, suppose that S is not a clique and let i1 and i2 be two non-adjacent vertices in S. By
Invariant 3, at iteration n + 1, we have (n, i1) ∈ D(X1) and (n, i2) ∈ D(X1) and hence after
operations X2

c1← X1 and X3
c2← X1, we have (n + 1, i1) ∈ D(X2) and (n + 1, i2) ∈ D(X3).

Therefore, neither X2
c3← X3 nor X3

c3← X2 would fail, and at least one more operation is
necessary. Finally, suppose that |S| < k. Then by Invariant 2, at iteration n + 1, we have
sk ∈ D(X1) and hence after operations X2

c1← X1 and X3
c2← X1, we have sk+1 ∈ D(X2)

and sk+1 ∈ D(X3). Therefore, at least one more operation is necessary. Consequently, the
number of operations can be equal to 3n + 3 only if S is a clique of size k of G. ◀

3.3 Intractability and inapproximability on trees
We have seen in Section 3.2 that Shortest Arc-Inconsistency Explanation is already
NP-hard on networks with four variables. This result does not completely settle the intract-
ability of the problem. For example, it is still possible that a polynomial-time algorithm
exists for some broad generalization of degree-2 networks that does not contain 4-cliques (for
instance, networks of treewidth 2). We show that it is not the case. We use a simple reduction
from Dominating Set, which is NP-complete [7], to derive NP-hardness of Shortest
Arc-Inconsistency Explanation, even on trees.

▶ Definition 8 (Dominating Set).
Input: An undirected graph G = (V, E) and an integer k

Question: Is there S ⊆ V such that |S| ≤ k and for all i ∈ V , there is j ∈ S with {i, j} ∈ E?

The NP-hardness of Shortest Arc-Inconsistency Explanation on trees circum-
scribes even more tightly the degree-2 tractability island of Section 3.1. However, these
NP-hardness results do not rule out efficient approximation algorithms nor fixed-parameter
tractable algorithms, which could be satisfactory for applications where only short explan-
ations are worth computing and optimality is not strictly necessary. We again show that
such desirable scenarios are not possible. We show that our reduction from Dominating
Set can be used to derive (conditional) fixed-parameter inapproximability of Shortest
Arc-Inconsistency Explanation.

We must briefly introduce some terminology before we can formally present the result.
A minimization problem P is fpt-approximable [4] if there exist computable functions f, ρ :
N → R≥1 such that n · ρ(n) is nondecreasing and an algorithm A that, given as input a
non-negative integer k and an instance I of P that has a solution of cost at most k, computes
a solution to I of cost at most k · ρ(k) in time f(k) · |I|O(1). Here, ρ is the approximation
ratio and f is possibly exponential. Note that if a problem is not FPT-approximable, then no
such algorithm A exists for any computable functions f and ρ; such problems are sometimes
called completely inapproximable [15].

Our FPT-inapproximability result is conditional on a complexity hypothesis known as the
Gap-ETH [6, 14], which states that there exists a constant ϵ > 0 such that no algorithm with
runtime 2o(n) can distinguish satisfiable 3-SAT instances from those in which no assignment



C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard 9:9

satisfies a (1− ϵ) fraction of the clauses. It has been shown recently [3] that the Minimum
Dominating Set problem (which consists in finding the smallest dominating set in a graph)
is not FPT-approximable unless the Gap-ETH is false.

▶ Lemma 9. Deciding whether there exists an arc inconsistency explanation of length smaller
than or equal to k is NP-complete, even on binary tree-structured normalized constraint
networks.

Proof. Membership. As in Lemma 7.

Completeness. We reduce the Dominating Set problem to the problem of deciding
whether there is an arc inconsistency explanation of length at most k for a CSP instance.

Let G = (V, E) be a graph, V = {v1, . . . , vn}. We construct a constraint network PG as
follows: the set of variables is {Y, X1, . . . , Xn}, where the domain of Y is {v1, . . . , vn} and
the domain of each Xi is {vi}, and PG contains a constraint c(Y, Xi) = {(vj , vi) : {vi, vj} /∈
E and vi ̸= vj} for all i ≥ 1. An example of this reduction is shown in Figure 2. We claim
that G has a dominating set of size k if and only if PG has an arc-inconsistency explanation
of length k.

If G has a dominating set S of size k, then let R be a sequence containing every operation
Y ← Xi such that vi belongs to S. Since every vj ∈ V is dominated by some vk ∈ S (which
is either vj itself or one of its neighbours), by construction vj is removed from D(Y ) by
Y ← Xk. Therefore D(Y ) is empty at the end of the sequence and R is an arc-inconsistency
explanation of length k.

Conversely, if R is a minimal arc-inconsistency explanation of PG of length k then we can
assume that it is a sequence of operations of the form Y ← Xi. (Since each D(Xi) contains
a single value, only the last operation could be Xi ← Y for some i, and in that case it can be
replaced with Y ← Xi.) Then, the set S = {vi : Y ← Xi occurs in R} must be a dominating
set of size k: at the end of R every vj ∈ D(Y ) has been pruned by some operation Y ← Xk,
and every value removed at this step is by construction dominated by vk in G.

PG is a tree-structured constraint network and can be constructed in polynomial time
from G. Therefore, Shortest Arc-Inconsistency Explanation is NP-hard on such
networks. ◀

▶ Theorem 10. Shortest Arc Inconsistency Explanation is NP-hard and not FPT-
approximable unless the Gap-ETH is false, even on binary tree-structured normalized con-
straint networks.

Proof. In the reduction of the proof of Lemma 9, the size-k dominating sets of G are in one-
to-one correspondence with arc-inconsistency explanations of PG of length k. Furthermore,
the dominating set corresponding to an explanation can be computed in polynomial time,
so any FPT-approximation algorithm for Shortest Arc-Inconsistency Explanation
translates into one for Minimum Dominating Set. By the results of [3], this would imply
that the Gap-ETH is false. ◀

As a final remark, we note that the same inapproximability result can be established
under the weaker (and more conventional) complexity hypothesis FPT ̸= W[2]. However,
the proof is significantly more involved and has been left out for the sake of brevity.

4 Complexity of Explaining Arc Inconsistency: Domain Size

We show that finding shortest arc inconsistency explanations is polynomial on binary
normalized CSPs with Boolean domains. Again, this class is tight: As soon as we allow three
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X3 : v3

Figure 2 Left: a graph G. Right: the constraint network PG in the proof of Lemma 9.

values per domain, the problem becomes NP-hard.

4.1 Tractability on Boolean domains
▶ Theorem 11. Shortest Arc Inconsistency Explanation is solvable in polynomial
time when restricted to binary normalized networks with all domains of size at most two.

Proof. Let P = (X, D, C) be a binary CSP with domain size at most two. We assume,
without loss of generality, that all domains D(Xi) are non-empty subsets of {0, 1} and
that no constraint relation is empty. Let Xr be the variable at which a domain wipe-out
occurs in a shortest arc inconsistency explanation. Complexity is only multiplied by n

if we perform an exhaustive search over all possible variables Xr, so in the following we
consider Xr to be fixed. We construct a directed causal graph GP in which shortest arc
inconsistency explanations correspond to particularly simple subgraphs. In GP there are
two types of vertices: source-variable vertices Xs

i (i = 1, . . . , n), and variable-value vertices
⟨Xi, a⟩ (i = 1, . . . , n, a ∈ {0, 1}). GP has the following directed edges: (Xs

i , ⟨Xj , b⟩) (for all
i, j, b such that b ∈ D(Xj) has no support in D(Xi)), and (⟨Xi, a⟩, ⟨Xj , b⟩) (for all i, j, a, b

such that a ∈ D(Xi) is the only support of b ∈ D(Xj)). Each arc corresponds to a possible
revise operation: (Xs

i , ⟨Xj , b⟩) corresponds to the elimination of b from D(Xj) since it has
no support in D(Xi), and (⟨Xi, a⟩, ⟨Xj , b⟩) corresponds to the elimination of b from D(Xj)
when its unique support a ∈ D(Xi) has been eliminated. An example of the causal graph for
a simple CSP is shown in Figure 3.

Let R be a shortest arc inconsistency explanation, and let Xr be the variable at which
a wipe-out occurs. By minimality of R, each revise operation in R eliminates a value from
a domain. Indeed, each operation, except possibly the last, eliminates exactly one value
otherwise there would be a domain wipe-out before the end of R. Furthermore, the only way
that the final revise operation Xr ← Xi of R can cause the simultaneous elimination of both
0 and 1 from D(Xr) (without there already being a wipe-out at D(Xi)) is that (1) some
value b ∈ D(Xr) never had any support at Xi and (2) the other value 1−b lost its unique
support a at Xi by a previous operation in R. We can deduce from (1) and (2) that just
before the execution of Xr ← Xi, the value 1−a in D(Xi) has no support at Xr. This implies
that we can replace the last operation Xr ← Xi of R by its inverse operation Xi ← Xr to
produce an arc inconsistency explanation of the same length as R but in which the final
operation eliminates a single value (namely 1−a from D(Xi) leading to a wipe-out at Xi).

For any revise operation in R, eliminating b from D(Xj), there is a corresponding arc
(u, v) in GP where v is the vertex ⟨Xj , b⟩ and u is the cause of the elimination of b from
D(Xj). By the above argument, we can assume that each revise operation in R corresponds
to a single elimination and hence a single arc in GP . Let GR be the subgraph of GP consisting
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X1 < X2

X2 ≤ X3

X3 ≤ X4

X4 ≤ X5

X5 ≤ X6

X6 ≤ X1

X2 ̸= X4

Xs
1

Xs
2

⟨X2, 0⟩ ⟨X3, 0⟩ ⟨X4, 0⟩ ⟨X5, 0⟩ ⟨X6, 0⟩ ⟨X1, 0⟩

⟨X1, 1⟩ ⟨X6, 1⟩ ⟨X5, 1⟩ ⟨X4, 1⟩ ⟨X3, 1⟩ ⟨X2, 1⟩

Figure 3 Left: a Boolean binary CSP P (the domain of every variable is {0, 1}). Right: the
causal graph GP of the proof of Theorem 11. The shortest explanation involves the two paths in red
originating from Xs

1 and corresponds to the sequence ⟨X2 ← X1, X3 ← X2, X4 ← X3, X4 ← X2⟩.

of the arcs corresponding to the operations of R. Let Xr be again the variable at which a
wipe-out occurs at the end of R. For each a ∈ D(Xr), in GR there must be a directed path
Pa from a source-variable vertex to ⟨Xr, a⟩. By minimality, the set of arcs of GR is the union
of the set of arcs of Pa (a ∈ D(Xr)). Since each elimination has a unique cause (given by
the arc corresponding to the revise operation in R producing the elimination), the in-degree
of each vertex in GR is at most one. Furthermore, source-variable vertices have in-degree 0.
It follows that P0 and P1 can only possibly share arcs along an initial common subpath.

If D(Xr) is a singleton {a}, then GR must be a shortest path in GP from a source-variable
vertex to ⟨Xr, a⟩ and hence can be found in polynomial time by a standard shortest-path
algorithm. So now suppose that D(Xr) = {0, 1}. If the set of edges of P0 and P1 are disjoint
then P0 and P1 must both be shortest paths in GP from source-variable vertices to ⟨Xr, 0⟩
and ⟨Xr, 1⟩, respectively. If P0 and P1 have an initial common subpath, then they must
diverge at some vertex v of GP , the common initial subpath is a shortest path in GP from a
source-variable vertex to v and the remaining divergent paths P ′

0 and P ′
1 are shortest paths

from v to ⟨Xr, 0⟩ and ⟨Xr, 1⟩, respectively. By an exhaustive search over the O(n) vertices v

of GP , we can determine the paths P0 and P1 in polynomial time. ◀

It is interesting to note that in the proof of Theorem 11, one of the paths P ′
0, P ′

1 may
actually be empty. In this case, GR is a path (either P0 or P1). This occurs if the elimination
of a from D(Xr) triggers a sequence of revise operations that leads to the elimination of 1−a

from D(Xr). Another interesting point is that if P ′
0, P ′

1 are both non-empty, then the revise
operations corresponding to P ′

1 can all be inversed (i.e. each Xi ← Xj becomes Xj ← Xi)
and their order reversed in R to produce an alternative shortest arc inconsistency proof R̃

which ends in a wipe-out at the variable Xk at which P ′
0 and P ′

1 diverged. For instance,
the sequence ⟨X2 ← X1, X3 ← X2, X4 ← X3, X2 ← X4⟩ is also a shortest explanation in
the example of Figure 3. In this case, GR̃ is a path (obtained in the example by using the
edge in blue (⟨X4, 0⟩, ⟨X2, 1⟩) instead of (⟨X2, 0⟩, ⟨X4, 1⟩)). Hence, we can optimise since the
exhaustive search over vertices v is unnecessary.

4.2 Intractability on domains with three values
▶ Theorem 12. Shortest Arc Inconsistency Explanation is NP-hard, even on binary
normalized networks with all domains of size at most three.
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Figure 4 The constraint network PG in the proof of Lemma 13 when looking for a dominating
set in the graph G = ({1, 2, 3, 4}, {(1, 2), (2, 4), (2, 3), (3, 4)}).

▶ Lemma 13. Deciding whether there exists an arc inconsistency explanation of length
smaller than or equal to k is NP-complete, even on binary normalized networks with all
domains of size at most three.

Proof. Membership. As in Lemma 7.

Completeness. We reduce the Dominating Set problem (whether a graph G has
a dominating set of size at most k) to the problem of deciding whether there is an arc
inconsistency explanation of length at most 4n + k + 1 for a CSP instance. Let G = (V, E)
be a graph with V = {1, . . . , n}.

We construct the CSP instance PG with 5n + 2 variables

X = {X1, . . . , Xn, X ′
1, . . . , X ′

n, X
′′

1 , . . . , X
′′

n , H1, . . . , Hn, B0, . . . , Bn, Y }

all with domain {0, 1, 2} except B0 whose domain is {0} and Y whose domain is {2}.
We build the set of constraints

C = {c1(X
′′

i , X ′
i) : i ∈ [1, n]} ∪ {c2(X ′

i, Xi) : i ∈ [1, n]}
∪ {c3(Xi, Xj) : {i, j} ∈ E} ∪ {c4(Xi, Hi) : i ∈ [1, n]}
∪ {c5(Bi−1, Hi) : i ∈ [1, n]} ∪ {c6(Hi, Bi) : i ∈ [1, n]} ∪ {Bn = Y }}

where

c1(X
′′

i , X ′
i) = {(0, 0)}

c2(X ′
i, Xi) = {(0, 0), (1, 1), (2, 2)}

c3(Xi, Xj) = {0, 1, 2} × {0, 1, 2} \ {(0, 2), (2, 0)}

c4(Xi, Hi) = {0, 1, 2} × {0, 1, 2} \ {(0, 1), (1, 1)}

c5(Bi−1, Hi) = {0, 1, 2} × {0, 1, 2} \ {(0, 2), (1, 2)}

c6(Hi, Bi) = {0, 1, 2} × {0, 1, 2} \ {(0, 2)}

The constraint network is shown in Figure 4 for a graph with n = 4 vertices and 4 edges.
We first prove that if G contains a k-dominating set, then there exists an arc inconsistency

explanation of length 4n + k + 1 for PG. Assume that the set of vertices S is a k-dominating
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set. We build the sequence R of revise() operations in the following way. The first k elements
in R are X ′

i
c1← X

′′

i for each vertex i in S. The k next elements in R are Xi
c2← X ′

i, again
for vertices i in S. After those 2k revise() operations, for all i in S, D(Xi) = {0}. Then,
for each vertex j in V \ S, R contains Xj

c3← Xi, where i ∈ S and {i, j} ∈ E. We know
such a vertex i exists for each j because S is a dominating set. After those additional
n− k revise() operations, for all i not in S, D(Xi) = {0, 1}. The n next elements in R are
Hi

c4← Xi, removing value 1 from D(Hi) because 2 /∈ D(Xi). The 2n next elements in R are
⟨Hi

c5← Bi−1, Bi
c6← Hi⟩ in increasing order of i from 1 to n. Each Hi

c5← Bi−1 removes value
2 from D(Hi) if 2 /∈ D(Bi−1) and Bi

c6← Hi removes value 2 from D(Bi) if 1, 2 /∈ D(Hi).
As B0 = 0 and value 1 has already been removed from all Hi’s domains, those 2n revise()
remove value 2 from the domain of all Bi. Finally, after these 2k + (n− k) + n + 2n = 4n + k

revise() operations, the last element in R, Y
=← Bn, wipes out the domain of Y and proves

arc inconsistency.
We then prove that if there exists an arc inconsistency explanation for PG of length

4n + k + 1, then G contains a k-dominating set. We first observe that if we remove c5(B0, H1)
or Bn = Y from PG, the instance becomes satisfiable. (B0 is necessary to trigger removals of
value 2 from the His and Y to trigger removals of value 0.) Hence, no wipe out can occur
without executing 2n + 1 revise() operations on the path from B0 to Y . Furthermore, if
a single variable Hi still has value 1 in its domain, the propagation of removals stops. As
a result, value 2 needs to be removed from all Xis and a revise() needs to be executed on
the n constraints c4. We then have n + k remaining available operations to remove value 2
from all Xis. If we do these removals thanks to the sequence ⟨X ′

i
c1← X

′′

i , Xi
c2← X ′

i⟩, it costs
2n operations, which is more than n + k. To reach n + k, we need to remove value 2 in a
single operation for at least n− k variables. The only way to do that is through a Xj

c3← Xi

for n − k variables Xj . Now, Xj
c3← Xi removes value 2 from D(Xj) only if D(Xi) = {0}

and c3(Xi, Xj) ∈ C. D(Xi) is equal to {0} only if Xi is one of the k variables on which
⟨X ′

i
c1← X

′′

i , Xi
c2← X ′

i⟩ has been executed. c3(Xi, Xj) belongs to C only if {i, j} ∈ E. As
a result, the set of k vertices i corresponding to the k variables with D(Xi) = {0} is a
dominating set. ◀

5 Conclusion

We have investigated the complexity of finding a shortest proof of inconsistency of a binary
CSP in the form of a sequence of arc consistency operations. Our characterisation in terms
of structure or domain size shows that this problem is polynomial when variables have degree
two or domains are Boolean. The problem is NP-hard if the CSP has four variables of
degree three or if the domain size is bounded by three. It is also NP-hard on trees. In
addition, the problem is not FPT-approximable unless the Gap-ETH is false. Although
our initial motivation was to provide short explanations for human users, there are other
possible applications. Virtual Arc Consistency (VAC) algorithms for cost-function networks
use arc-inconsistency explanations in the CSP of zero-cost tuples in order to update cost
functions [5]. Our NP-hardness results can be seen as a justification for the use of minimal
rather than minimum-cardinality arc-inconsistency explanations by VAC algorithms. On a
final positive note, the polynomial-time algorithm for the special case of size-2 domains may
prove an inspiration for heuristic methods to improve minimal arc inconsistency explanations
via the search for shortest paths in the causal graph described in the proof of Theorem 11.
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